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DeepMind’s Al predicts
structures for a vast trove
of proteins

AlphaFold neural network produced a ‘totally transformative’
database of more than 350,000 structures from Homo
sapiens and 20 model organisms.

Underpinning the latest version of AlphaFold is
Ewen Callaway

a novel machine learning approach that incorporates

physical and biological knowledge about protein
structure, leveraging multi-sequence alignments, into
the design of the deep learning algorithm.
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Surveilance cameras, like the one here in Boston, are used throughout Massachusetts.

The state now regulates how police use facial recognition technology.

[https://www.npr.org/
2021/05/07/982709480/
massachusetts-pioneers-rules-
for-police-use-of-facial-
recognition-tech]
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 Hypothesis class H : set of h
* Example: all constant functions

* Alinear regression hypotheS|s
when d=1.
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» Training error: &,( ZL

» One idea: prefer h to h if En(h) < E,(h)
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L earning a regressor

 Have data; have hypothesis class
* \Want to choose a good regressor

e Recall: T=—p| h |=—p Y
* New: learnin
— 9 |
DPr algorithm h
 Example:

e Suppose someone already generated 1 trillion

hypotheses, e.g. at random, mdexed by /.
h(])( ) = h(x; 9(3)

Ex learning alg(D,: k) | hypebe
Set j* = the j € {1,...,k} with lowest &, (h<~7>)

Return AU

» How does training error of Ex learning alg(Dy;1)

7

compare to the training error of Ex learning alg(D,;2)7
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Linear regression: A Direct Solution

o Goal: minimize J(0) = Tll(XH V) (X6 -Y)

* Unigquely minimized at a point if gradlent at that point
IS zero and unctlon ‘curves up” [see linear algebr

* (Gradient VgJ(@)SEtO =60=(X"X)"'X'Yy
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What can go wrong in practice”

* Does the linear regr. objective always “curve up™? No!

 Sometimes there isn't a unique best hyperplane
e Then X' X not invertible

04202406 R
$-4-20024 65

3 2 T 0 213 ’
e Sometimes there’s technically a unique best hyperplane,
but just because of noise

 Practical: real-lite features often have this issue

 How to choose among hyperplanes” Preterence for 6
components being near zero
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e Linear regression wiqgh square penalty: ridge regression

1 . .
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e Special case: ridge regression with no offset

1 - . - -
Tridge(0) = = (X0 =Y) (X0 =Y) + A|6]*

n

* Min at: VgJyidge(0) =0
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e Linear regression wiqgh square penalty: ridge regression

1 . .
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e Special case: ridge regression with no offset

1 - . - -
Tridge(0) = = (X0 =Y) (X0 =Y) + A|6]*

n

* Min at: VgJyidge(0) =0
= 0=(X'X+nA)'X'Y
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« When A > 0, always “curves up” & can invert
* Can also solve with an offset

=" Can think of \ as hyperparameter of a learning algorithm

 How to choose A”? One option: cross validation (see HW!)
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