
CHAPTER 6

Clustering

Oftentimes a dataset can be partitioned into different categories. A doctor may notice that
their patients come in cohorts and different cohorts respond to different treatments. A biol-
ogist may gain insight by identifying that bats and whales, despite outward appearances,
have some underlying similarity, and both should be considered members of the same cat-
egory, i.e., “mammal”. The problem of automatically identifying meaningful groupings in
datasets is called clustering. Once these groupings are found, they can be leveraged toward
interpreting the data and making optimal decisions for each group.

6.1 Clustering formalisms

Mathematically, clustering looks a bit like classification: we wish to find a mapping from
datapoints, x, to categories, y. However, rather than the categories being predefined labels,
the categories in clustering are automatically discovered partitions of an unlabeled dataset.

Because clustering does not learn from labeled examples, it is an example of an unsuper-
vised learning algorithm. Instead of mimicking the mapping implicit in supervised training
pairs {x(i),y(i)}ni=1, clustering assigns datapoints to categories based on how the unlabeled
data {x(i)}ni=1 is distributed in data space.

Intuitively, a “cluster” is a groups of datapoints that are all nearby to each other and far
away from other clusters. Let’s consider the following scatter plot. How many clusters do
you think there are?

Figure 6.1: A dataset we would like to cluster. How many clusters do you think there are?

47



MIT 6.390 Fall 2022 48

There seem to be about five clumps of datapoints and those clumps are what we would
like to call clusters. If we assign all datapoints in each clump to a cluster corresponding to
that clump, then we might desire that nearby datapoints are assigned to the same cluster,
while far apart datapoints are assigned to different clusters.

In designing clustering algorithms, three critical things we need to decide are:

• How do we measure distance between datapoints? What counts as “nearby” and “far
apart”?

• How many clusters should we look for?

• How do we evaluate how good a clustering is?

We will see how to begin making these decisions as we work through a concrete clus-
tering algorithm in the next section.

6.2 The k-means formulation

One of the simplest and most commonly used clustering algorithms is called k-means. The
goal of the k-means algorithm is to assign datapoints to k clusters in such a way that the We will be careful to

distinguish between the
k-means algorithm and
the k-means objective.
As we will see, the k-
means algorithm can
be understood to be
just one optimization
algorithm which finds
a local optimum of the
k-means objective.

variance within clusters is as small as possible. Notice that this matches our intuitive idea

Recall that variance is a
measure of how “spread
out” data is, defined as
the mean squared dis-
tance from the average
value of the data.

that a cluster should be a tightly packed set of datapoints.
Similar to the way we showed that supervised learning could be formalized mathe-

matically as the minimization of an objective function (loss function + regularization), we
will show how unsupervised learning can also be formalized as minimizing an objective
function. Let us denote the cluster assignment for a datapoint x(i) as y(i) ∈ {1, 2, . . . , k},
i.e., y(i) = 1 means we are assigning datapoint x(i) to cluster number 1. Then the k-means
objective can be quantified with the following objective function (which we also call the
“k-means loss”):

k∑

j=1

n∑

i=1

1(y(i) = j)
∥∥∥x(i) − µ(j)

∥∥∥
2

, (6.1)

where µ(j) = 1
Nj

∑n
i=1 1(y(i) = j)x(i) andNj =

∑n
i=1 1(y(i) = j), so that µ(j) is the mean of

all datapoints in cluster j, and using 1(·) to denote the indicator function (which takes on
value of 1 if its argument is true and 0 otherwise). The inner sum (over data points) of the
loss is the variance of datapoints within cluster j. We sum up the variance of all k clusters
to get our overall loss.

6.2.1 K-means algorithm

The k-means algorithm minimizes this loss by alternating between two steps: given some
initial cluster assignments: 1) compute the mean of all data in each cluster and assign this
as the “cluster mean”, and 2) reassign each datapoint to the cluster with nearest cluster
mean. Fig. 6.2 shows what happens when we repeat these steps on the dataset from above.

Each time we reassign the data to the nearest cluster mean, the k-means loss decreases
(the datapoints end up closer to their assigned cluster mean), or stays the same. And each
time we recompute the cluster means the loss also decreases (the means end up closer to
their assigned datapoints) or stays the same. Overall then, the clustering gets better and
better, according to our objective – until it stops improving.

After four iterations of cluster assignment + update means in our example, the k-means
algorithm stops improving. We say it has converged, and its final solution is shown in
Fig. 6.3.

Last Updated: 12/06/22 14:56:16



MIT 6.390 Fall 2022 49

Figure 6.2: The first three steps of running the k-means algorithm on this data. Datapoints
are colored according to the cluster to which they are assigned. Cluster means are the larger
X’s with black outlines.

Figure 6.3: Converged result.

It seems to converge to something reasonable! Now let’s write out the algorithm in
complete detail:

K-MEANS(k, τ, {x(i)}ni=1)

1 µ,y = random initialization
2 for t = 1 to τ
3 yold = y

4 for i = 1 to n
5 y(i) = arg minj

∥∥x(i) − µ(j)
∥∥2

6 for j = 1 to k
7 µ(j) = 1

Nj

∑n
i=1 1(y(i) = j)x(i)

8 if 1(y = yold)

9 break
10 return µ,y

Study Question: Why do we have the “break” statement on line 9? Could the clus-
tering improve if we ran it for more iterations after this point? Has it converged?

The for-loop over the n datapoints assigns each datapoint to the nearest cluster center.
The for-loop over the k clusters updates the cluster center to be the mean of all datapoints
currently assigned to that cluster. As suggested above, it can be shown that this algorithm
reduces the loss in Eq. 6.1 on each iteration, until it converges to a local minimum of the
loss.

It’s like classification except it picked what the classes are rather than being given exam-
ples of what the classes are.

Last Updated: 12/06/22 14:56:16



MIT 6.390 Fall 2022 50

6.2.2 Using gradient descent to minimize k-means objective

We can also use gradient descent to optimize the k-means objective. To show how to apply The k-means algorithm
presented above is a
form of block coordinate
descent, rather than gra-
dient descent. For cer-
tain problems, and in
particular k-means, this
method can converge
faster than gradient de-
scent.

gradient descent, we first rewrite the objective as a differentiable function only of µ:

L(µ) =

n∑

i=1

min
j

∥∥∥x(i) − µ(j)
∥∥∥

2
. (6.2)

L(µ) is the value of the k-means loss given that we pick the optimal assignments of the
datapoints to cluster means (that’s what the minj does). Now we can use the gradient
∂L(µ)
∂µ

to find the values for µ that achieve minimum loss when cluster assignments are
L(µ) is a smooth func-
tion except with kinks
where the nearest clus-
ter changes; that means
it’s differentiable almost
everywhere, which in
practice is sufficient for
us to apply gradient de-
scent.

optimal. Finally, we read off the optimal cluster assignments, given the optimized µ, just
by assigning datapoints to their nearest cluster mean:

y(i) = arg min
j

∥∥∥x(i) − µ(j)
∥∥∥

2
. (6.3)

This procedure yields a local minimum of Eq. 6.1, as does the standard k-means algorithm
we presented (though they might arrive at different solutions). It might not be the global
optimum since the objective is not convex (due to minj, as the minimum of multiple convex
functions is not necessarily convex).

6.2.3 Importance of initialization

The standard k-means algorithm, as well as the variant that uses gradient descent, both
are only guaranteed to converge to a local minimum, not necessarily the global minimum
of the loss. Thus the answer we get out depends on how we initialize the cluster means.
Figure 6.4 is an example of a different initialization on our toy data, which results in a
worse converged clustering:

Figure 6.4: With the initialization of the means to the left, the yellow and red means end
up splitting what perhaps should be one cluster in half.

A variety of methods have been developed to pick good initializations (see, for exam-
ple, the k-means++ algorithm). One simple option is to run the standard k-means algorithm
multiple times, with different random initial conditions, and then pick from these the clus-
tering that achieves the lowest k-means loss.

6.2.4 Importance of k

A very important parameter in cluster algorithms is the number of clusters we are looking
for. Some advanced algorithms can automatically infer a suitable number of clusters, but

Last Updated: 12/06/22 14:56:16



MIT 6.390 Fall 2022 51

Figure 6.5: Example of k-means run on our toy data, with two different values of k. Setting
k=4, on the left, results in one cluster being merged, compared to setting k=5, on the right.
Which clustering do you think is better? How could you decide?

most of the time, like with k-means, we will have to pick k – it’s a hyperparameter of the
algorithm.

Figure 6.5 shows an example of the effect. Which result looks more correct? It can be
hard to say! Using higher k we get more clusters, and with more clusters we can achieve
lower within-cluster variance – the k-means objective will never increase, and will typically
strictly decrease as we increase k. Eventually, we can increase k to equal the total number
of datapoints, so that each datapoint is assigned to its own cluster. Then the k-means
objective is zero, but the clustering reveals nothing. Clearly, then, we cannot use the k-
means objective itself to choose the best value for k. In Section 6.3, we will discuss some
ways of evaluating the success of clustering beyond its ability to minimize the k-means
objective, and it’s with these sorts of methods that we might decide on a proper value of k.

Alternatively, you may be wondering: why bother picking a single k? Wouldn’t it be
nice to reveal a hierarchy of clusterings of our data, showing both coarse and fine group-
ings? Indeed hierarchical clustering is another important class of clustering algorithms, be-
yond k-means. These methods can be useful for discovering tree-like structure in data,
and they work a bit like the decision trees we will see later in Chapter 12, where initially
a coarse split of the data is applied at the root of the tree, and then as we descend the tree
we split the data in ever more fine-grained ways. A prototypical example of hierarchical
clustering is to discover a taxonomy of life, where creatures may be grouped at multiple
granularities, from species to families to kingdoms.

6.2.5 k-means in feature space

Clustering algorithms group data based on a notion of similarity, and thus we need to
define a distance metric between datapoints. This notion will also be useful in other machine
learning approaches, such as nearest-neighbor methods that we will see in Chapter 12. In
k-means and other methods, our choice of distance metric can have a big impact on the
results we will find.

Our k-means algorithm uses the Euclidean distance, i.e.,
∥∥x(i) − µ(j)

∥∥, with a loss func-
tion that is the square of this distance. We can modify k-means to use different distance
metrics, but a more common trick is to stick with Euclidean distance but measured in a
feature space. Just like we did for regression and classification problems, we can define a
feature map from the data to a nicer feature representation, φ(x), and then apply k-means
to cluster the data in the feature space. In fact, using a sim-

ple distance metric in
feature space can be
equivalent to using a
more sophisticated dis-
tance metric in the data
space, and this trick
forms the basis of kernel
methods, which you can
learn about in more ad-
vanced machine learn-
ing classes.

As a simple example, suppose we have two-dimensional data that is very stretched out
in the first dimension and has less dynamic range in the second dimension. Then we may
want to scale the dimensions so that each has similar dynamic range, prior to clustering.
We could use standardization, like we did in Chapter 5.

Last Updated: 12/06/22 14:56:16



MIT 6.390 Fall 2022 52

If we want to cluster more complex data, like images, music, chemical compounds,
etc., then we will usually need more sophisticated feature representations. One common
practice these days is to use feature representations learned with a neural network. For
example, we can use an autoencoder to compress images into feature vectors, then cluster
those feature vectors.

6.3 How to evaluate clustering algorithms

One of the hardest aspects of clustering is knowing how to evaluate it. This is actually
a big issue for all unsupervised learning methods, since we are just looking for patterns
in the data, rather than explicitly trying to predict target values (which was the case with
supervised learning).

Remember, evaluation metrics are not the same as loss functions, so we can’t just mea-
sure success by looking at the k-means loss. In prediction problems, it is critical that the
evaluation is on a held-out test set, while the loss is computed over training data. If we
evaluate on training data we cannot detect overfitting. Something similar is going on with
the example in Section 6.2.4, where setting k to be too large can precisely “fit” the data
(minimize the loss), but yields no general insight.

One way to evaluate our clusters is to look at the consistency with which they are found
when we run on different subsamples of our training data, or with different hyperparam-
eters of our clustering algorithm (e.g., initializations). For example, if running on several
bootstrapped samples (random subsets of our data) results in very different clusters, it
should call into question the validity of any of the individual results.

If we have some notion of what ground truth clusters should be, e.g., a few data points
that we know should be in the same cluster, then we can measure whether or not our
discovered clusters group these examples correctly.

Clustering is often used for visualization and interpretability, to make it easier for
humans to understand the data. Here, human judgment may guide the choice of clustering
algorithm.

More quantitatively, discovered clusters may be used as input to downstream tasks.
For example, we may fit a different regression function on the data within each cluster.
Figure 6.6 gives an example where this might be useful. In cases like this, the success of a
clustering algorithm can be indirectly measured based on the success of the downstream
application (e.g., does it make the downstream predictions more accurate).

Last Updated: 12/06/22 14:56:16



MIT 6.390 Fall 2022 53

Figure 6.6: Averaged across the whole population, risk of heart disease positively correlates
with hours of exercise. However, if we cluster the data, we can observe that there are four
subgroups of the population which correspond to different age groups, and within each
subgroup the correlation is negative. We can make better predictions, and better capture
the presumed true effect, if we cluster this data and then model the trend in each cluster
separately.

Last Updated: 12/06/22 14:56:16


