

6.036: Introduction to Machine Learning

Lecture start: Tuesdays 9:35am

Who's talking? Prof. Tamara Broderick

Questions? Ask on Piazza: "lecture (week) 3" folder

Materials: slides, video will all be available on Canvas

Live Zoom feed: https://mit.zoom.us/j/94238622313

Last Time

- I. Machine learning setup
- II. Linear regression
- III. Regularization

Today's Plan

- I. Gradient descent
- II. Stochastic gradient descent (SGD)

• A general ML approach:

- A general ML approach:
 - Collect data

- A general ML approach:
 - Collect data

- A general ML approach:
 - Collect data
 - Choose hypothesis class

- A general ML approach:
 - Collect data
 - Choose hypothesis class

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} L(h(x^{(i)}; \Theta), y^{(i)}) + \lambda R(\Theta) \qquad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} L(\theta^{\top} x^{(i)} + \theta_0, y^{(i)}) + \lambda R(\Theta) \quad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} L(\theta^{\top} x^{(i)} + \theta_0, y^{(i)}) + \lambda R(\Theta) \quad (\lambda > 0)$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $\frac{1}{\pi} \sum_{\alpha} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda R(\Theta) (\lambda > 0)$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $\sum (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda R(\Theta) (\lambda > 0)$ squared-norm as regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $\sum (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda R(\Theta) (\lambda > 0)$ squared-norm as regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $\sum_{i=0}^{\infty} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$\frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $\sum_{i=0}^{\infty} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_i)$$

linear regression hypothesis $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared loss $L(g,a) = (g-a)^2$ squared-norm as regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$$
squared-norm as regularize

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ squared-norm as regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$$
squared loss $L(g, a) = (g-a)^2$
squared-norm as regularizer

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$

"All models are wrong, but some are useful" -George Box

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$$
squared-norm as regularizer

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer
 - Other hypotheses or loss or regularizer

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer
 - Other hypotheses or loss or regularizer: maybe no closedform solution, or difficult

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer
 - Other hypotheses or loss or regularizer: maybe no closedform solution, or difficult

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer e.g. L(g, a) =
 - Other hypotheses or loss or regularizer: maybe no closedform solution, or difficult

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis $J_{\text{ridge}}(\theta,\theta_0) = \frac{1}{n} \sum_{i=1}^n (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer squared-norm as regularizer

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer
 - Other hypotheses or loss or regularizer: maybe no closedform solution, or difficult

e.g.
$$L(g,a) =$$

$$\begin{cases} (g-a)^2 \text{ if } g > a \\ 5(g-a)^2 \text{ if } g \leq a \end{cases}$$

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0)$$

linear regression hypothesis squared loss $L(g,a) = (g-a)^2$ $J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer
 - Other hypotheses or loss or regularizer: maybe no closedform solution, or difficult
- e.g. L(g,a) = $\begin{cases} (g-a)^2 & \text{if } g > a \\ 5(g-a)^2 & \text{if } g \le a \end{cases}$

Can be too slow to run, even in ridge regression

- A general ML approach:
 - Collect data
 - Choose hypothesis class
 - Choose "good" hypothesis by minimizing training loss + regularizer
- Example: ridge regression

squared loss
$$L(g,a) = (g-a)^2$$
 $f(\Theta) = J_{\mathrm{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$ squared-norm as regularizer squared-norm as regularizer

linear regression hypothesis

- "All models are wrong, but some are useful" -George Box
- Limitations of a closed-form solution for objective minimizer
 - Other hypotheses or loss or regularizer: maybe no closedform solution, or difficult
 - Can be too slow to run, even in ridge regression

e.g. L(g,a) = $(g-a)^2 \text{ if } g > a$ $5(g-a)^2 \text{ if } g \le a$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial G_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial G_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial G_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial \partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\mathbf{t} = \mathbf{t} + \mathbf{1}$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial f} \\ \overline{\partial \Theta_1}, \dots, \overline{\partial f} \\ \overline{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

repeat

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

until

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \boldsymbol{\Theta}^{(t)} &= \boldsymbol{\Theta}^{(t-1)} - \eta \nabla_{\boldsymbol{\Theta}} f(\boldsymbol{\Theta}^{(t-1)}) \\ \mathbf{until} \left| f(\boldsymbol{\Theta}^{(t)}) - f(\boldsymbol{\Theta}^{(t-1)}) \right| < \epsilon \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$\begin{aligned} &\texttt{t} = \texttt{t} + \texttt{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\texttt{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ &\texttt{Return} \ \Theta^{(t)} \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$)

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

repeat

 $\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\text{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$)

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

repeat

$$\begin{aligned} &\texttt{t} = \texttt{t} + \texttt{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\texttt{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ &\texttt{Return} \ \Theta^{(t)} \end{aligned}$$

Other possible stopping criteria:

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$)

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \boldsymbol{\Theta}^{(t)} &= \boldsymbol{\Theta}^{(t-1)} - \eta \nabla_{\boldsymbol{\Theta}} f(\boldsymbol{\Theta}^{(t-1)}) \\ \mathbf{until} \left| f(\boldsymbol{\Theta}^{(t)}) - f(\boldsymbol{\Theta}^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \boldsymbol{\Theta}^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \overline{\partial} f \\ \overline{\partial} \Theta_m \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$\begin{aligned} &\texttt{t} = \texttt{t} + \texttt{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\texttt{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ &\texttt{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} \mathbf{t} &= \mathbf{t} + \mathbf{1} \\ \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ \mathbf{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \left[\frac{\bar{\partial} f}{\partial \Theta_1}, \dots, \frac{\bar{\partial} f}{\partial \Theta_m}\right]$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent ($\Theta_{
 m init}, \eta, f,
 abla_{\Theta} f, \epsilon$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

repeat

$$t = t + 1$$

$$\begin{aligned} \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \text{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \end{aligned}$$

Return $\Theta^{(t)}$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \left[\frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m}\right]$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent ($\Theta_{
m init}, \eta, f,
abla_{\Theta} f, \epsilon$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

repeat

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

$$\mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon$$

Return $\Theta^{(t)}$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \left[\frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m}\right]$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$

Initialize $\Theta^{(0)} = \Theta_{\rm init}$

Initialize t = 0

$$t = t + 1$$

$$\begin{aligned} \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \text{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \end{aligned}$$
 Return $\Theta^{(t)}$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \bar{\partial} f \\ \bar{\partial} \Theta_1 \end{bmatrix}^{\top}$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} &\texttt{t} = \texttt{t} + \texttt{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\texttt{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ &\texttt{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \begin{bmatrix} \overline{\partial} f \\ \overline{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m} \end{bmatrix}^{\top}$ • with $\Theta \in \mathbb{R}^m$
- Gradient-Descent $(\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)$

Initialize $\Theta^{(0)} = \Theta_{\mathrm{init}}$

Initialize t = 0

$$\begin{aligned} &\texttt{t} = \texttt{t} + \texttt{1} \\ &\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ &\texttt{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \\ &\texttt{Return} \ \Theta^{(t)} \end{aligned}$$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \left[\frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m}\right]$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$

Initialize
$$\Theta^{(0)} = \Theta_{\rm init}$$

Initialize t = 0

repeat

$$t = t + 1$$

$$\begin{split} \Theta^{(t)} &= \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \\ \text{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon \end{split}$$

Return $\Theta^{(t)}$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

- Gradient $\nabla_{\Theta} f = \left[\frac{\partial f}{\partial \Theta_1}, \dots, \frac{\partial f}{\partial \Theta_m}\right]$ with $\Theta \in \mathbb{R}^m$

Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$

Initialize
$$\Theta^{(0)} = \Theta_{init}$$

Initialize t = 0

repeat

$$t = t + 1$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

$$\mathbf{until} \left| f(\Theta^{(t)}) - f(\Theta^{(t-1)}) \right| < \epsilon$$

Return $\Theta^{(t)}$

- Other possible stopping criteria:
 - Max number of iterations T
 - $\bullet \|\Theta^{(t)} \Theta^{(t-1)}\| < \epsilon$
 - $\|\nabla_{\Theta} f(\Theta^{(t)})\| < \epsilon$

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

on the graph

• Theorem: Gradient descent performance

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - Assumptions:

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

• A function f on \mathbb{R}^m is convex if any line segment connecting two points of the graph of f lies above or

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\, \tilde{\epsilon} \,$ of a

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\, \tilde{\epsilon} \,$ of a

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\, \tilde{\epsilon} \,$ of a global optimum Θ

- **Theorem**: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\,\widetilde{\epsilon}\,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\,\widetilde{\epsilon}\,$ of a global optimum Θ

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- Theorem: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

- **Theorem**: Gradient descent performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a

- Theorem: Gradient descent performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)
 - f is sufficiently "smooth" and convex
 - f has at least one global optimum
 - η is sufficiently small
 - Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

Gradient descent

Gradient descent

Gradient descent vs. analytical/closed-form/direct solution

Accuracy doesn't mean anything without running time

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy
- Need to measure accuracy for the running time we have

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy
- Need to measure accuracy for the running time we have
 - Recall: closedform solution (if no offset)

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy
- Need to measure accuracy for the running time we have
 - Recall: closed- $\theta = (\tilde{X}^{\top}\tilde{X} + n\lambda I)^{-1}\tilde{X}^{\top}\tilde{Y}$ form solution (if no offset)

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy
- Need to measure accuracy for the running time we have
 - Recall: closedform solution (if no offset)

$$\theta = (\tilde{X}^{\top} \tilde{X} + n\lambda I)^{-1} \tilde{X}^{\top} \tilde{Y}$$

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy
- Need to measure accuracy for the running time we have
 - Recall: closedform solution (if no offset)

$$\theta = (\tilde{X}^{\top} \tilde{X} + n\lambda I)^{-1} \tilde{X}^{\top} \tilde{Y}$$

- Accuracy doesn't mean anything without running time
- Running time doesn't mean anything without accuracy
- Need to measure accuracy for the running time we have
 - Recall: closedform solution (if no offset)

$$\theta = (\tilde{X}^\top \tilde{X} + n\lambda I)^{-1} \tilde{X}^\top \tilde{Y}$$

• Gradient descent with f = ridge regression objective

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent (\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f)
Initialize \Theta^{(0)} = \Theta_{\mathrm{init}}
Initialize t = 0

repeat

t = t + 1

\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})

until stopping criterion
Return \Theta^{(t)}
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \Theta^{(0)} = \Theta_{\text{init}}
   Initialize t = 0
   repeat
     t = t + 1
    \Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
   until stopping criterion
```

Return $\Theta^{(t)}$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
   repeat
     t = t + 1
    \Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
   until stopping criterion
```

Return $\Theta^{(t)}$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\rm init}, \eta, f, \nabla_{\Theta} f ) Initialize \theta^{(0)} = \theta_{\rm init} Initialize t = 0
```

repeat

```
t = t + 1
\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
```

repeat

```
t = t + 1
\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
\begin{aligned} & \text{Gradient-Descent} \left( \ \Theta_{\text{init}}, \eta, f, \nabla_{\Theta} f \ \right) \\ & \text{Initialize} \ \theta^{(0)} = \theta_{\text{init}} \\ & \text{Initialize t = 0} \\ & \textbf{repeat} \\ & \text{t = t + 1} \\ & \Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)}) \end{aligned}
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
   repeat
```

```
t = t + 1
\theta^{(t)} = \theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\rm init}, \eta, f, \nabla_{\Theta} f ) Initialize \theta^{(0)} = \theta_{\rm init} Initialize t = 0 repeat t = t + 1
```

```
t = t + 1
\theta^{(t)} = \theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\rm init}, \eta, f, \nabla_{\Theta} f ) Initialize \theta^{(0)} = \theta_{\rm init} Initialize t = 0 repeat
```

```
t = t + 1
\theta^{(t)} = \theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})
```

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\rm init}, \eta, f, \nabla_{\Theta} f ) Initialize \theta^{(0)} = \theta_{\rm init} Initialize t = 0
```

repeat

$$\begin{aligned}
t &= t + 1 \\
\theta^{(t)} &= \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}
\end{aligned}$$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
```

repeat

repeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
```

repeat

Initialize
$$t=0$$

repeat
$$t=t+1$$

$$\theta^{(t)}=\theta^{(t-1)}-\eta\bigg\{\frac{1}{n}\sum_{i=1}^{n}2\big[\theta^{(t-1)\top}x^{(i)}-y^{(i)}\big]x^{(i)}+2\lambda\theta^{(t-1)}\bigg\}$$

until stopping criterion

Return $\Theta^{(t)}$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
```

repeat

Initialize t = 0

repeat

$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

until stopping criterion

Return $\Theta^{(t)}$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

```
Gradient-Descent ( \Theta_{\mathrm{init}}, \eta, f, 
abla_{\Theta} f )
   Initialize \theta^{(0)} = \theta_{\text{init}}
   Initialize t = 0
```

repeat

Initialize t = 0
cepeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

until stopping criterion

Return $\theta^{(t)}$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, f, \nabla_{\Theta} f$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

Initialize t = 0
repeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{\text{init}}, \eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

Initialize
$$t=0$$
cepeat

$$t=t+1$$

$$\theta^{(t)}=\theta^{(t-1)}-\eta\bigg\{\frac{1}{n}\sum_{i=1}^n 2\big[\theta^{(t-1)\top}x^{(i)}-y^{(i)}\big]x^{(i)}+2\lambda\theta^{(t-1)}\bigg\}$$

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{\mathrm{init}}, \eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

Initialize
$$t=0$$

repeat
$$t=t+1$$

$$\theta^{(t)}=\theta^{(t-1)}-\eta\bigg\{\frac{1}{n}\sum_{i=1}^{n}2\big[\theta^{(t-1)\top}x^{(i)}-y^{(i)}\big]x^{(i)}+2\lambda\theta^{(t-1)}\bigg\}$$

until stopping criterion Return $\theta^{(t)}$

No more matrix inversion! (see lab)

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{\mathrm{init}}, \eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

Initialize t = 0 repeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

- No more matrix inversion! (see lab)
- But have to look at all *n* data points every step

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{\mathrm{init}}, \eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

Initialize t = 0
cepeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

- No more matrix inversion! (see lab)
- But have to look at all n data points every step
- How to better handle large *n*?

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{\text{init}}, \eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

repeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

- No more matrix inversion! (see lab)
- But have to look at all n data points every step
- How to better handle large n?

Gradient descent for ridge regression

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{
m init},\eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

repeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

until stopping criterion Return $\theta^{(t)}$

- No more matrix inversion! (see lab)
- But have to look at all n data points every step
- How to better handle large n?

Gradient descent for ridge regression

- Gradient descent with f = ridge regression objective
 - For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent ($\theta_{\mathrm{init}}, \eta$)

```
Initialize \theta^{(0)} = \theta_{\text{init}}
Initialize t = 0
```

repeat

repeat
$$t = t + 1$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \left\{ \frac{1}{n} \sum_{i=1}^{n} 2 \left[\theta^{(t-1)\top} x^{(i)} - y^{(i)} \right] x^{(i)} + 2\lambda \theta^{(t-1)} \right\}$$

until stopping criterion Return $\theta^{(t)}$

- No more matrix inversion! (see lab)
- But have to look at all n data points every step
- How to better handle large n?

• Linear regression objective (with $\lambda = 0$):

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize
$$\Theta^{(0)} = \Theta_{\mathrm{init}}$$

for
$$t = 1$$
 to T

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability)

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability) $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability) $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$

Compare to gradient descent update: $\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability)

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal $\Theta^{(t)}=\Theta^{(t-1)}-\eta(t)\nabla_{\Theta}f_i(\Theta^{(t-1)})$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal $\Theta^{(t)}=\Theta^{(t-1)}-\eta(t)\nabla_{\Theta}f_i(\Theta^{(t-1)})$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability) $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability) $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$

Return $\Theta^{(t)}$

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

• Linear regression objective (with $\lambda = 0$):

$$J_{\text{linreg}}(\Theta) = J_{\text{linreg}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2$$

• A common machine learning objective:

$$f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)$$
 • Stay tuned for more examples • Compare to training error defn.

Stochastic-Gradient-Descent ($\Theta_{\text{init}}, \eta, T$)

Initialize $\Theta^{(0)} = \Theta_{\text{init}}$

for t = 1 to T

randomly select i from {1,...,n} (with equal probability) $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$

Return $\Theta^{(t)}$

Compare to gradient descent update:

$$\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$$

commonly used with "minibatches"

• Theorem: SGD performance

- Theorem: SGD performance
 - Assumptions:

- Theorem: SGD performance
 - Assumptions: (Choose any $\tilde{\epsilon} > 0$)

- Theorem: SGD performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is "nice" & convex, has a unique global minimizer

- Theorem: SGD performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is "nice" & convex, has a unique global minimizer

•
$$\sum_{t=1}^{\infty} \eta(t) = \infty, \sum_{t=1}^{\infty} (\eta(t))^2 < \infty$$

- Theorem: SGD performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is "nice" & convex, has a unique global minimizer

•
$$\sum_{t=1}^{\infty} \eta(t) = \infty, \sum_{t=1}^{\infty} (\eta(t))^2 < \infty$$

• e.g. $\eta(t) = \alpha(\tau_0 + t)^{-\kappa} (\kappa \in (0.5, 1])$

- Theorem: SGD performance
 - **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
 - f is "nice" & convex, has a unique global minimizer

•
$$\sum_{t=1}^{\infty} \eta(t) = \infty, \sum_{t=1}^{\infty} (\eta(t))^2 < \infty$$

- e.g. $\eta(t) = \alpha(\tau_0 + t)^{-\kappa} (\kappa \in (0.5, 1])$
- Conclusion: If run long enough, stochastic gradient descent will return a value within $\tilde{\epsilon}$ of the global minimizer