
6.390 Introduction to Machine Learning
Recitation Week #8

Issued October 31, 2022

1. Kim constructs a fully connected deep neural network with 4 layers, pictured in the figure
below. He uses a squared-error loss and ReLU activation functions for all hidden layers,
denoted by f1, f2, f3 in the figure, and an identity activation f(z) = z for the output
layer, denoted by f4. The ReLU activation function is implemented as ReLU(z) =
max(0, z), with ∂ReLU(z)/∂z = 1 if z > 0, and 0 otherwise. Kim has a data set
Dn = {(x(i), y(i))}ni=1, where each x(i) is a 1-dimensional feature and y(i) is a 1-dimensional
label.

x Σ f1 Σ f2 Σ f3 Σ f4 g
w1

w1
0 w2

0 w3
0 w4

0

w2 w3 w4

Layer 1 Layer 2 Layer 3 Layer 4

Consider the following, which will help us represent how the neural network is operating:

a0 = x, zl = wlal−1 + wl
0, al = fl(z

l), g = a4.

The weights are initialized as follows:

w1
0 = −1, w1 = 3, w2

0 = 1, w2 = 4, w3
0 = −5, w3 = 1, w4

0 = 1, w4 = 1.

(a) Before training, Kim is curious about the output of his network as initialized. What
will Kim observe at the output of the neural network when he provides the feature,
x(1) = 1? For each layer l, compute the values of al, zl by means of a forward pass.

a0 =

z1 = a1 =

z2 = a2 =

z3 = a3 =

z4 = a4 =



(b) Following the above construction, Kim wants to derive the formula for back-propagation.
He uses the squared-error loss function, L(g(i), y(i)) = (g(i) − y(i))2, where g(i) =
NN(x(i);W ), and W collects all of the weights and offsets across all of the layers.
Kim derives the gradient of the loss function with respect to weight w1 as:

∂L(g, y)

∂w1
=
∂L(g, y)

∂g
· ∂g
∂z4
· ∂z

4

∂a3
· ∂a

3

∂z3
· ∂z

3

∂a2
· ∂a

2

∂z2
· ∂z

2

∂a1
· ∂a

1

∂z1
· ∂z

1

∂w1
.

Provide equations for each of the factors in the equation above:

∂z1

∂w1
=

∂a1

∂z1
=

∂z2

∂a1
=

∂a2

∂z2
=

∂z3

∂a2
=

∂a3

∂z3
=

∂z4

∂a3
=

∂g

∂z4
=

∂L
∂g

=

(c) Now, we are well equiped to compute a gradient descent step for updating the
weight w1 through backpropagation. Using the formula,

w1 = w1 − η∂L(g, y)

∂w1
,

and the components that you found in parts (a) and (b), calculate one gradient
descent update for the training data point (x(1), y(1)) = (1, 2), and a step size
η = 0.1.

(d) Kim next looks to find the gradient with respect to the offset to the first neuron,

w1
0. Write out the equation for ∂L(g,y)

∂w1
0
, and identify which factors are shared with

the equation for ∂L(g,y)
∂w1 .

Page 2



2. Otto N. Coder wants to find a way to represent his 2-dimensional data points in 1-
dimensional space. Consider the following autoencoder with input x = [x1, x2]

> ∈ R2

and output x̃ = [x̃1, x̃2]
> ∈ R2. The autoencoder has one hidden layer with one hidden

unit.

x1

x2

Σ f

Σ

Σ

f

f

x̃1

x̃2

w1
1

w1
2

w1
0

w2
1,0

w2
2,0

w2
1,1

w2
2,1

The encoder of this autoencoder is described by the output of the first hidden layer,

a1 = f(w1
1x1 + w1

2x2 + w1
0),

and the decoder of this autoencoder is described by the outputs of the output layer,

x̃1 = f(w2
1,1a

1 + w2
1,0), x̃2 = f(w2

2,1a
1 + w2

2,0)

The goal is to learn a set of weights such that x1 ≈ x̃1 and x2 ≈ x̃2 by means of first
representing the input in a lower dimensional space. Autoencoders are generally used
for unsupervised learning and not for supervised learning problems like regression, but
today we’re going to play around with shapes like lines and ReLUs just to make sure we
understand the basic math first.

(a) For this part, suppose that the activation functions f are the identity f(z) = z.
Let a dataset Dn = {x(i)}ni=1 be composed of n datapoints which are Cartesian
coordinates in 2-dimensional space which are plotted below:

1 2 3 4 5 6 7

1

2

3

4

5

x1

x
2

i. Can you write a formula for x2 as a function of x1?

Page 3



ii. Consider the autoencoder structure depicted in the figure at the start of this
question. Using your result from Part (a).i., can you find weights and offsets
for this autoencoder that just about perfectly recover x̃1 = x1 and x̃2 = x2,
even though there is only one hidden unit?

w1
0 = w1

1 = w1
2 =

w2
1,0 = w2

1,1 =

w2
2,0 = w2

2,1 =

iii. Intuitively, what would the weights and offsets of the autoencoder be learning?

(b) Otto modifies his autoencoder to have reLU activation functions so that he can
model nonlinear relationships. Suppose that he has a new data set Dn = {x(i)}ni=1

composed of n datapoints, plotted in this figure:

1 2 3 4 5 6

1

2

3

4

5

x1

x
2

Again consider the autoencoder structure in the figure at the start of this question.
Find values for the weights and offsets in the autoencoder that can just about
perfectly recover this new data set.

w1
0 = w1

1 = w1
2 =

w2
1,0 = w2

1,1 =

w2
2,0 = w2

2,1 =

Page 4


