

6.036: Introduction to Machine Learning

Lecture start: Tuesdays 9:35am

Who's talking? Prof. Tamara Broderick

Questions? Ask on Piazza: "lecture (week) 4" folder

Materials: slides, video will all be available on Canvas

Live Zoom feed: https://mit.zoom.us/j/94238622313

Last Time(s)

- Linear regression
 - data, hypothesis class, loss, regularizer
- II. Gradient descent & SGD

Today's Plan

- Linear classification
- II. Linear logistic classification/logistic regression

Recall Regression

Regression

• Datum *i*:

Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

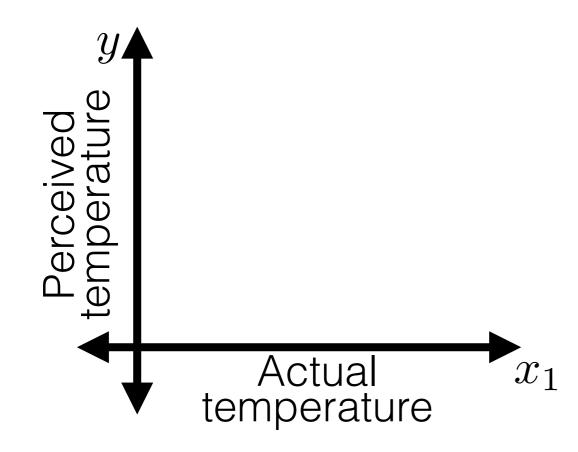
• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

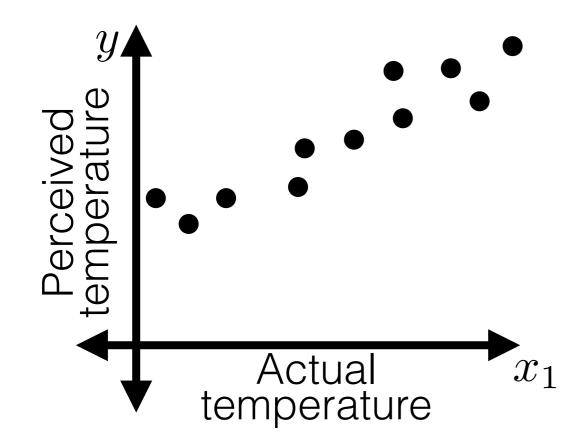
$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$



Regression

• Datum i: feature vector

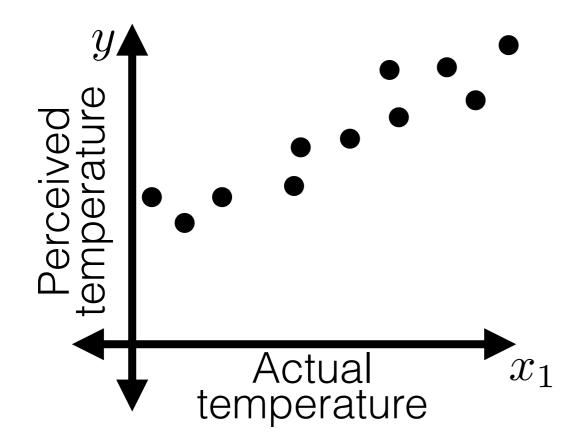
$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$



Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

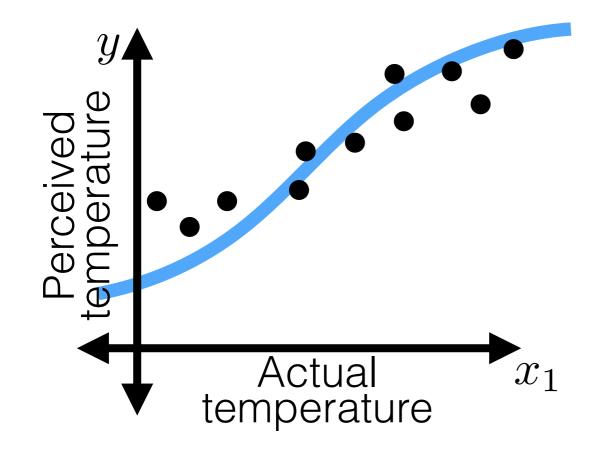
- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$



Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

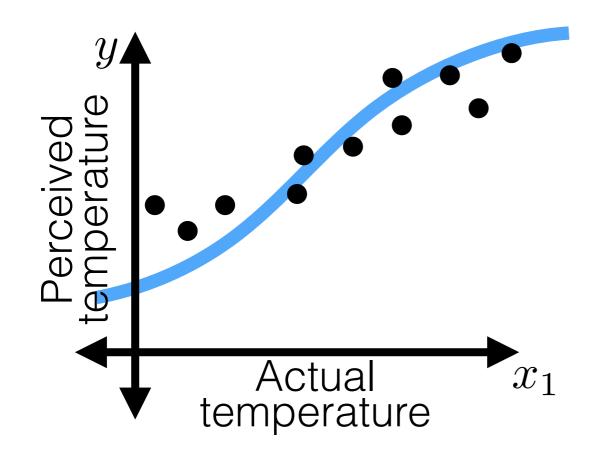


Compare

Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

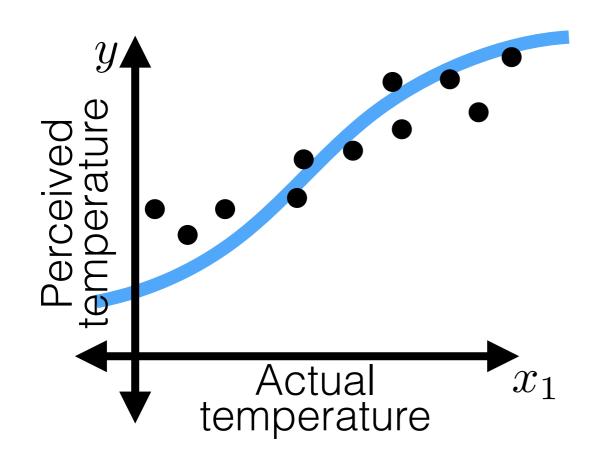


Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$



Compare

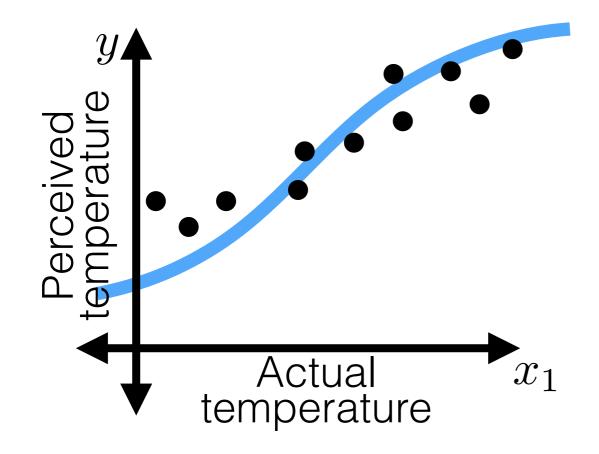
(Two-class) Classification

Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$



Compare

(Two-class) Classification

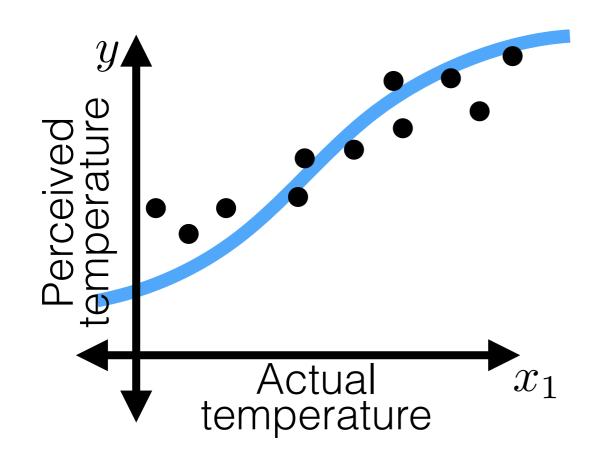
$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d \qquad x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$



Compare

(Two-class) Classification

• Datum i: feature vector

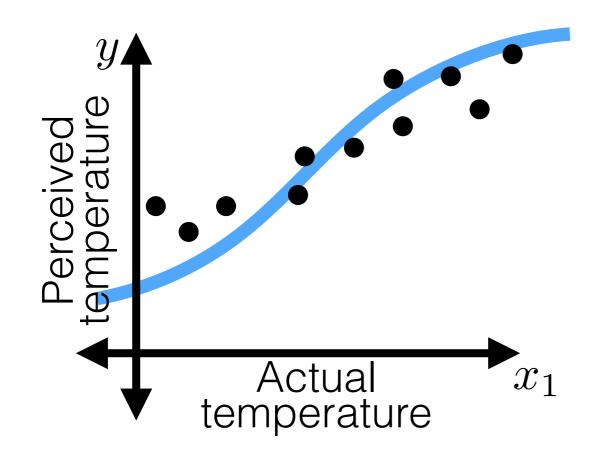
$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$



Compare

(Two-class) Classification

• Datum i: feature vector

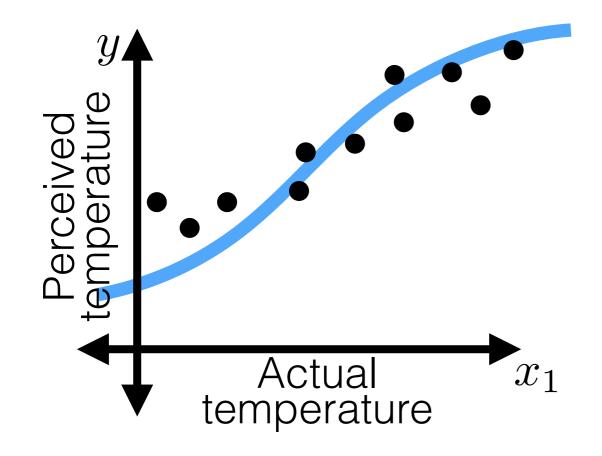
$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

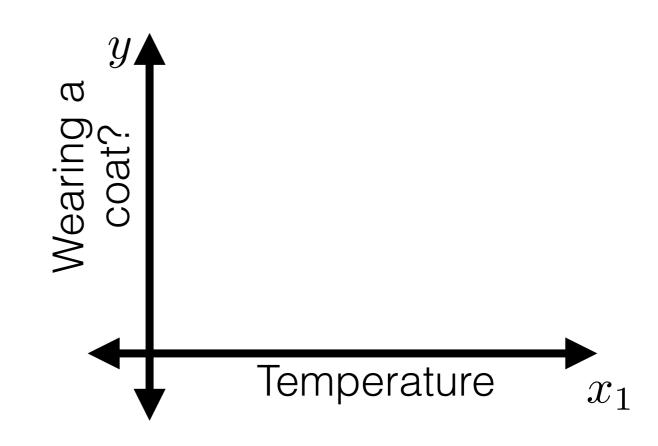


Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

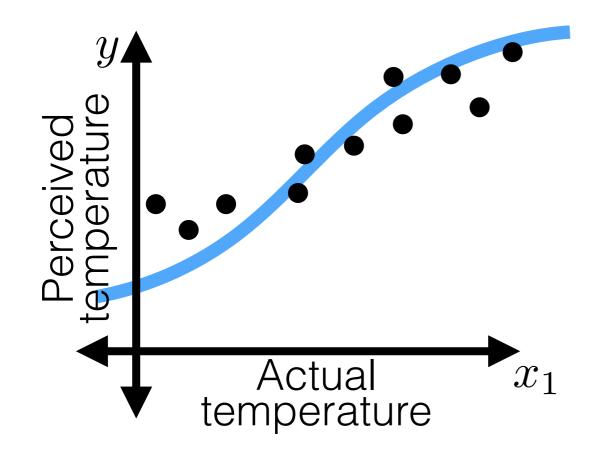


Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

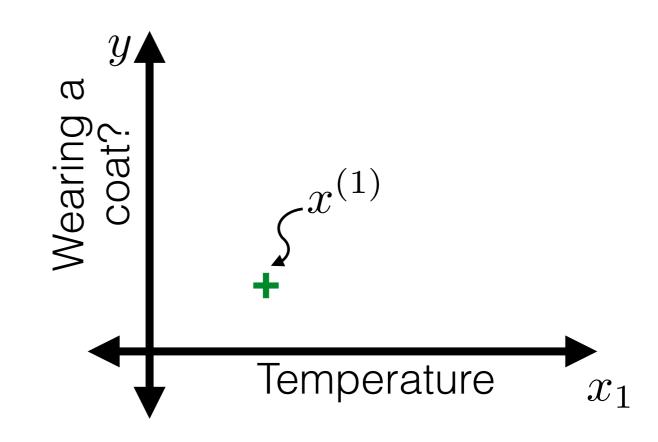


Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

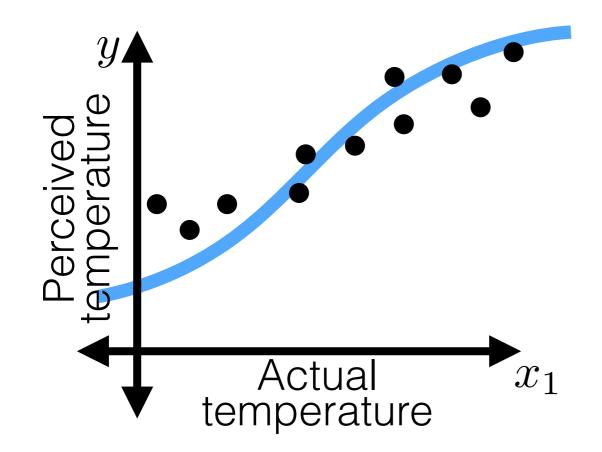


Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

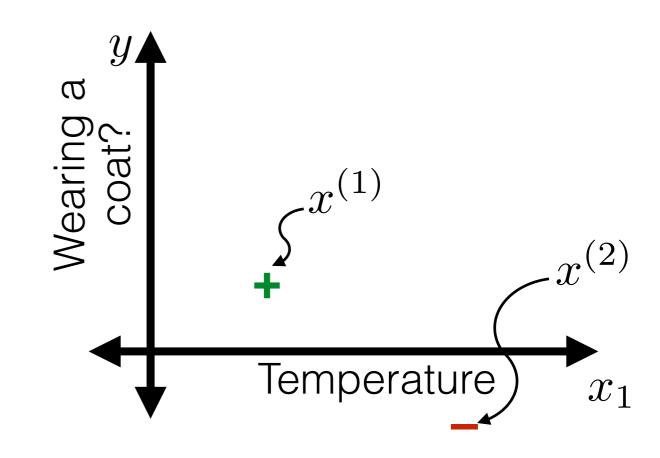


Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

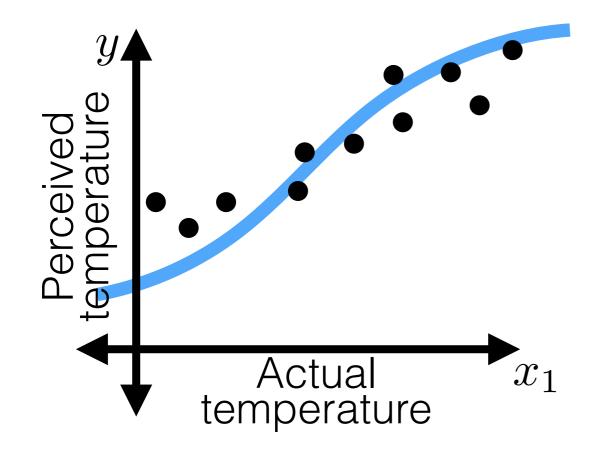


Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

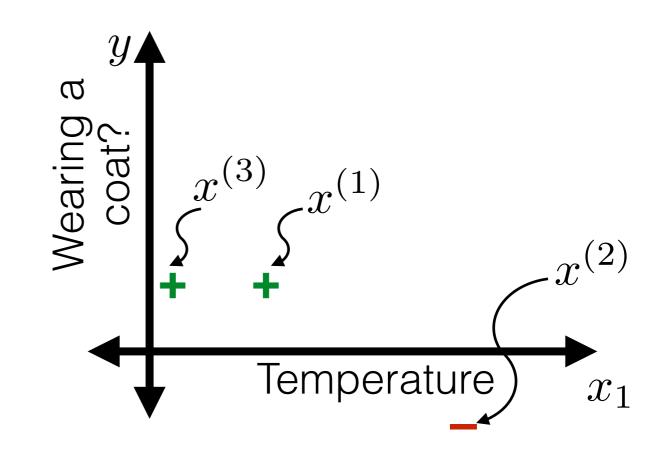


Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

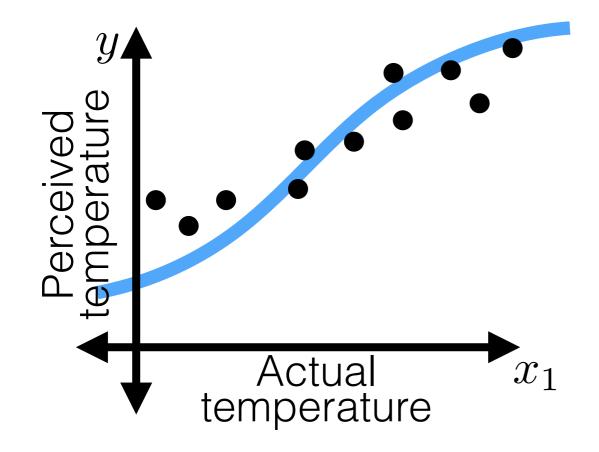


Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

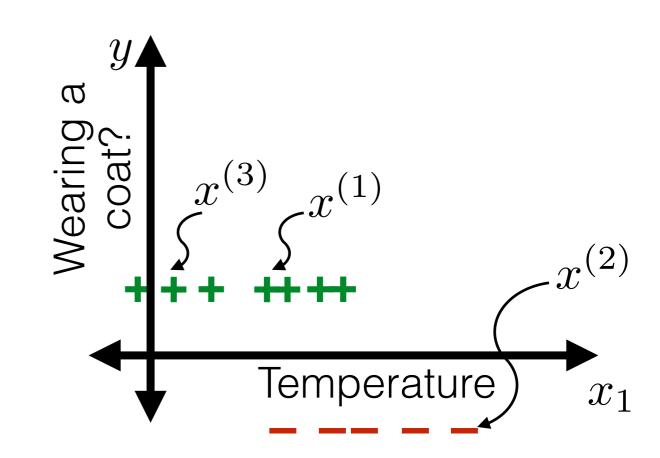


Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

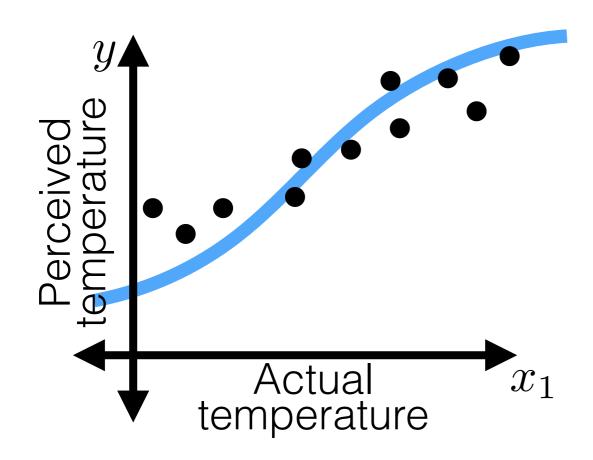


Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

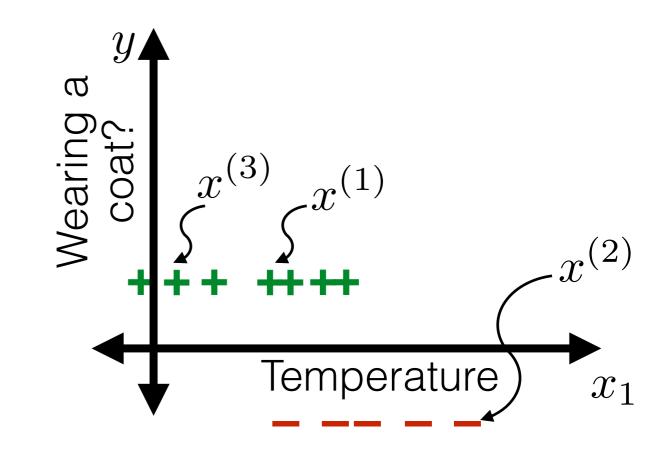


Compare

(Two-class) Classification

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Hypothesis $h: \mathbb{R}^d \to \{-1, +1\}$

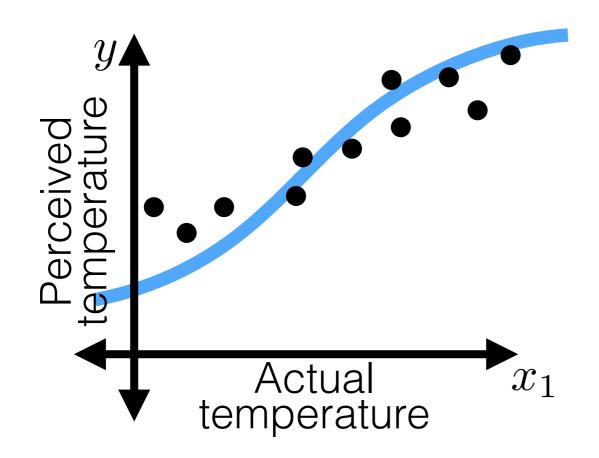


Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

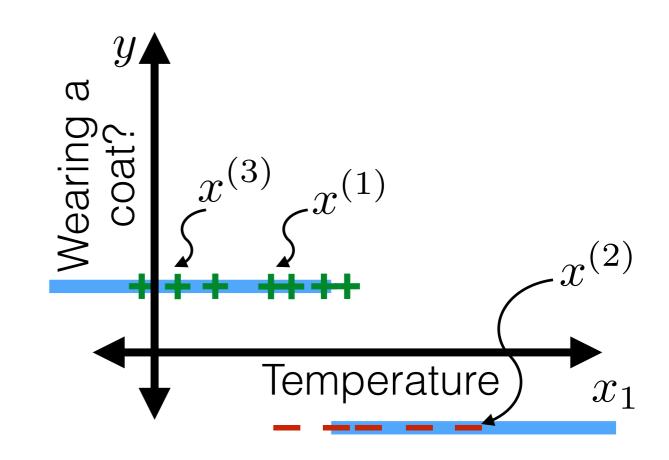


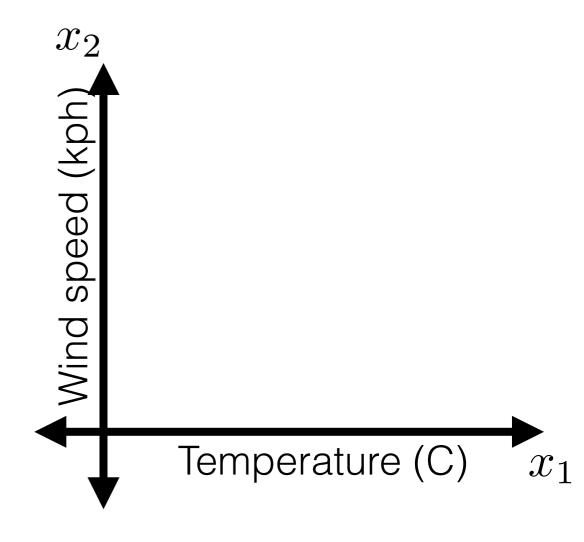
Compare

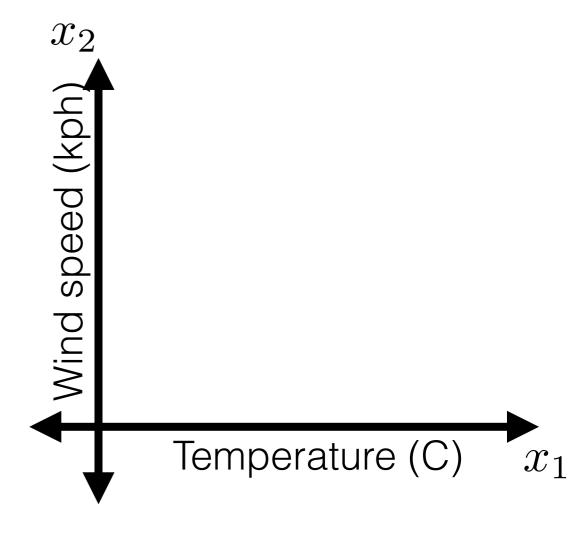
(Two-class) Classification

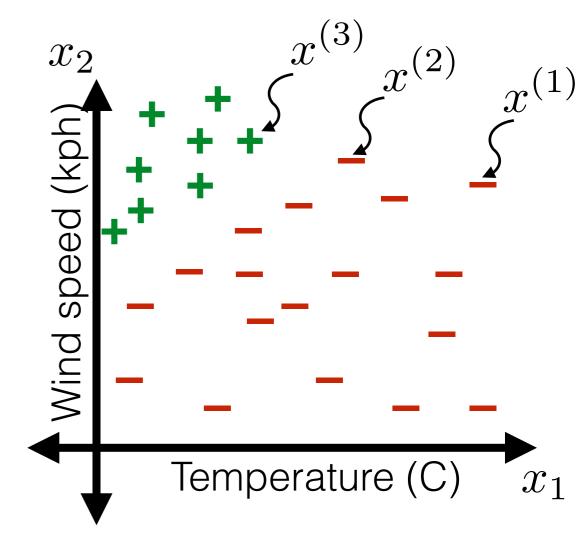
$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Hypothesis $h: \mathbb{R}^d \to \{-1, +1\}$



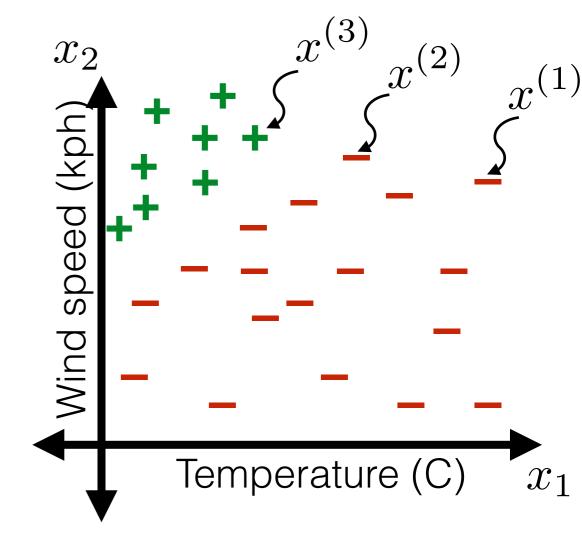






• Classification hypothesis: $h: \mathbb{R}^d \to \{-1, +1\}$

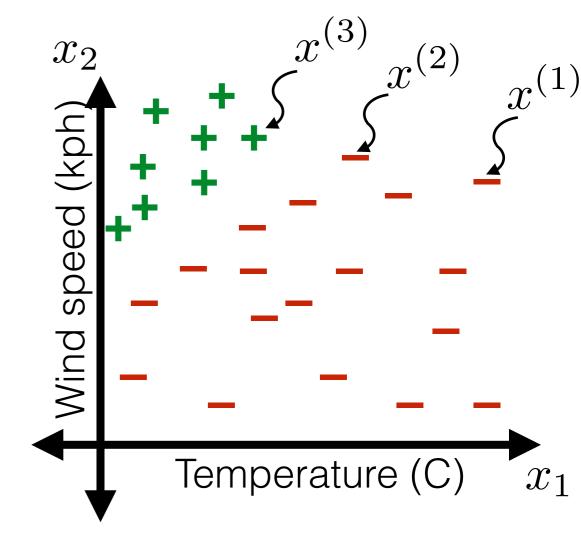
$$h: \mathbb{R}^d o \{-1, +1\}$$



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

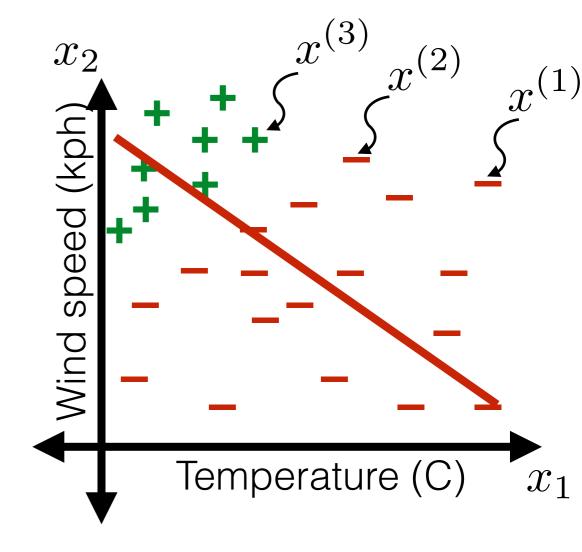
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

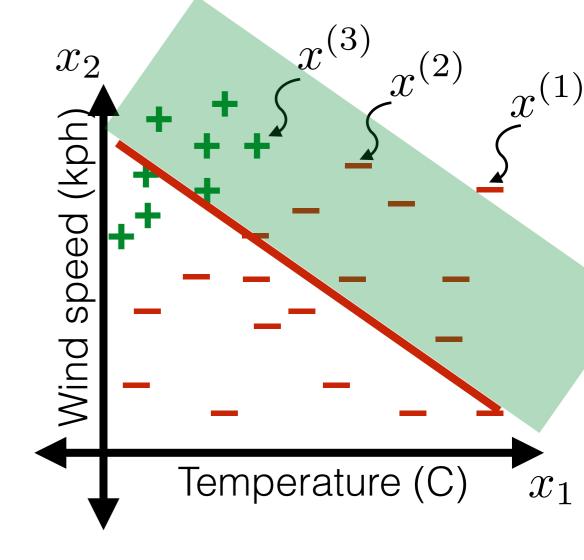
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

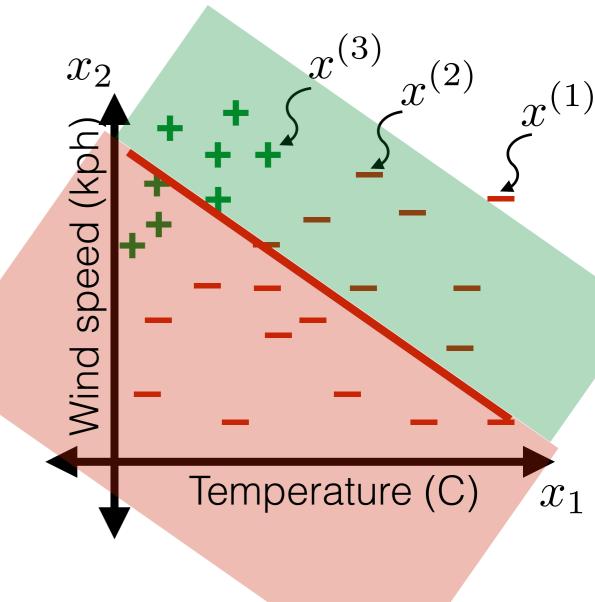
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

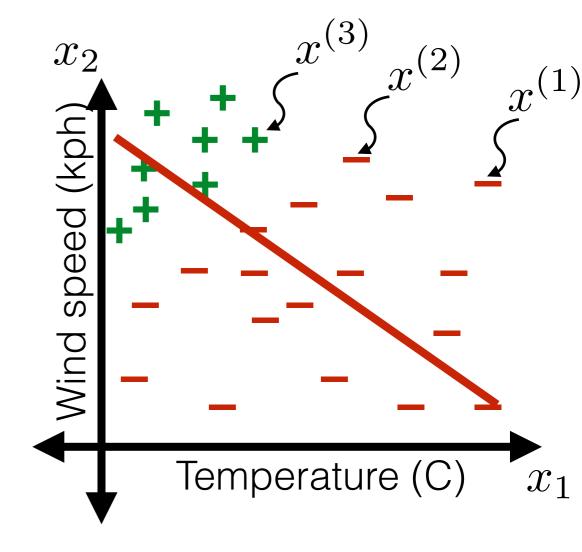
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

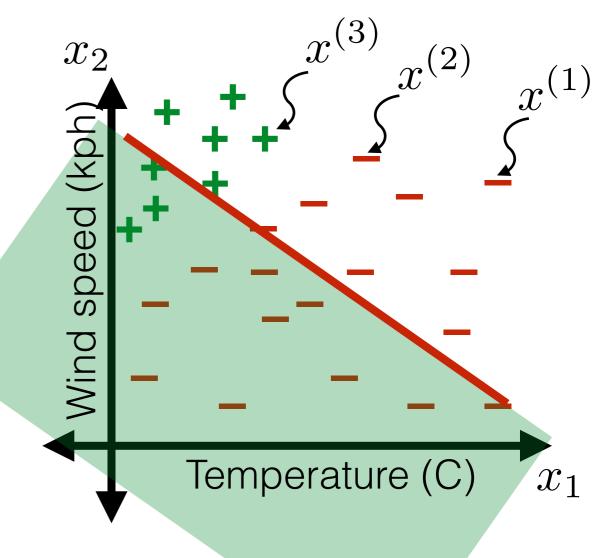
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

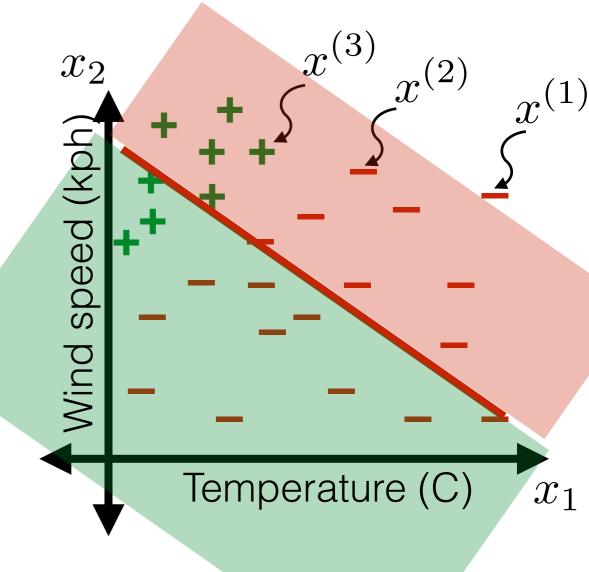
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

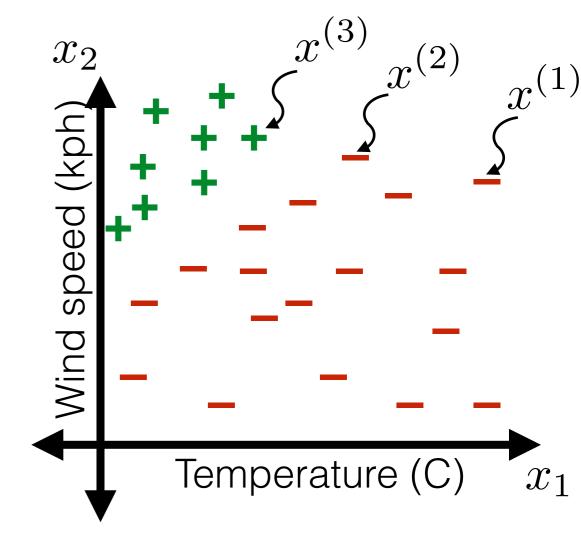
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

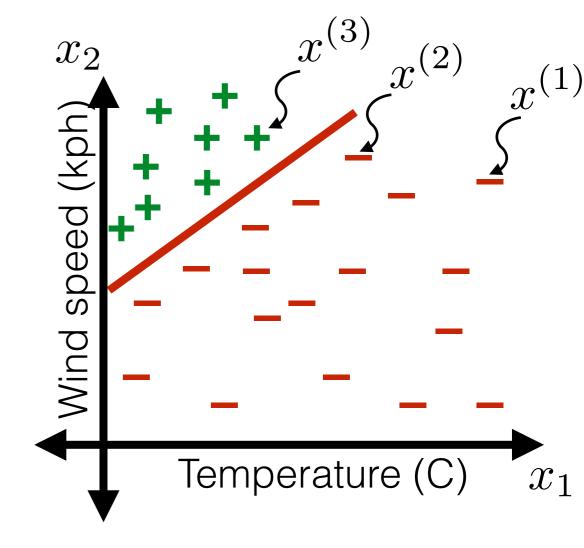
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

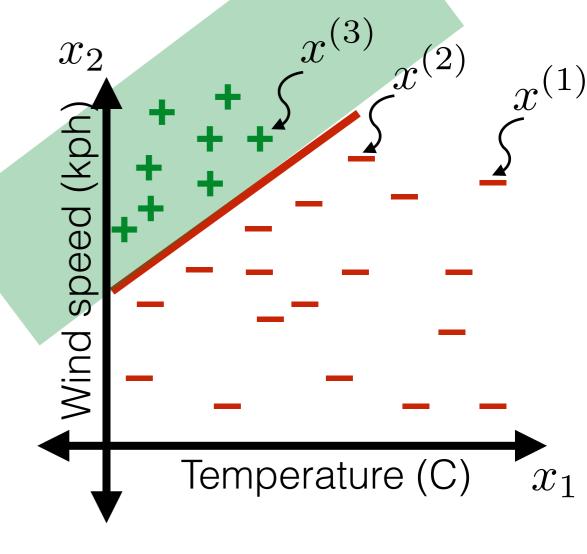
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

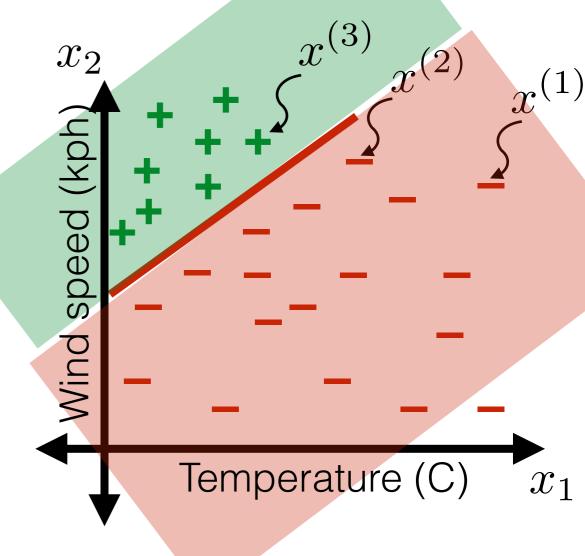
 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

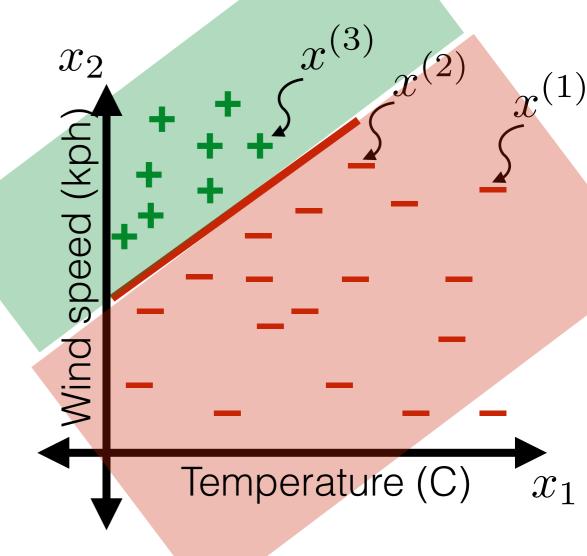


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

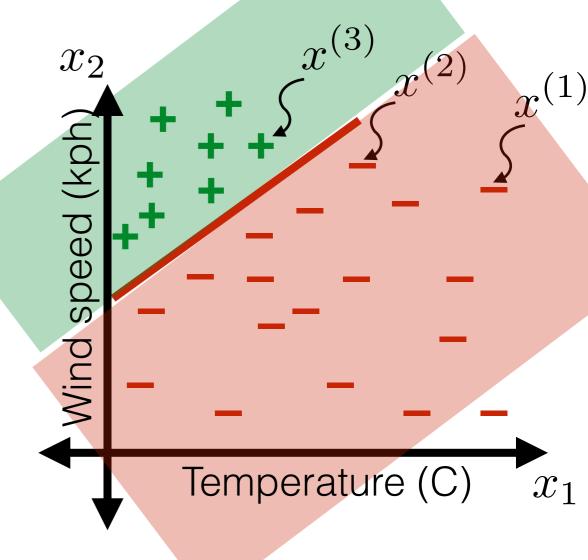


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

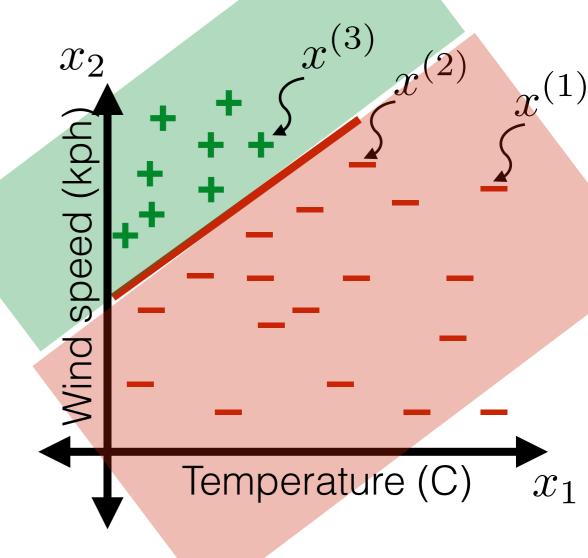


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

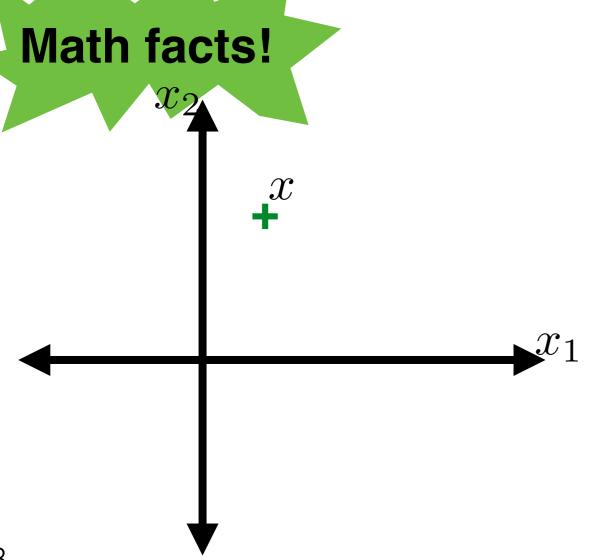
Math facts!

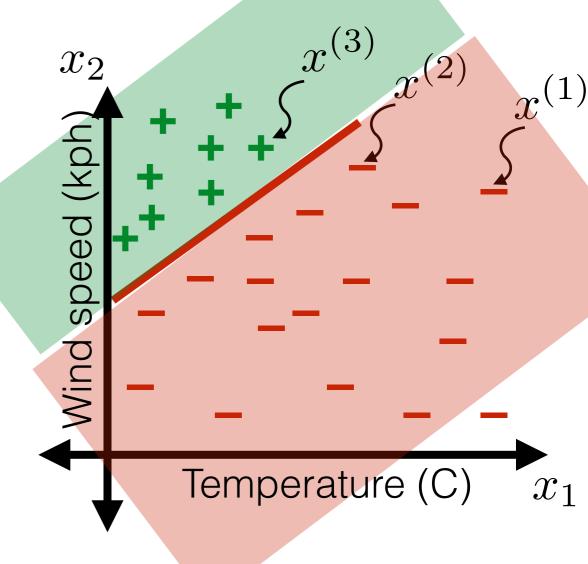


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

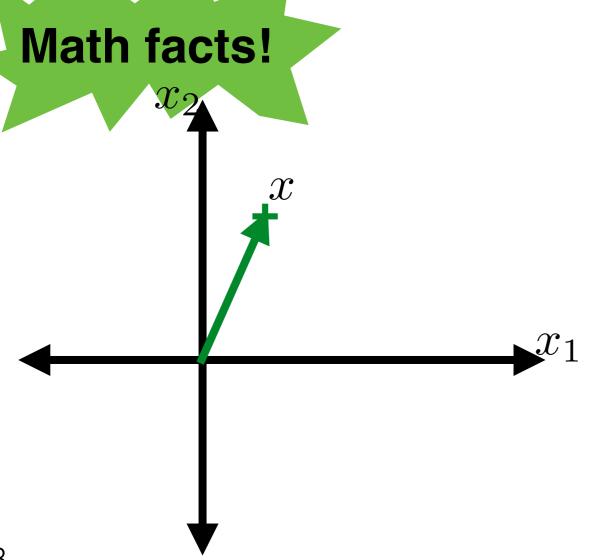


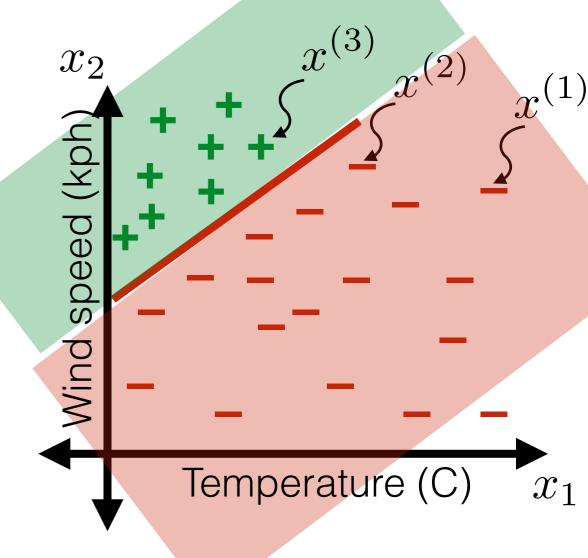


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



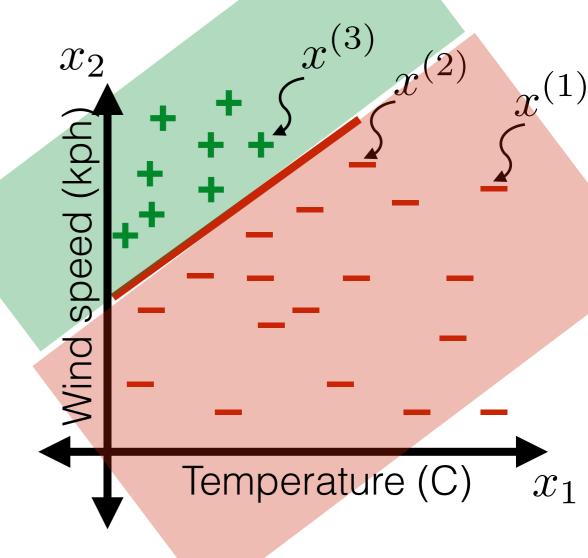


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

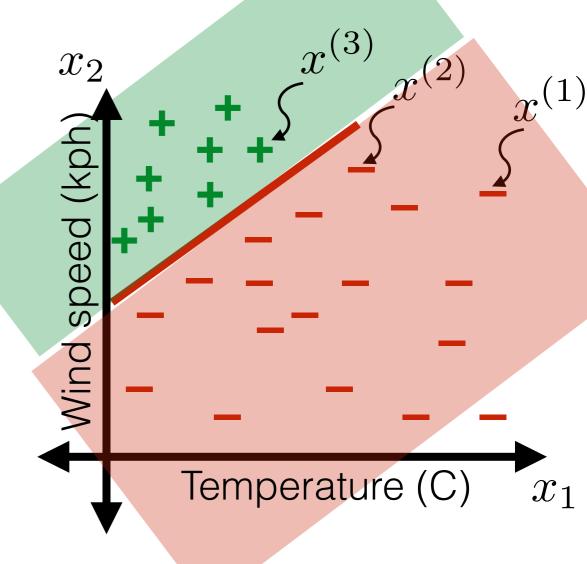


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

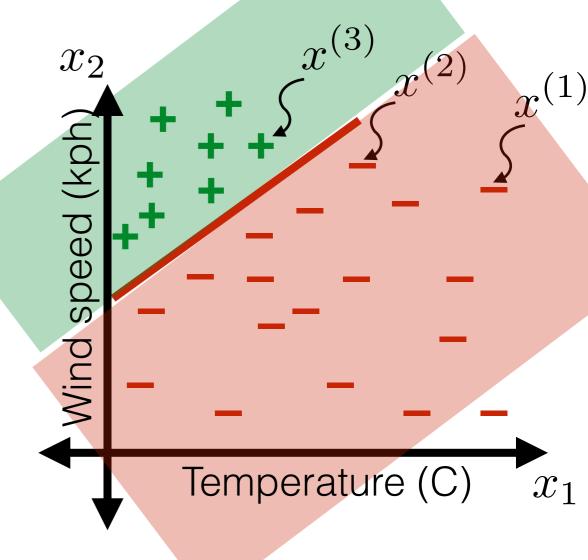


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

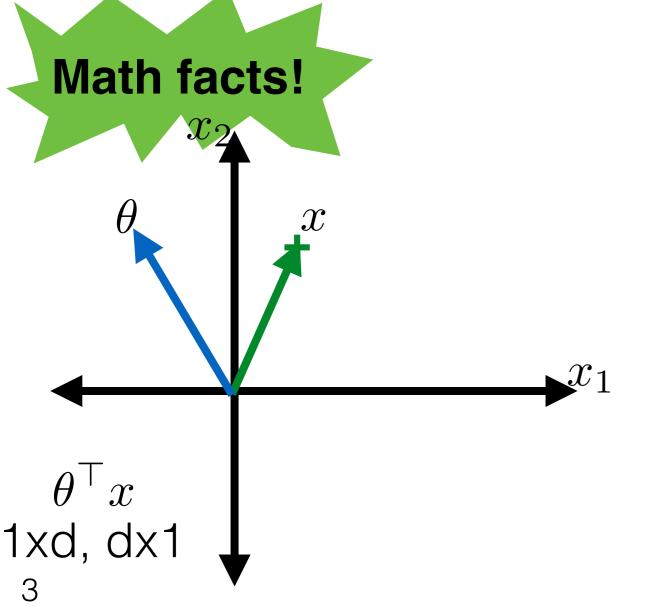
Math facts!

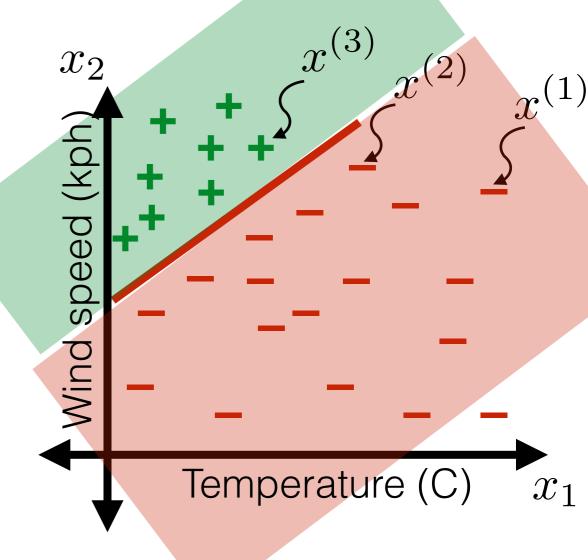


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

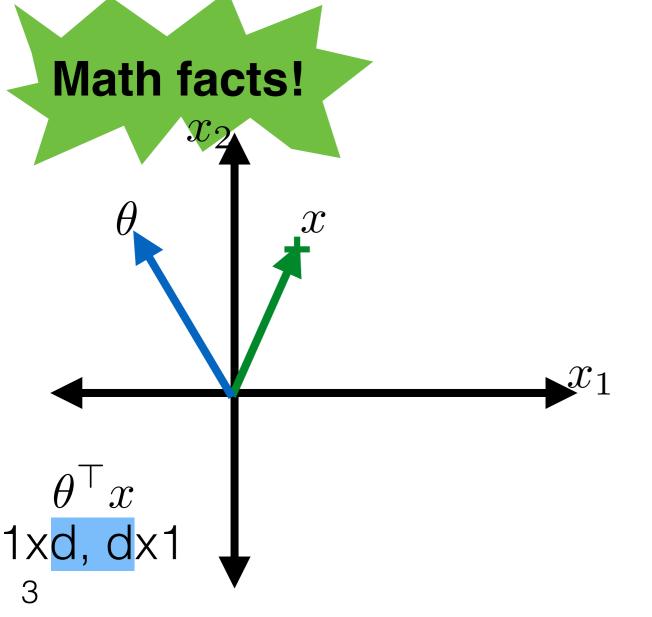


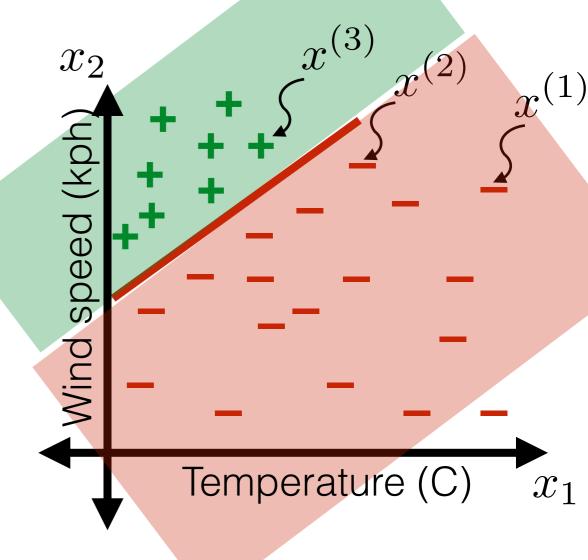


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

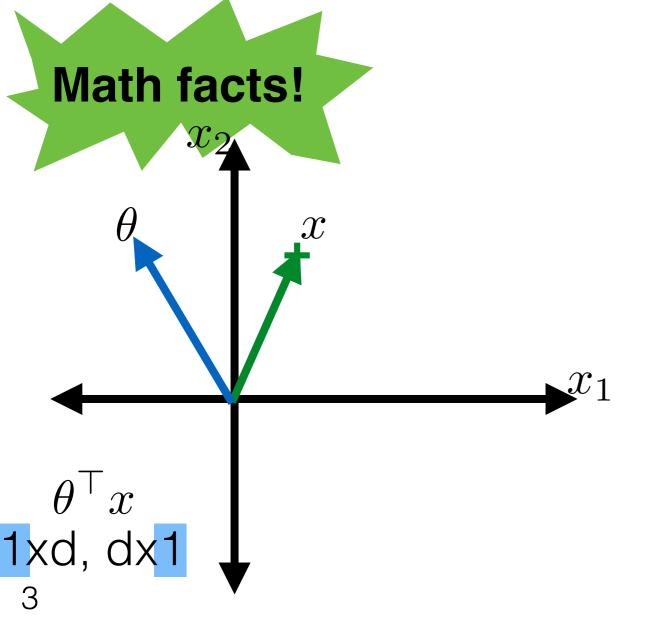


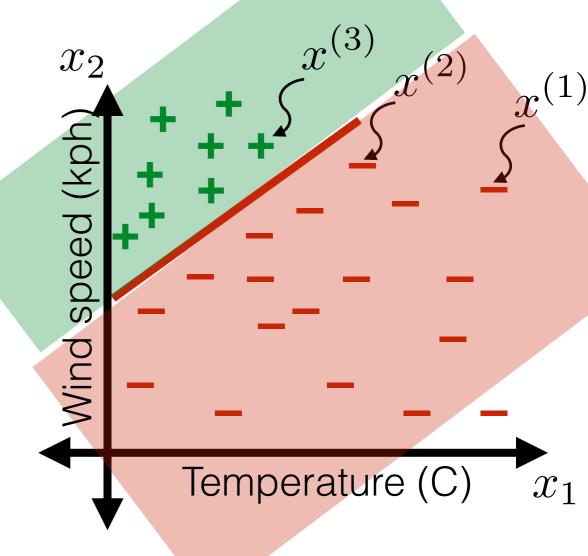


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

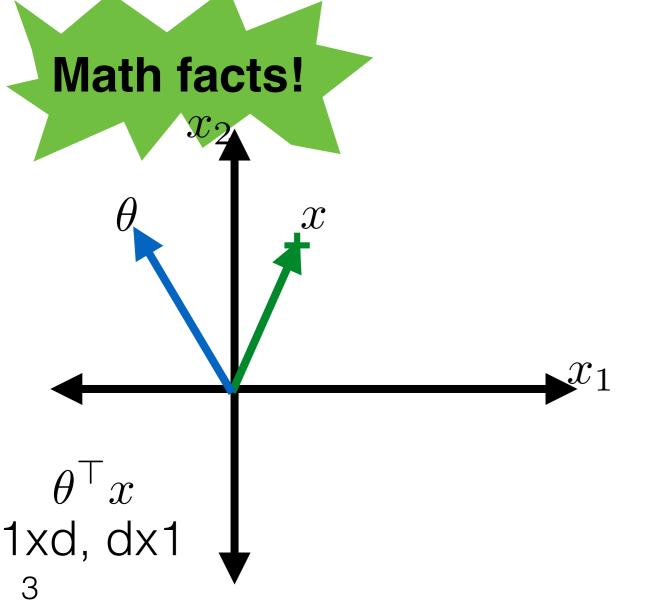


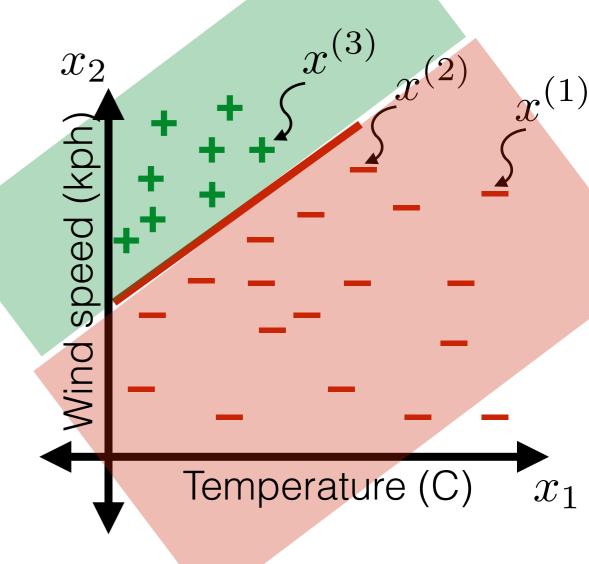


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



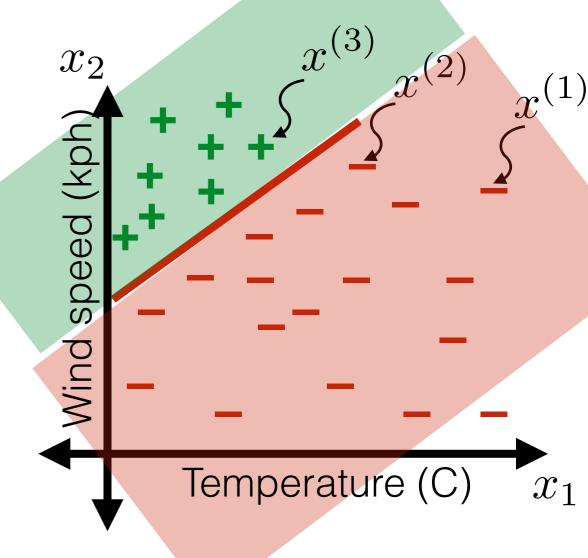


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

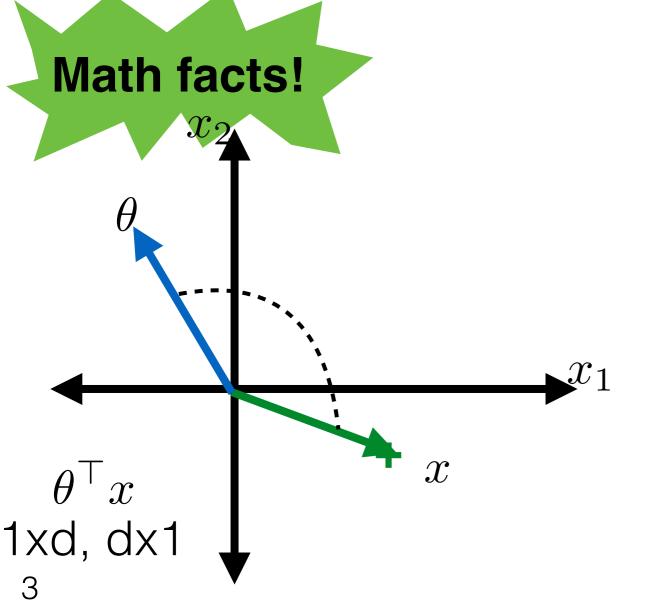
Math facts! 1xd, dx1

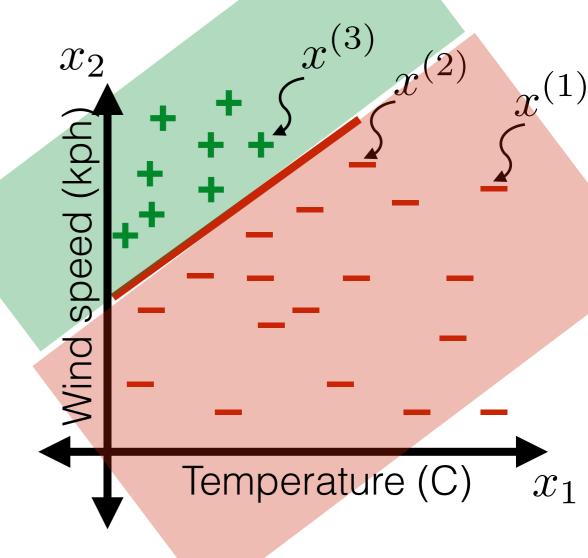


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

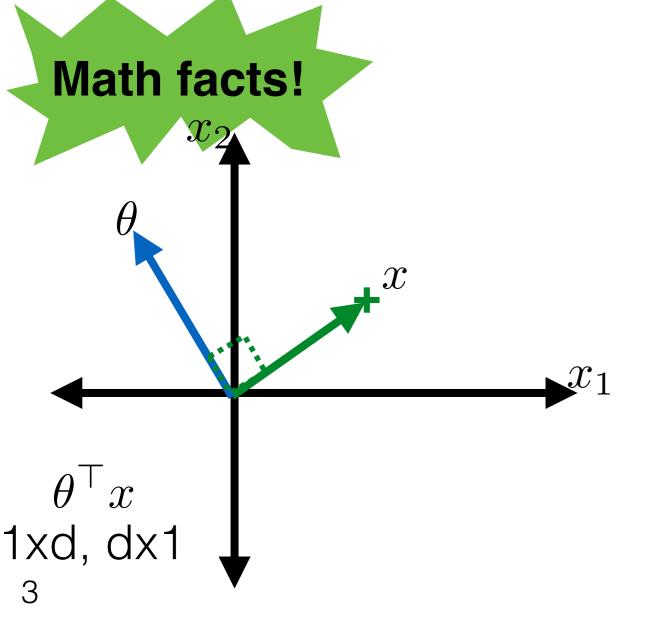


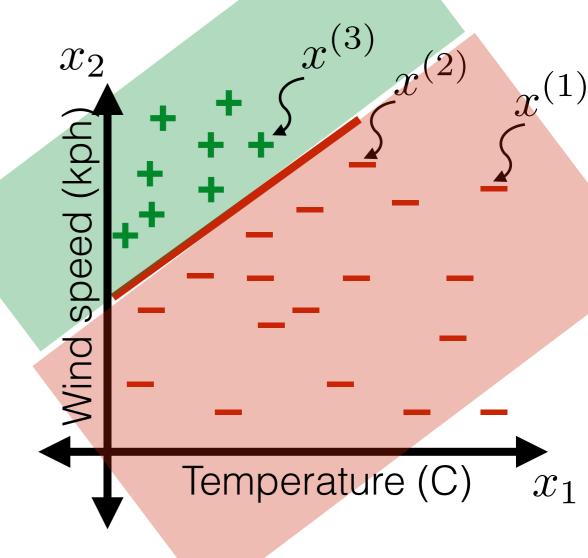


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

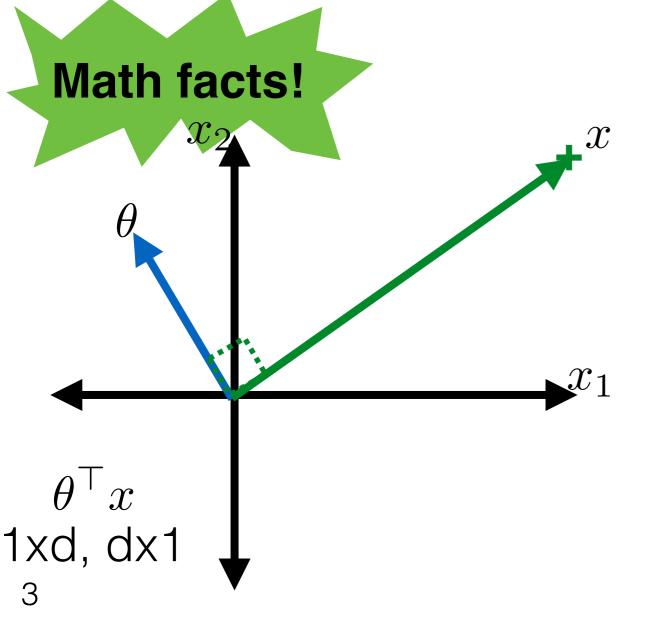


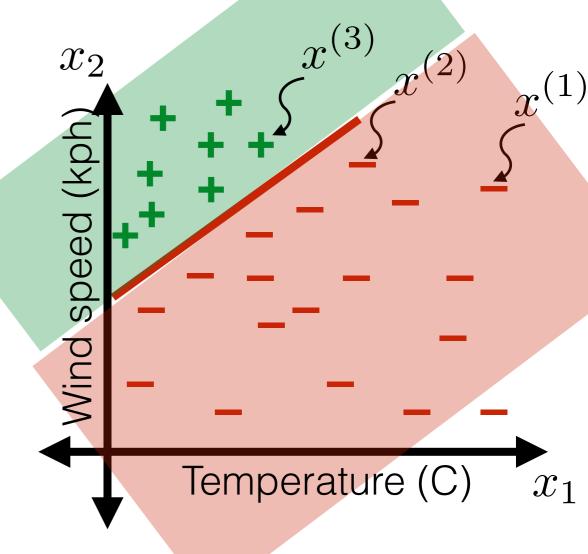


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

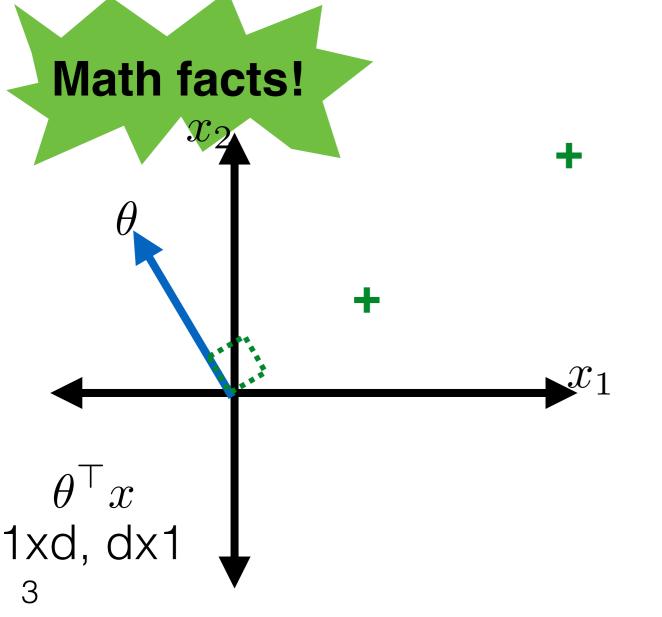


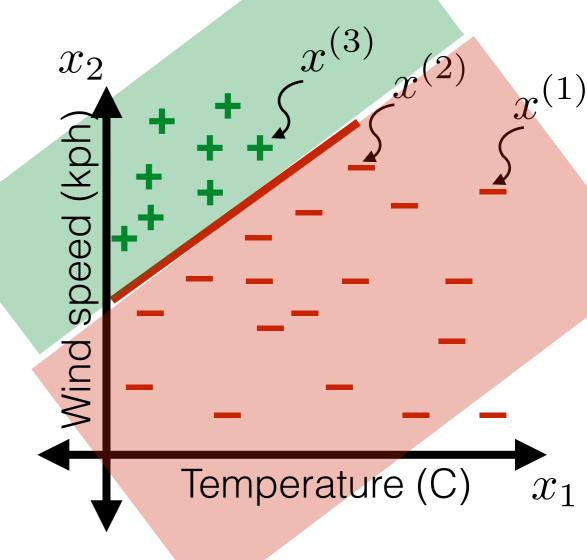


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

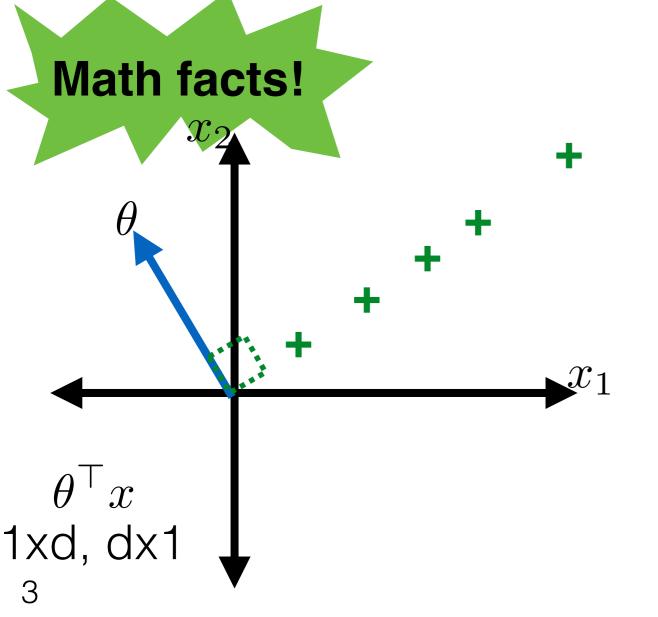


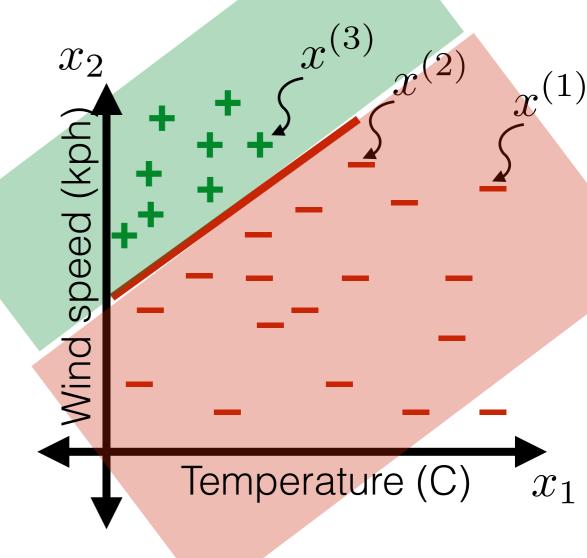


Classificațion hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



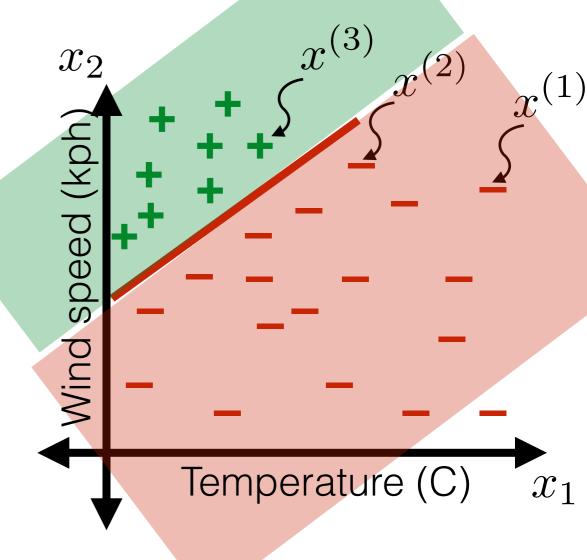


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

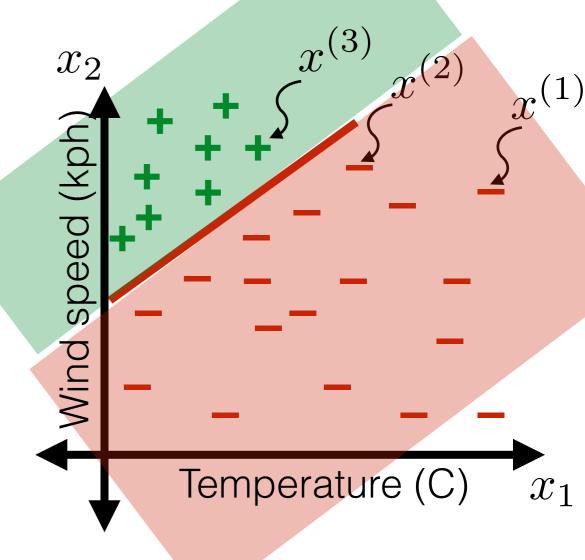


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

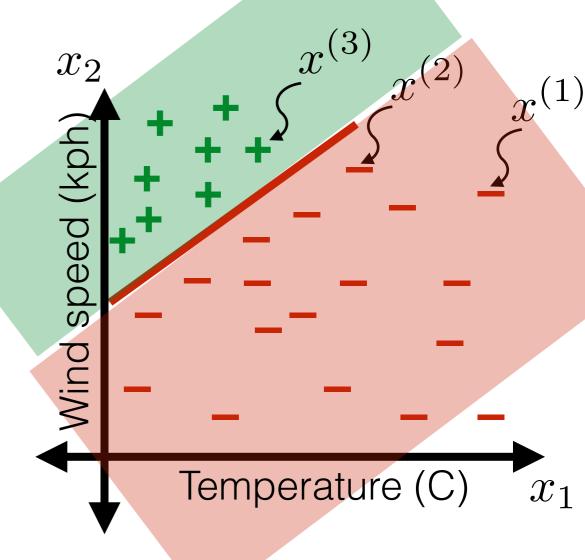


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts! v. O. v.

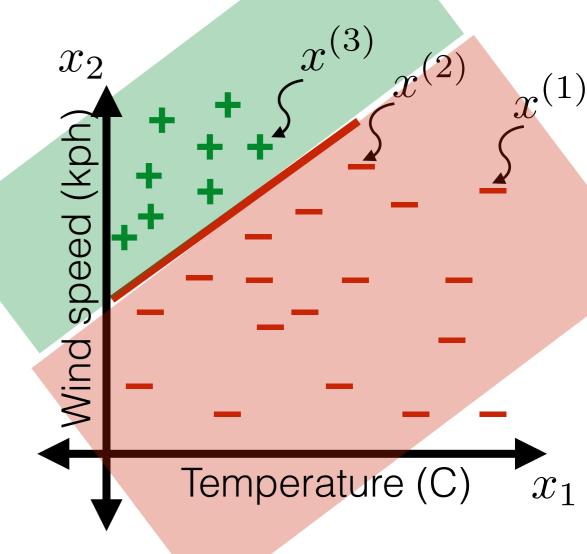


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

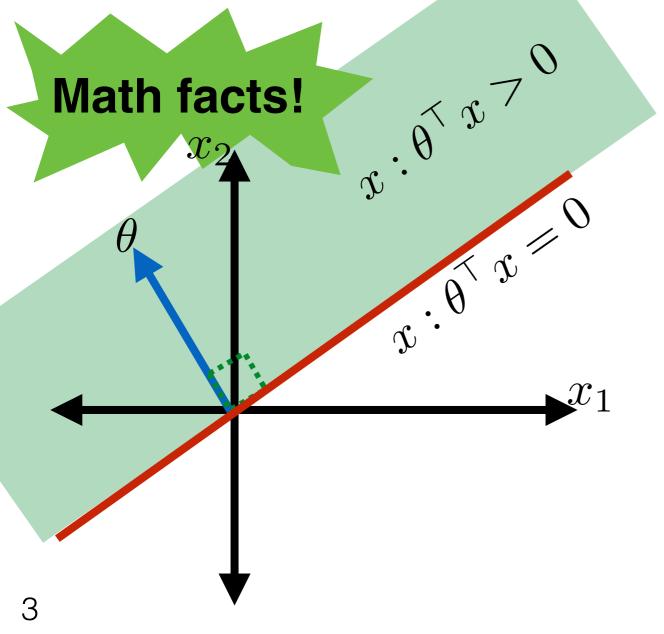
Math facts! v. O. v.

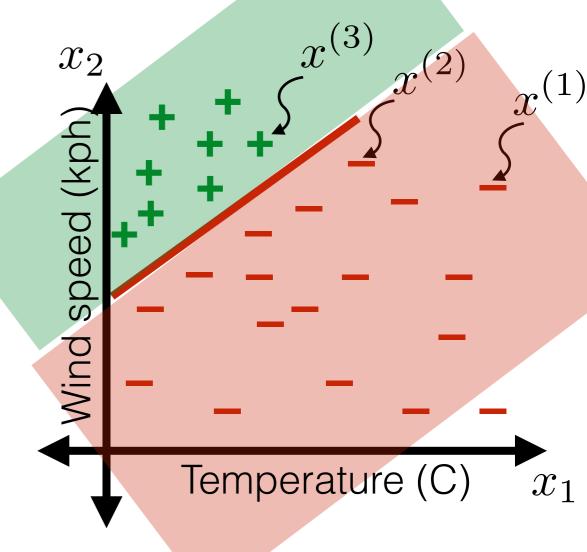


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

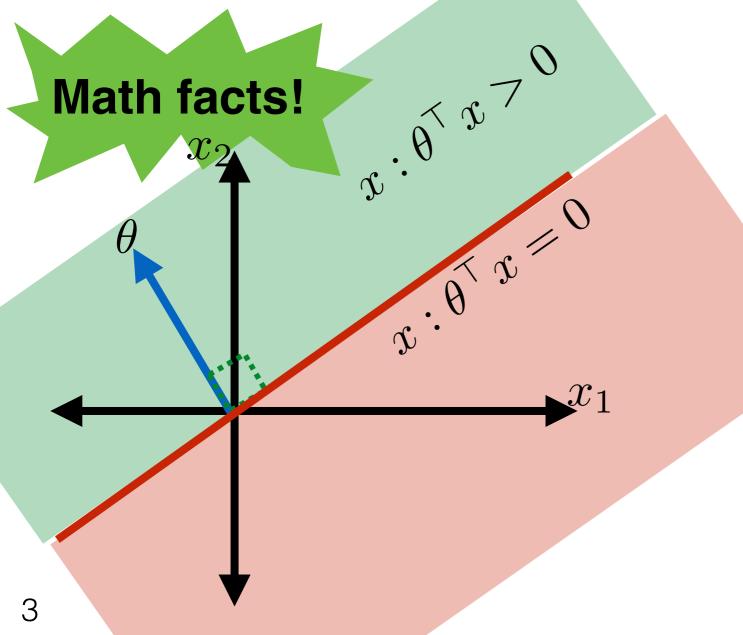


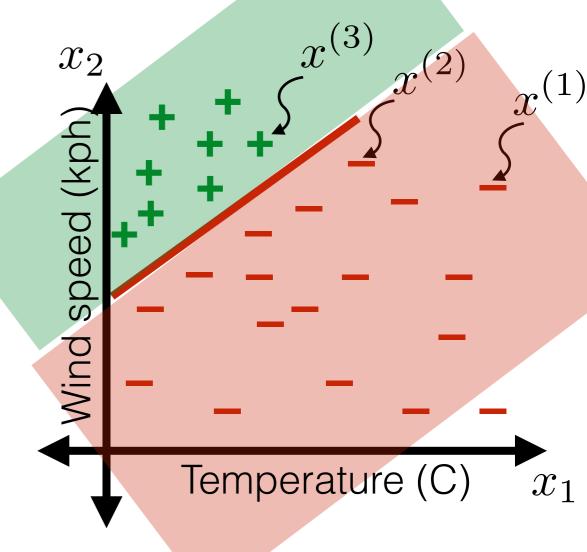


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

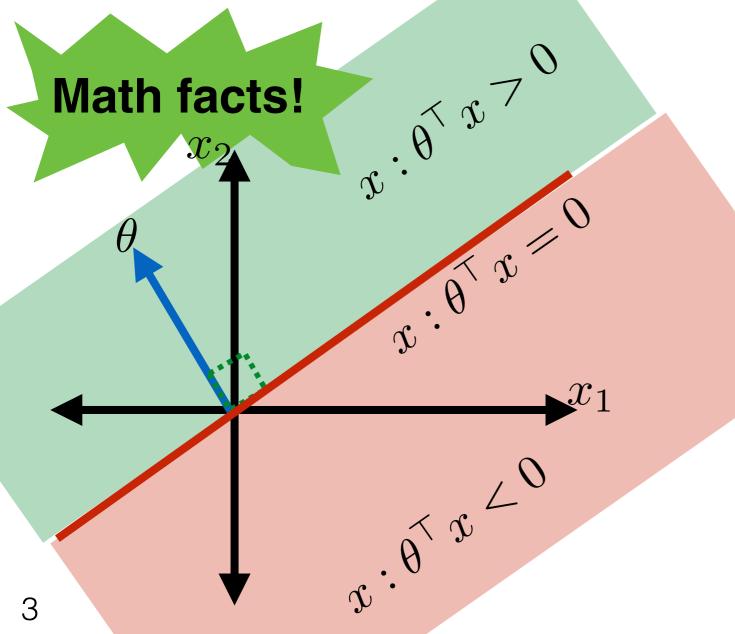


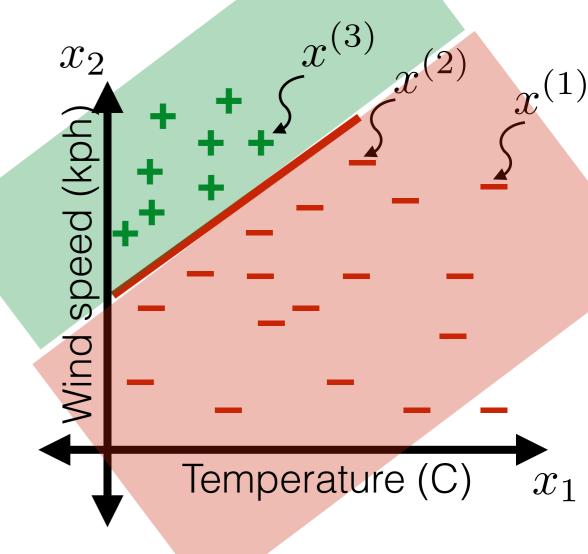


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



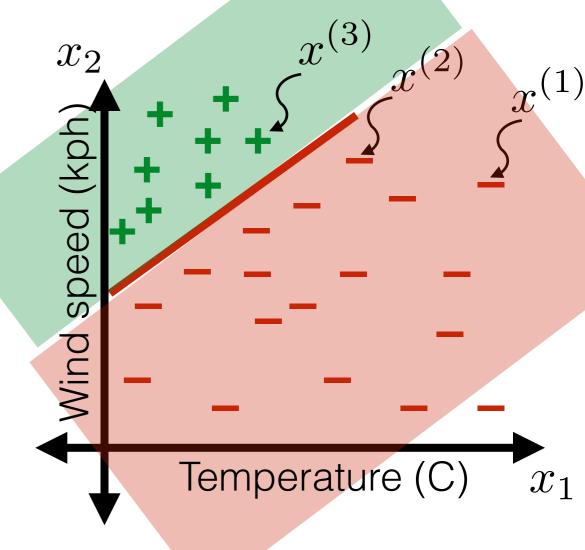


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

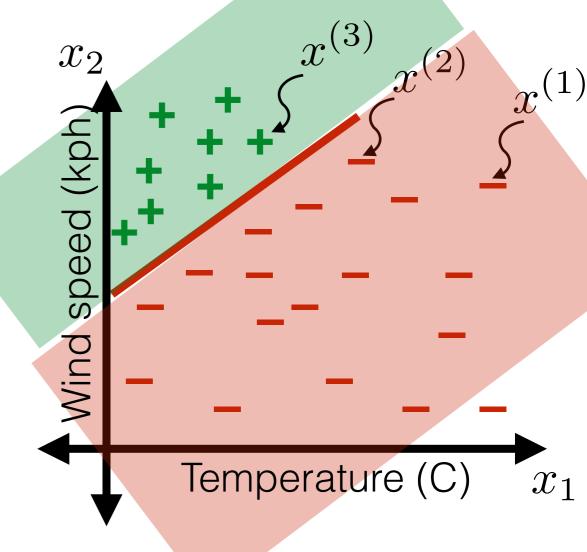


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

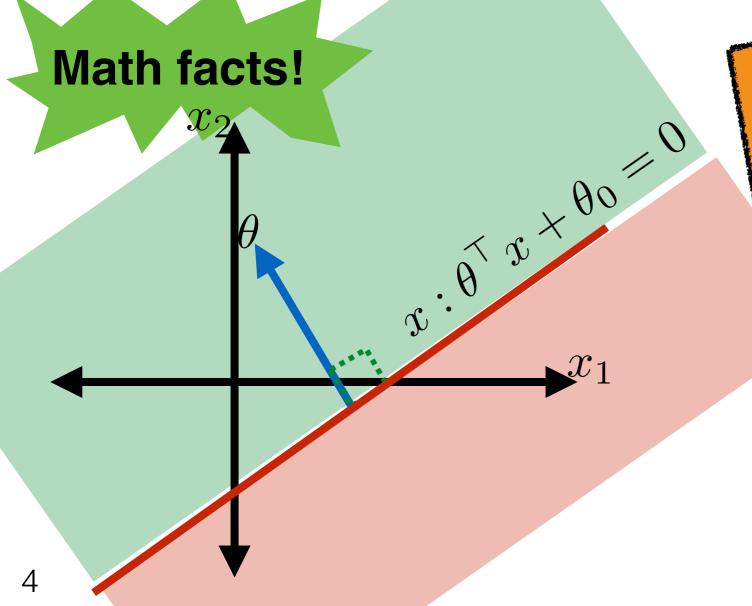
Math facts! $x \cdot \theta \cdot x + \theta \circ \theta \cdot \theta \circ \theta = 0$

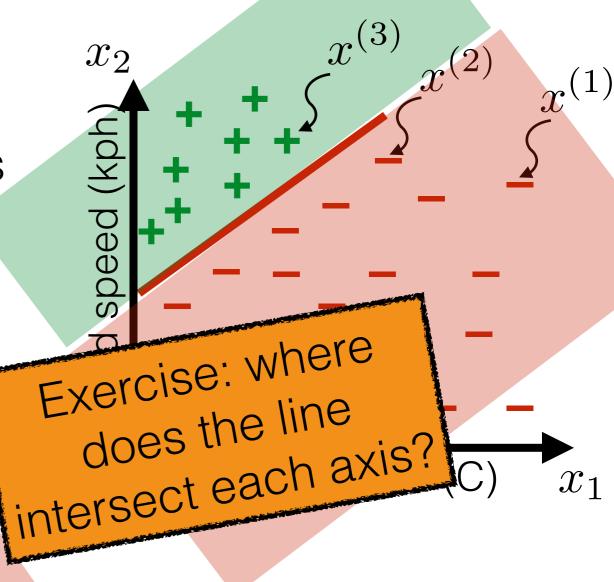


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

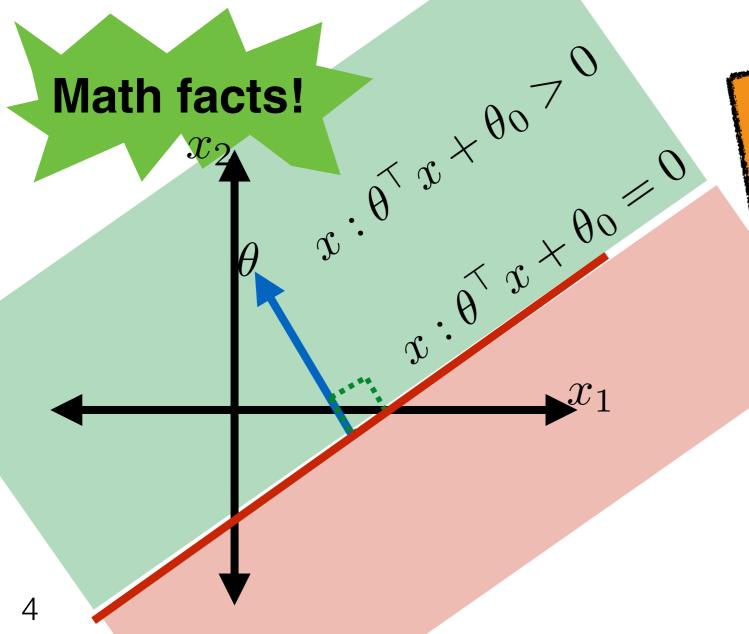


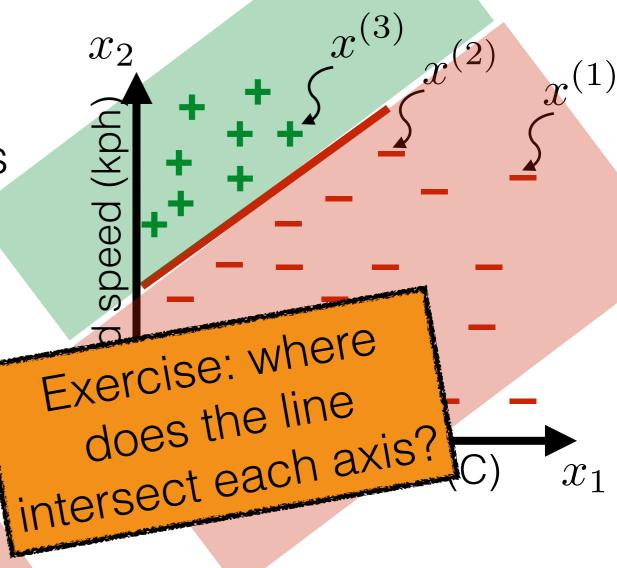


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

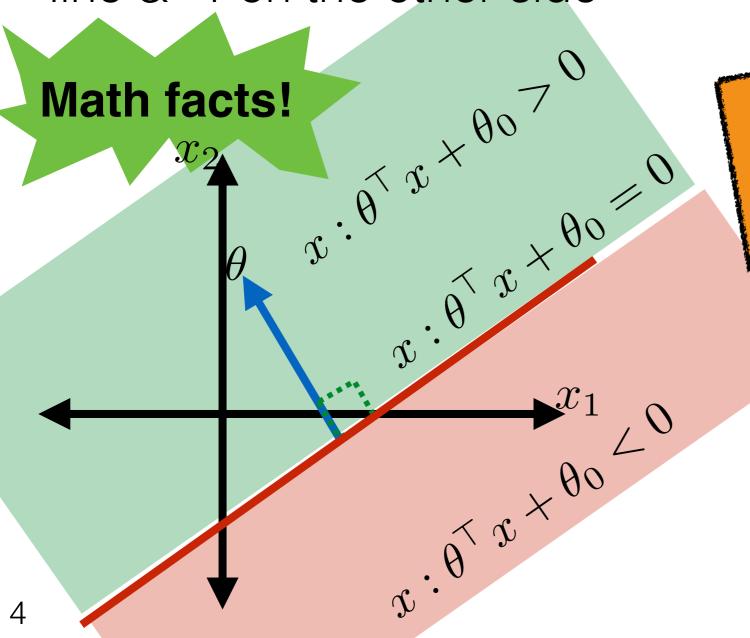


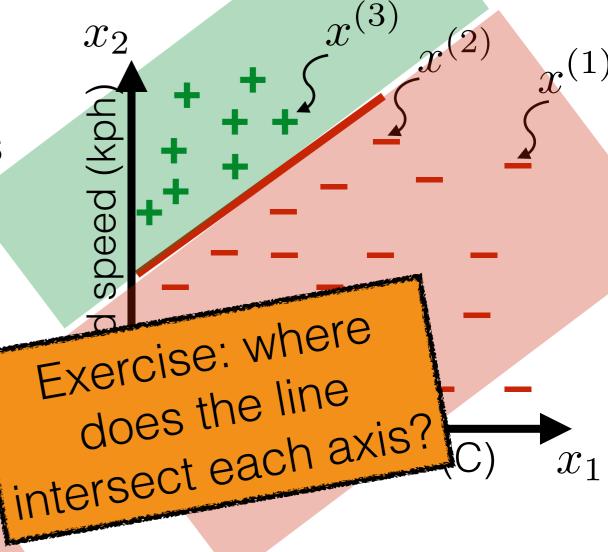


Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

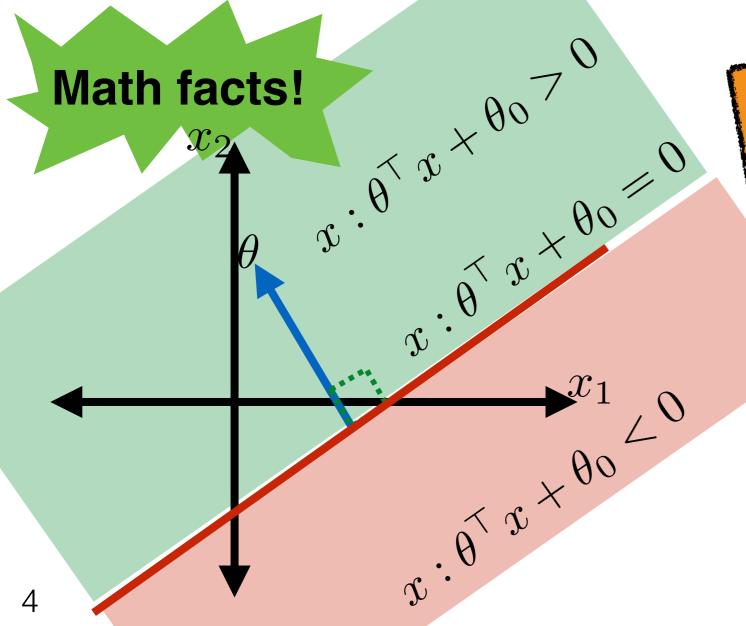




Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

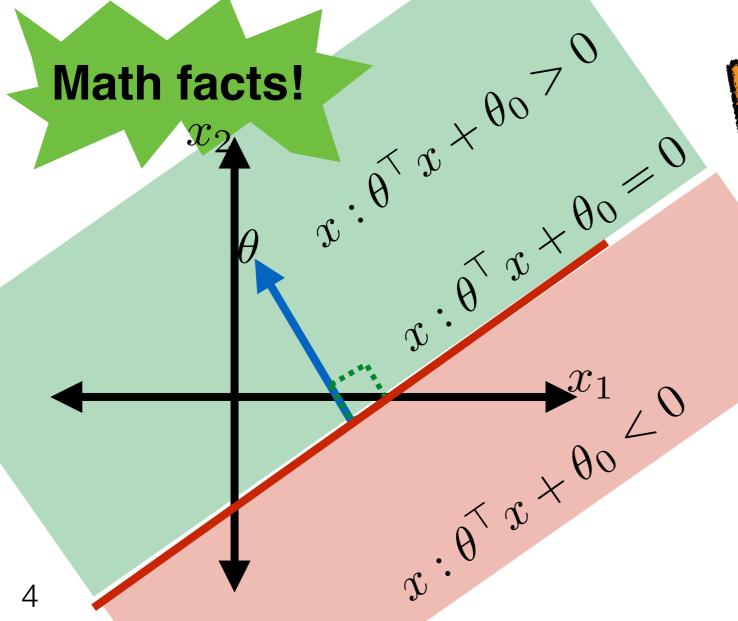


y =Wearing a coat? x_2 beed (kph Exercise: where does the line intersect each axis?

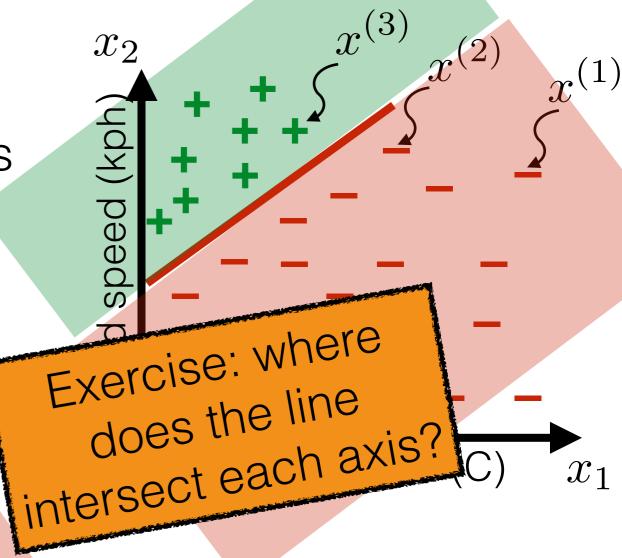
Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



y =Wearing a coat?

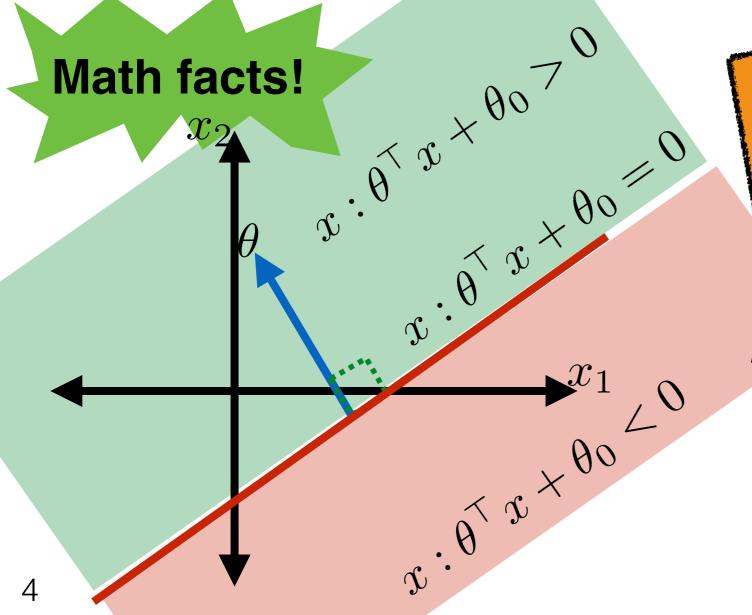


$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

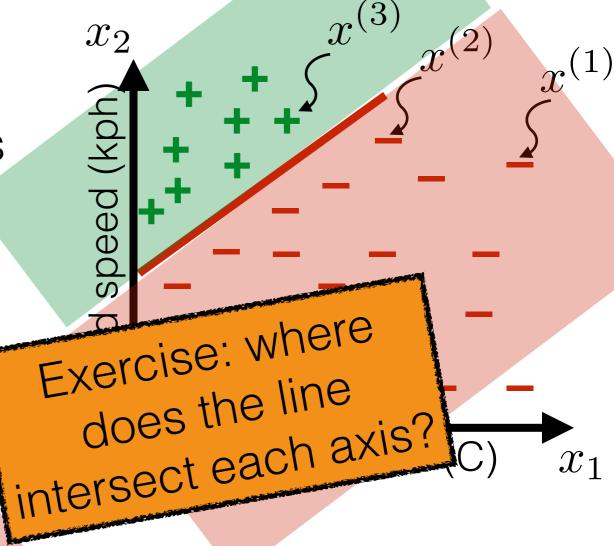
Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



y =Wearing a coat?



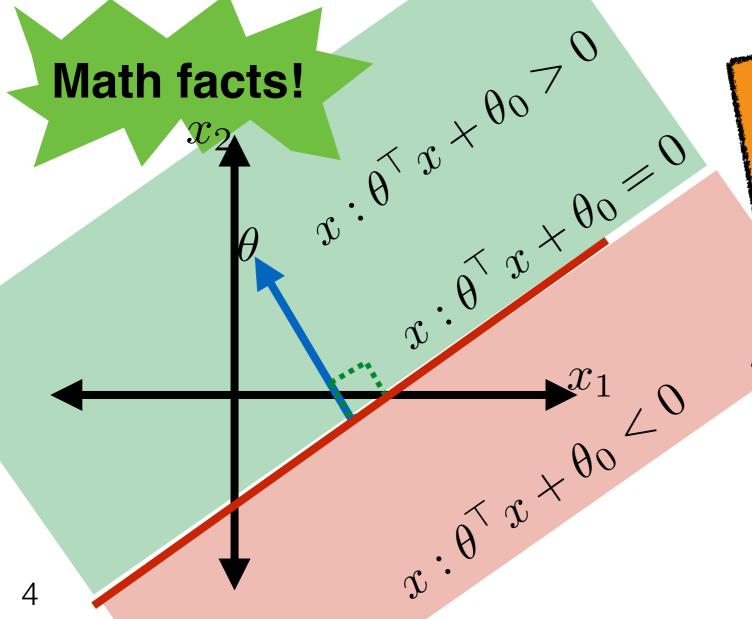
$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0 \\ -1 & \text{if } \theta^{\top} x + \theta_0 < 0 \end{cases}$$

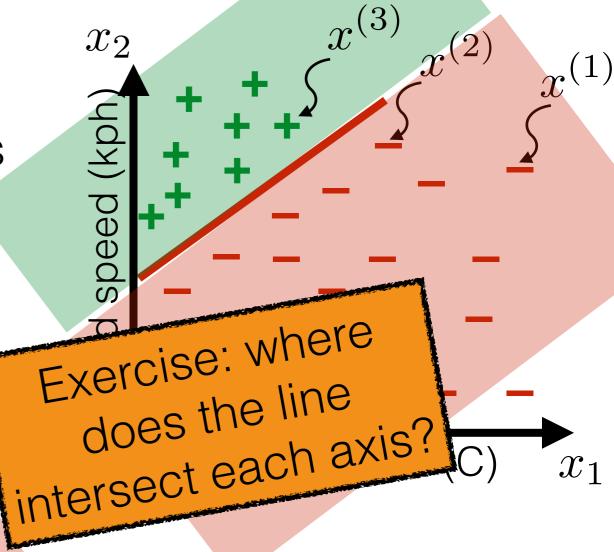
Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



y =Wearing a coat?



$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

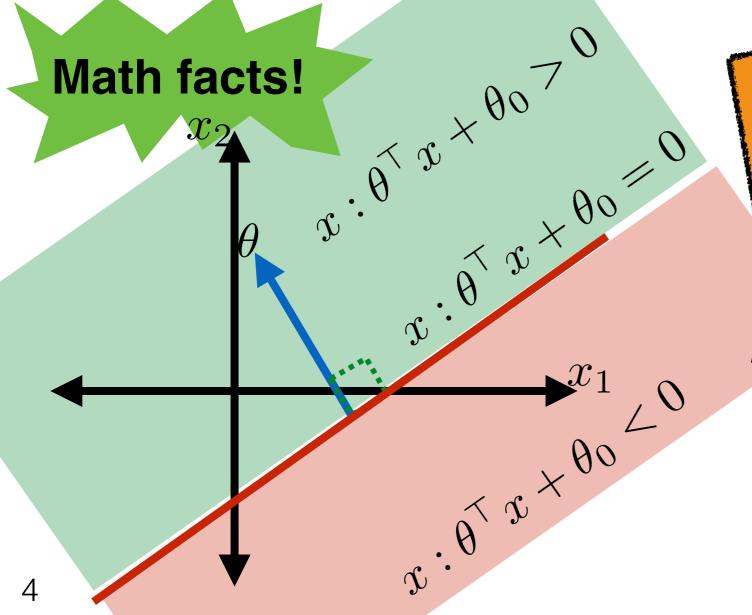
$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 < 0 \end{cases}$$

Linear classifiers

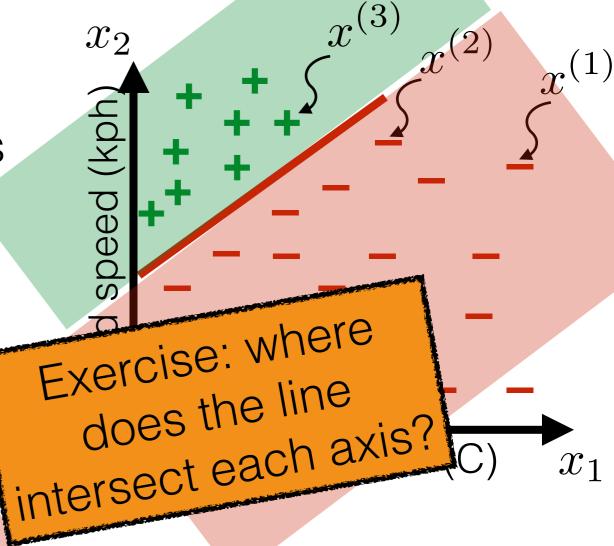
Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



y = Wearing a coat?



Linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

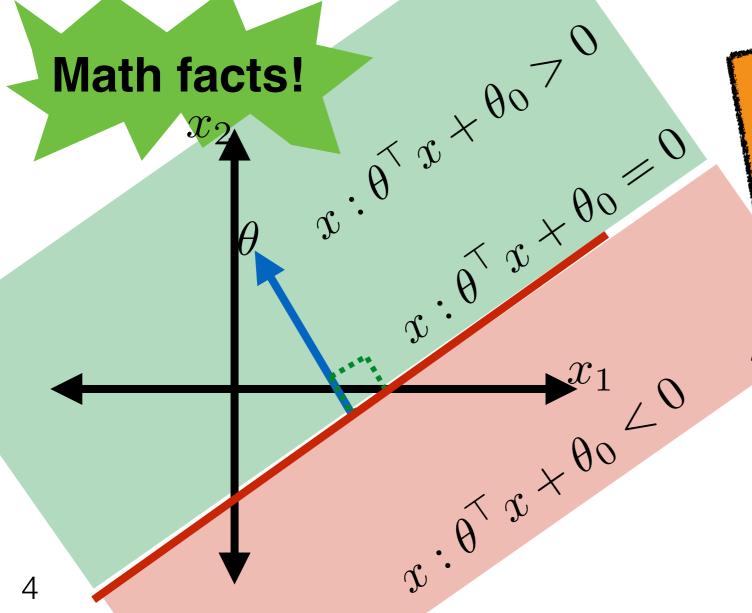
$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 \le 0 \end{cases}$$

Linear classifiers

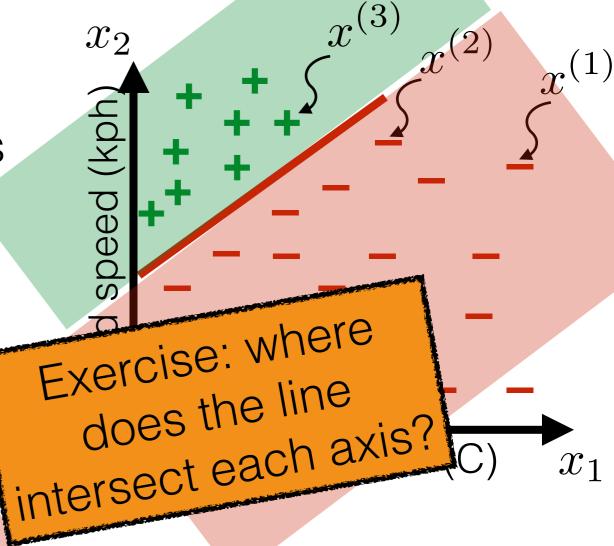
Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side



y = Wearing a coat?

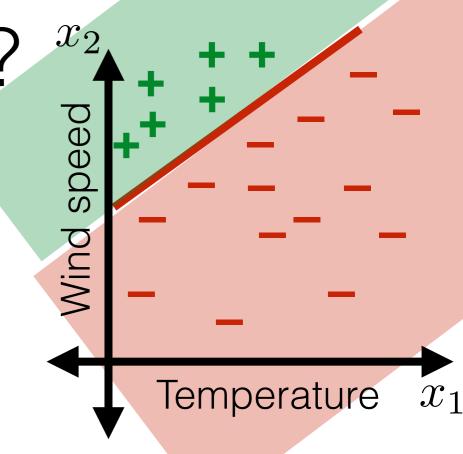


Linear classifier:

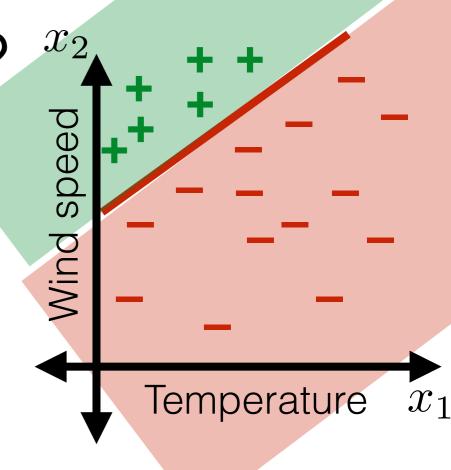
$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 \le 0 \end{cases}$$

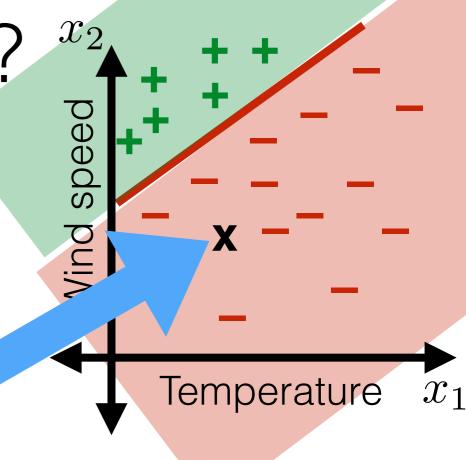
• Note: θ tells us direction



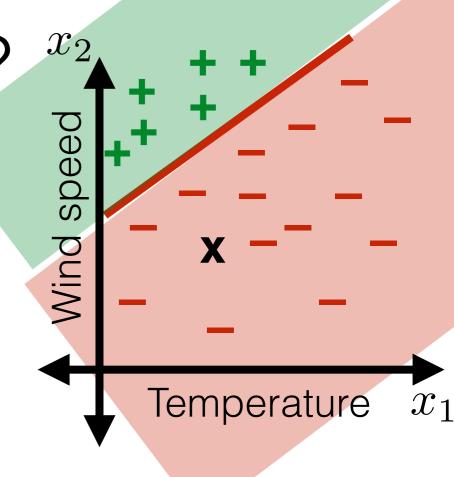
• Should predict well on future data



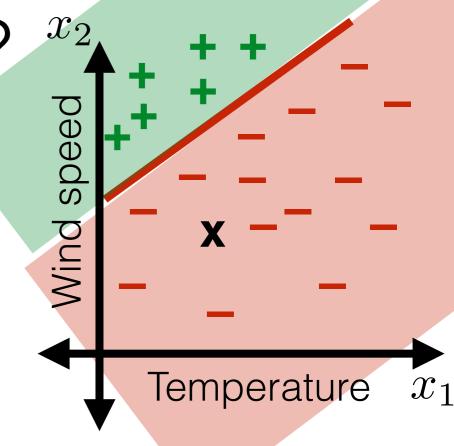
• Should predict well on future data



• Should predict well on future data

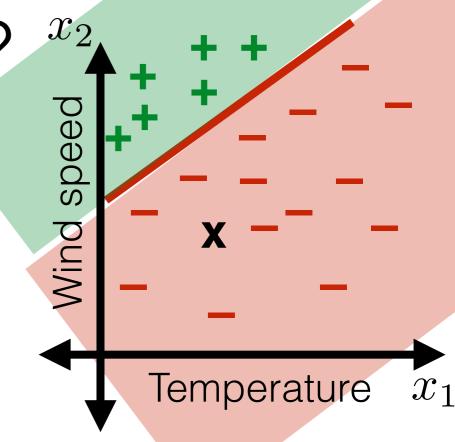


- Should predict well on future data
 - Example: 0-1 loss



- Should predict well on future data
 - Example: 0-1 loss

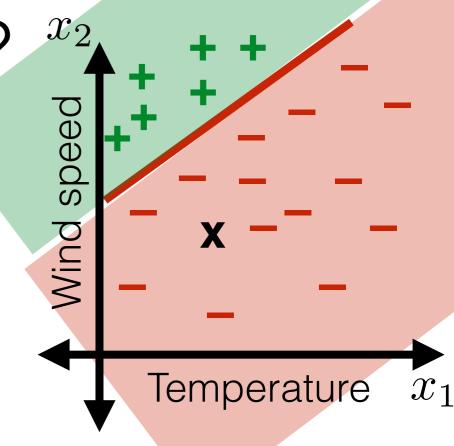
$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \begin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array} \right.$$



- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \left[egin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array}
ight.
ight.$$

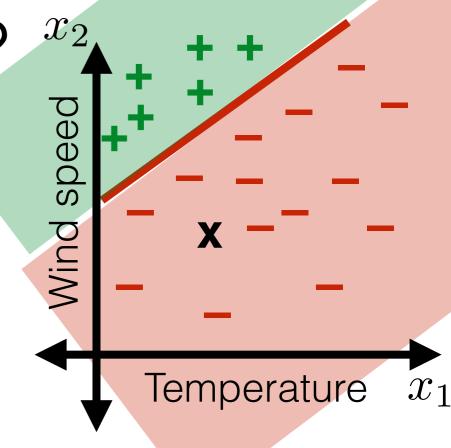
Example: asymmetric loss



- Should predict well on future data
 - Example: 0-1 loss

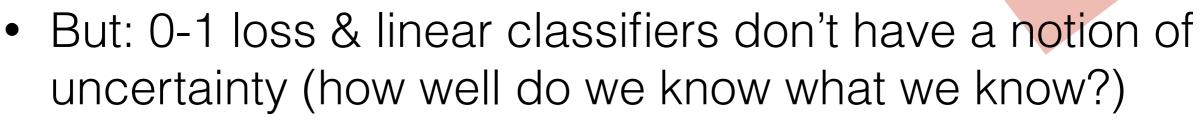
$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \begin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array} \right.$$

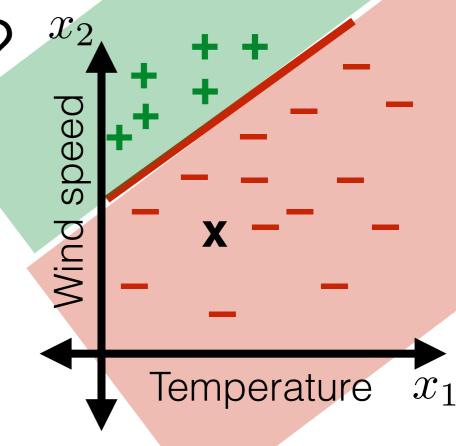
- Example: asymmetric loss
- But:



- Should predict well on future data
 - Example: 0-1 loss

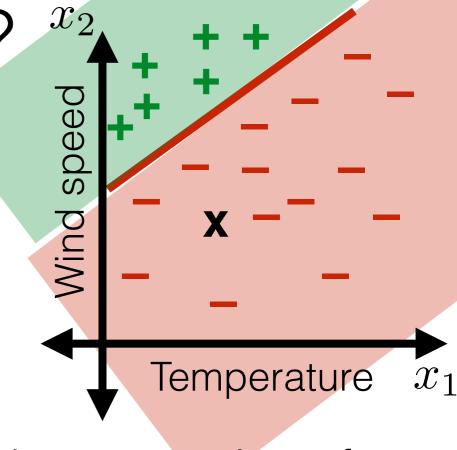
$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$



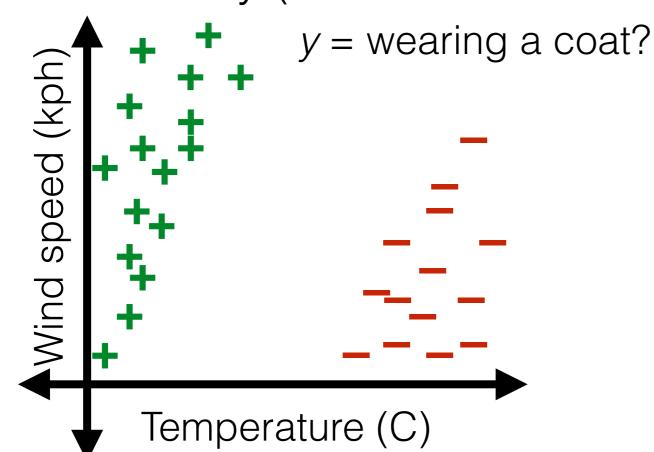


- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

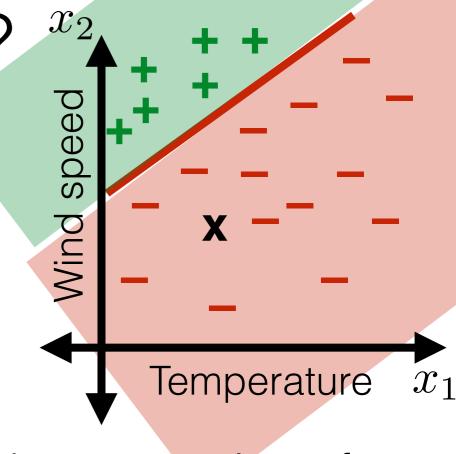


 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

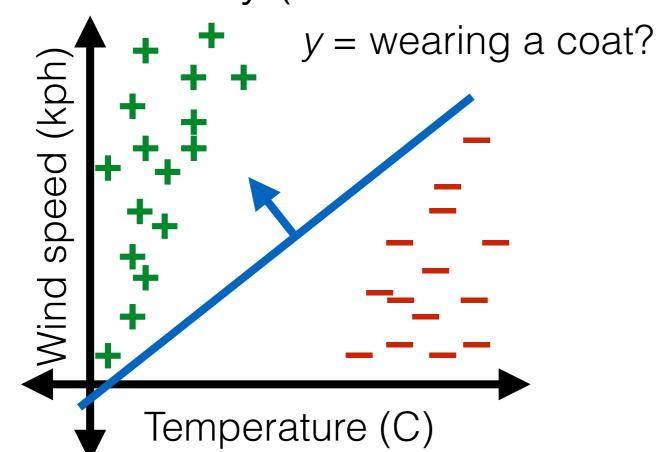


- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

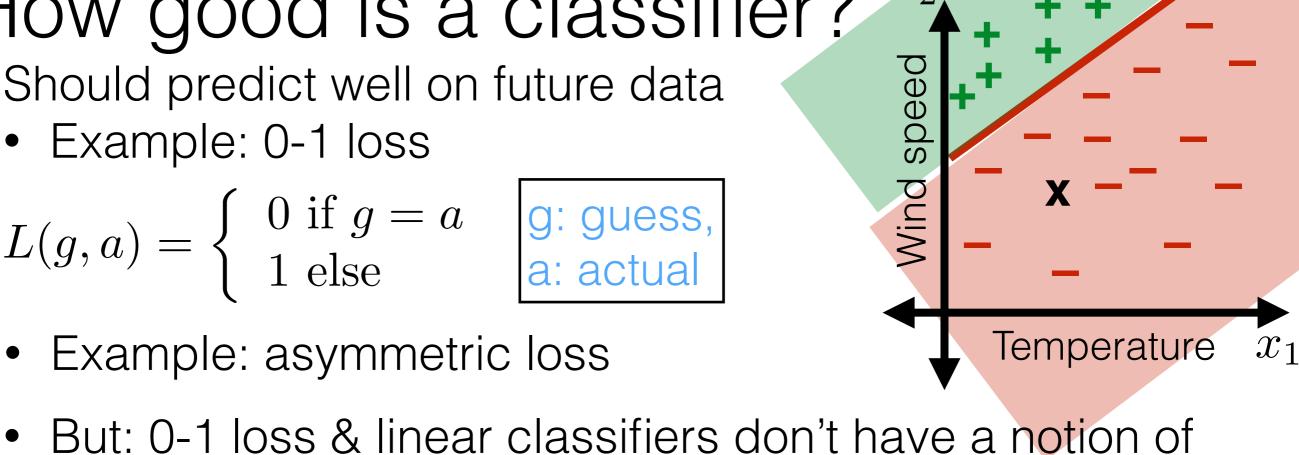


 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)



- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

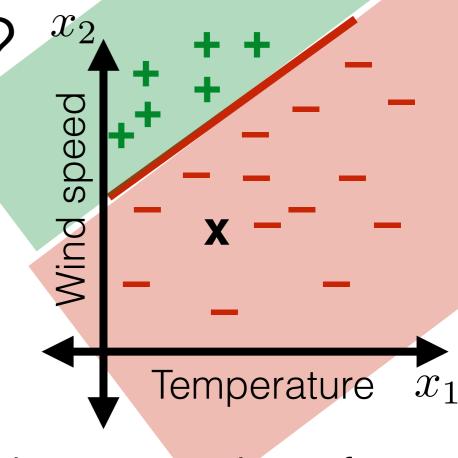


uncertainty (how well do we know what we know?) y =wearing a coat? Wind speed (kph)

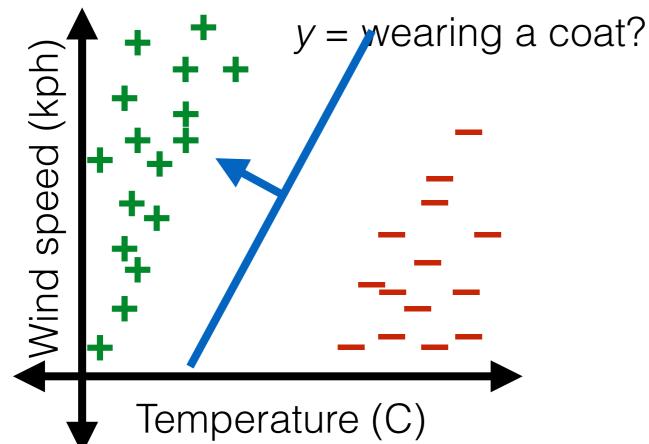
Temperature (C)

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

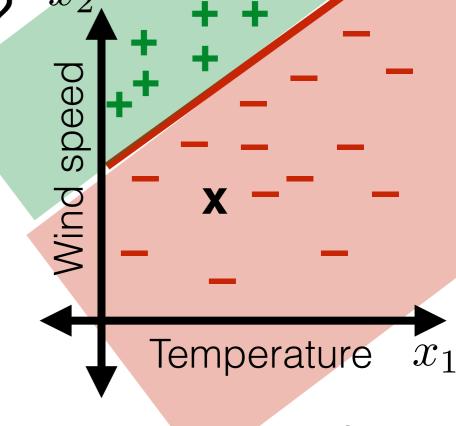


 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

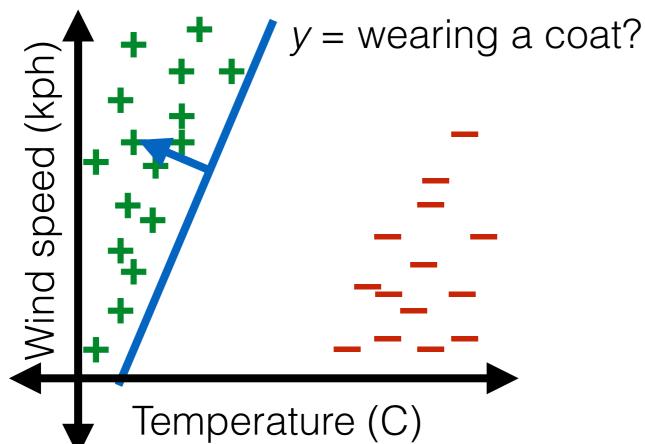


- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \begin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array} \right.$$

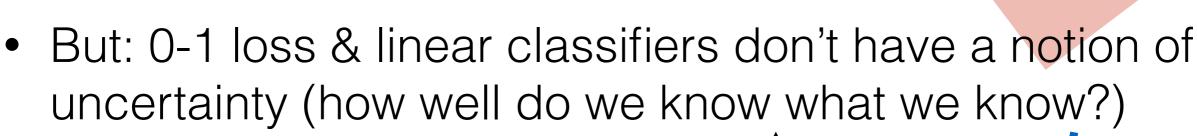


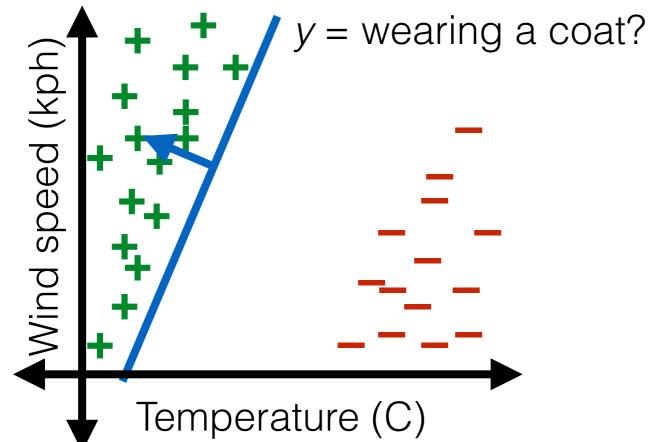
 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

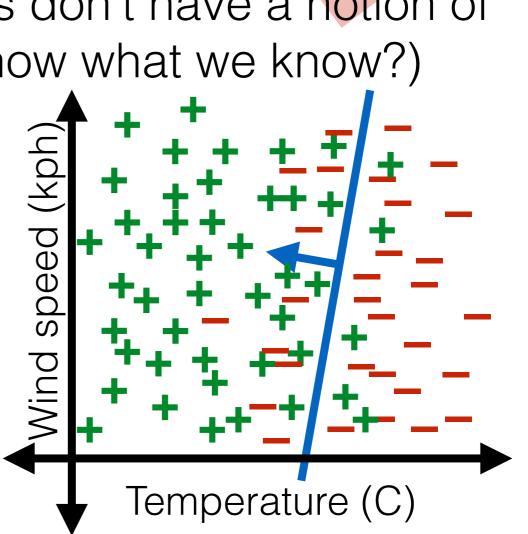


- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$



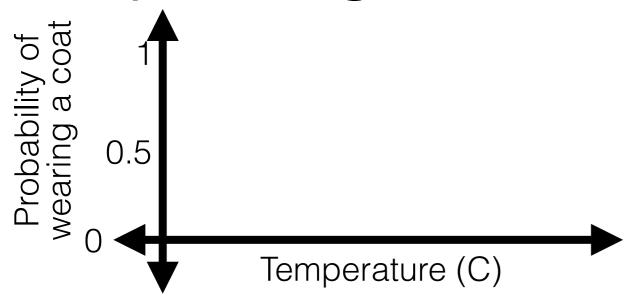


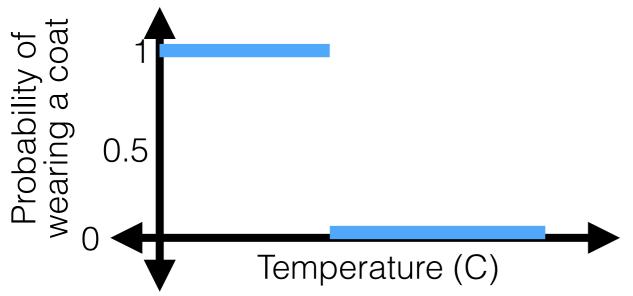


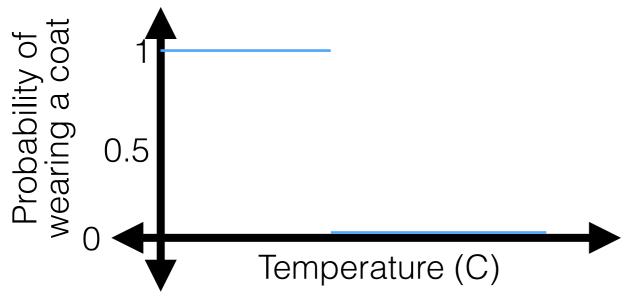
Temperature

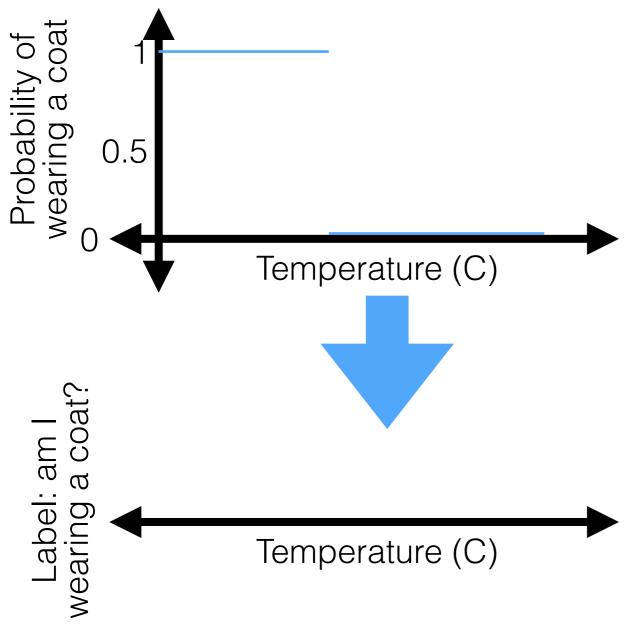
 x_1

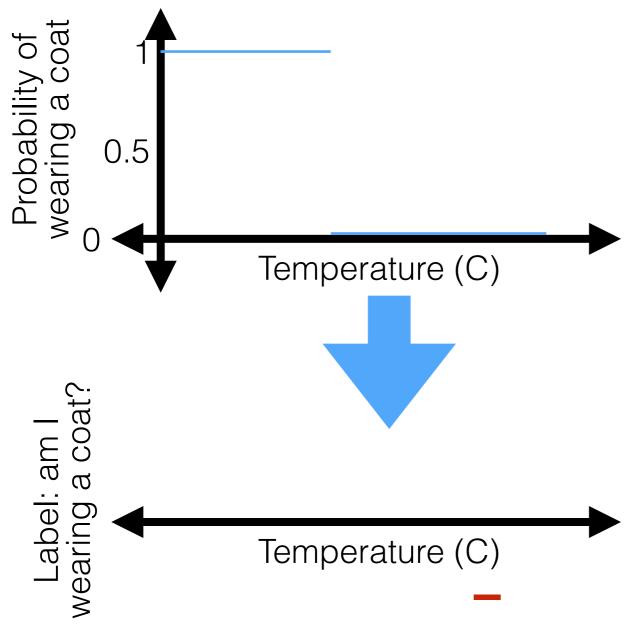
speed

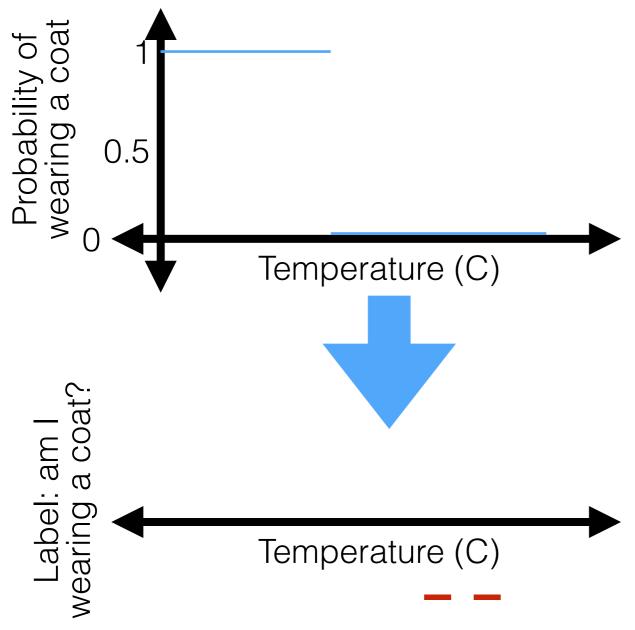


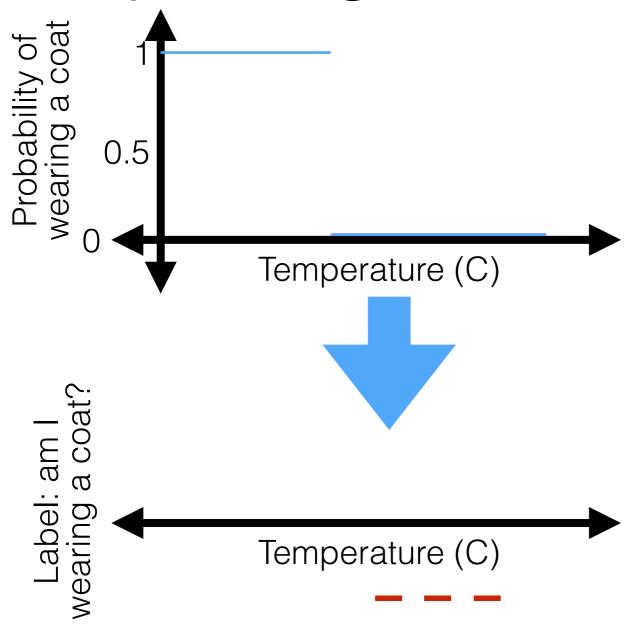


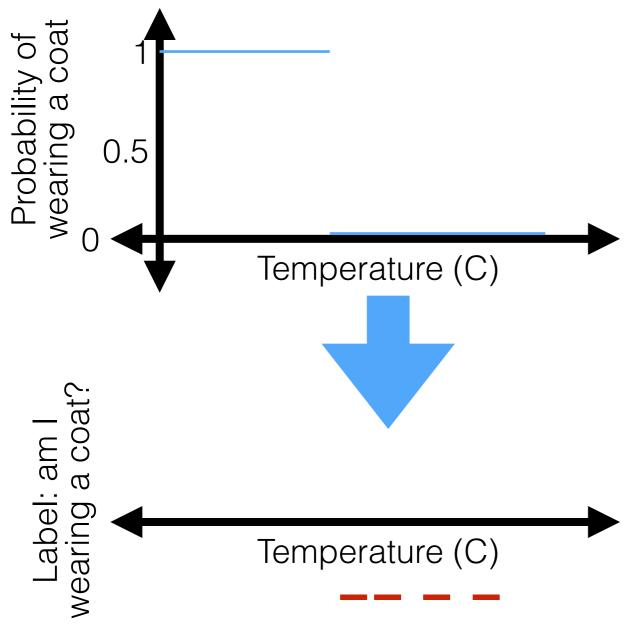


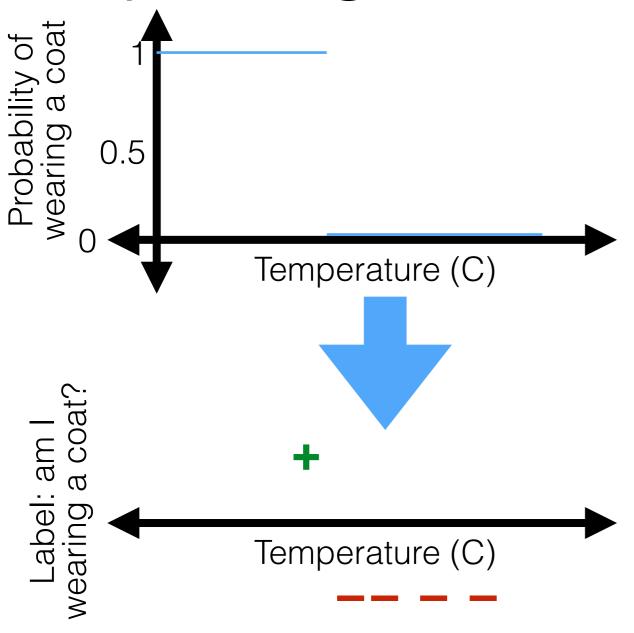


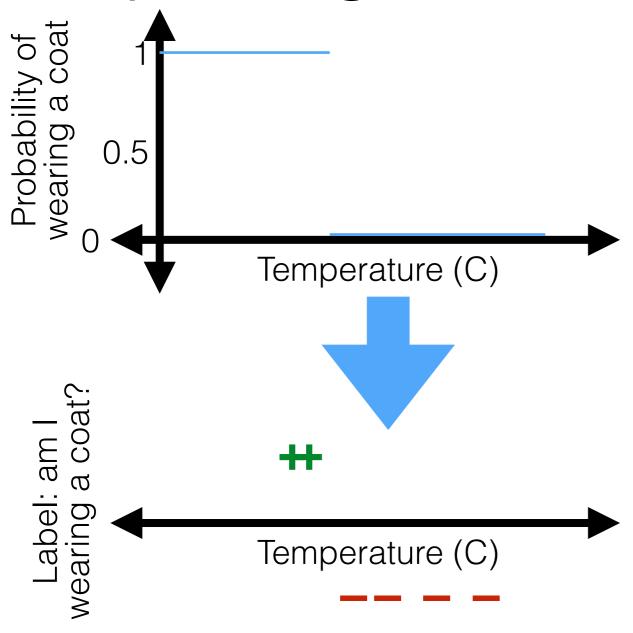


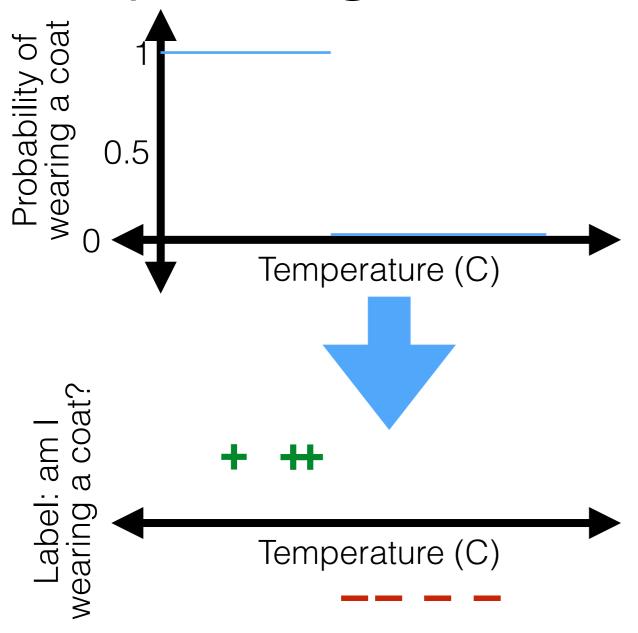


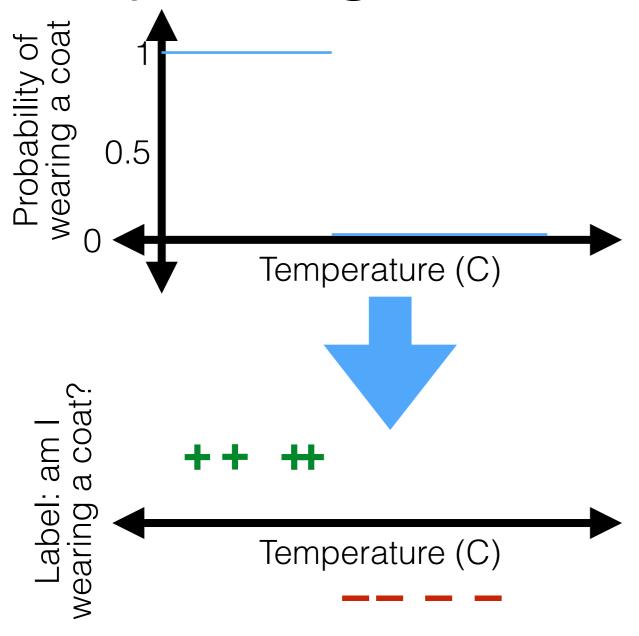


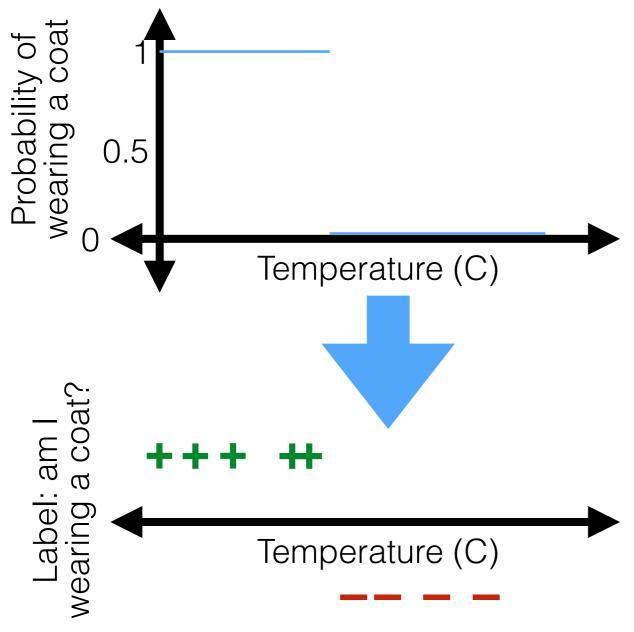


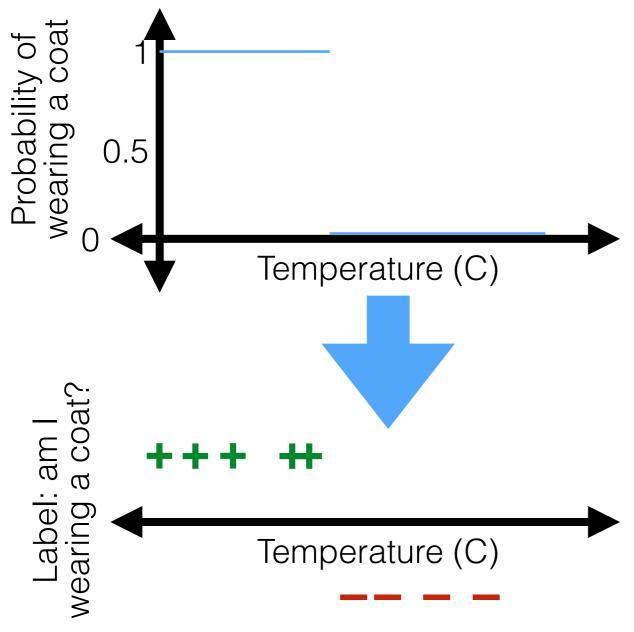


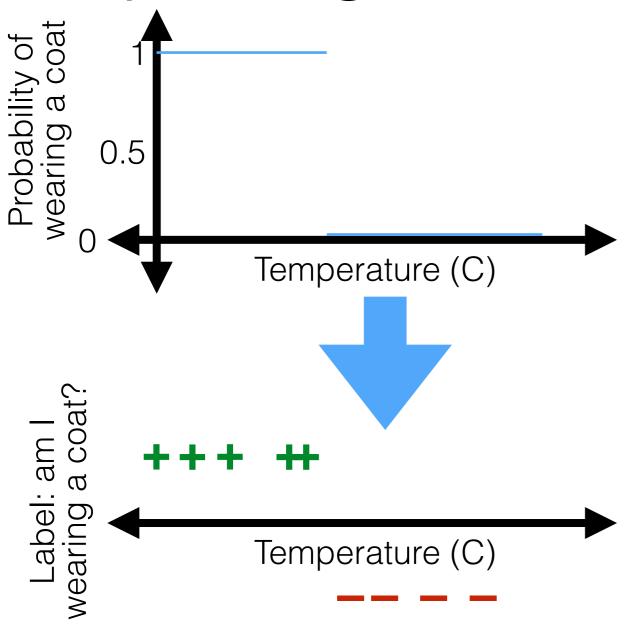


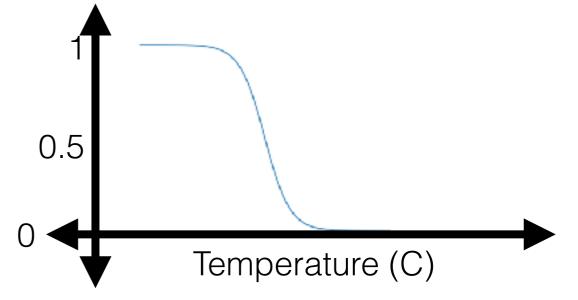


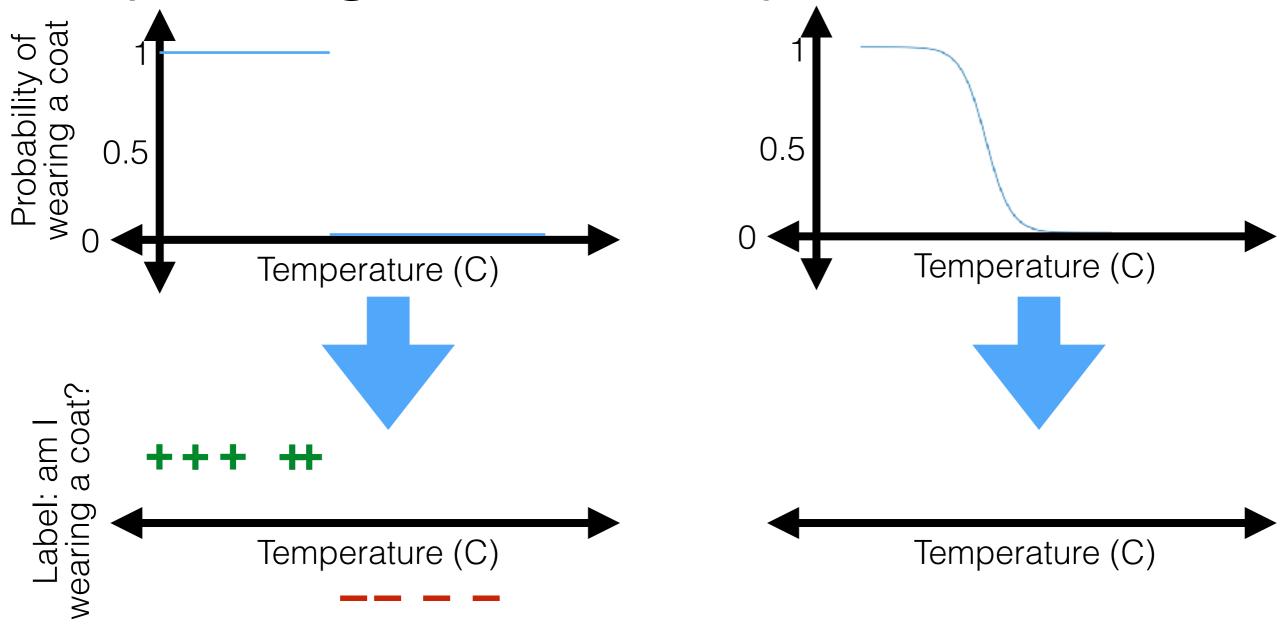


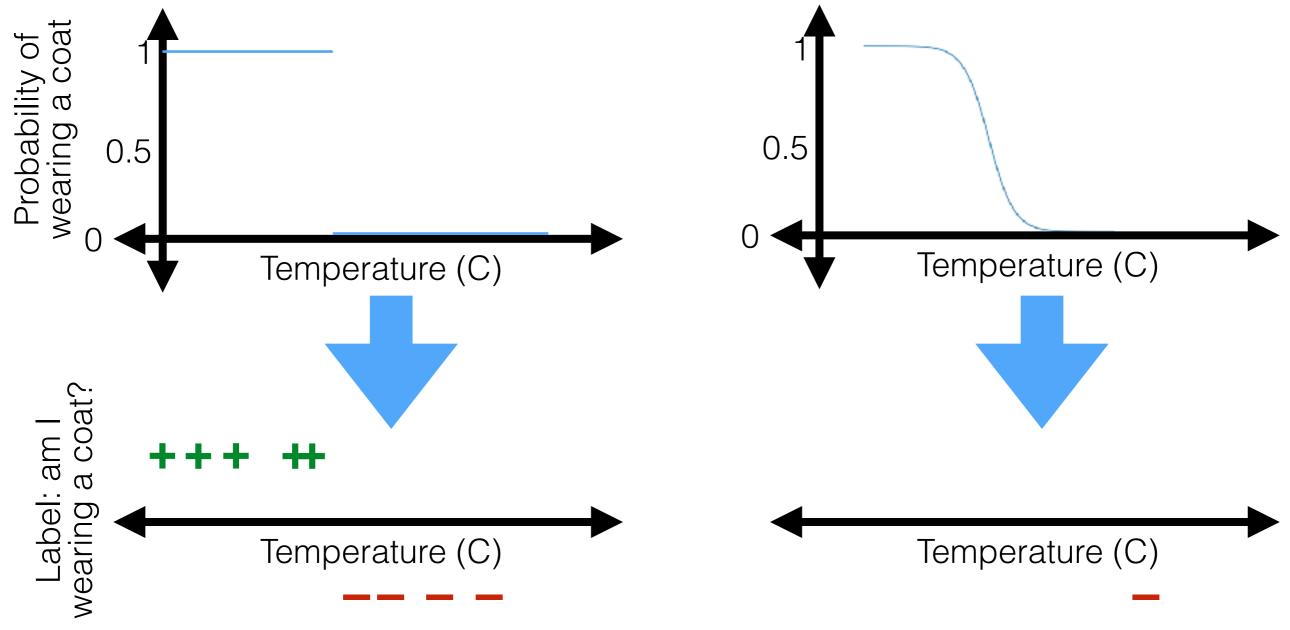


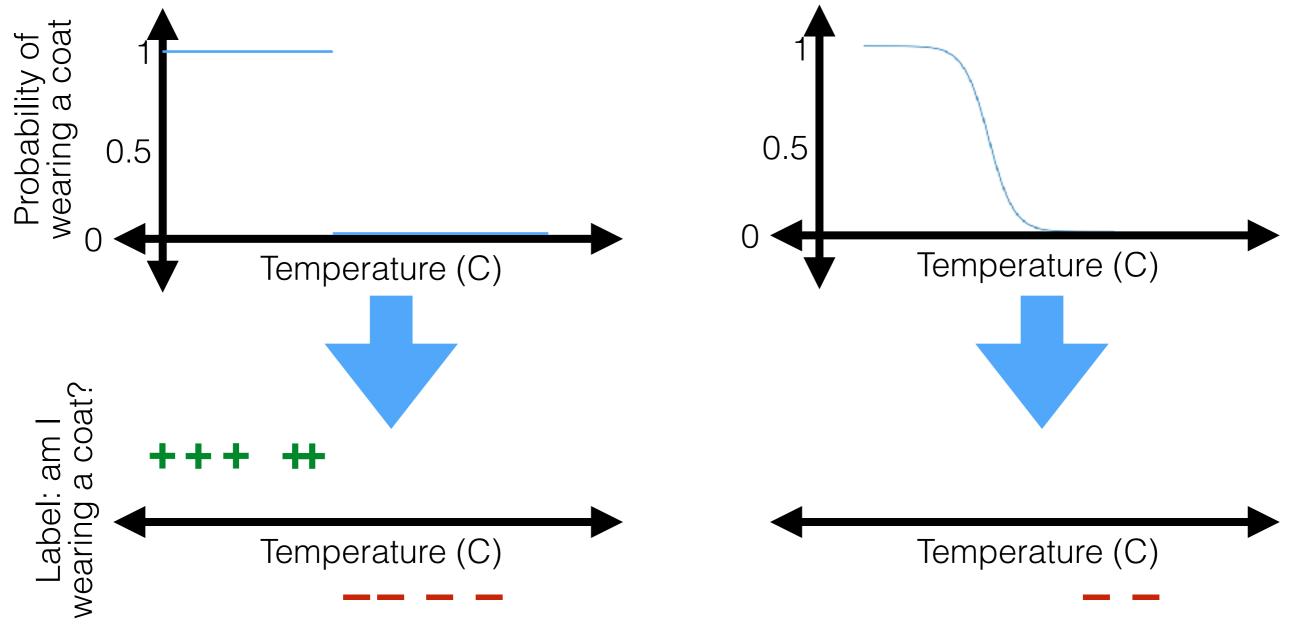


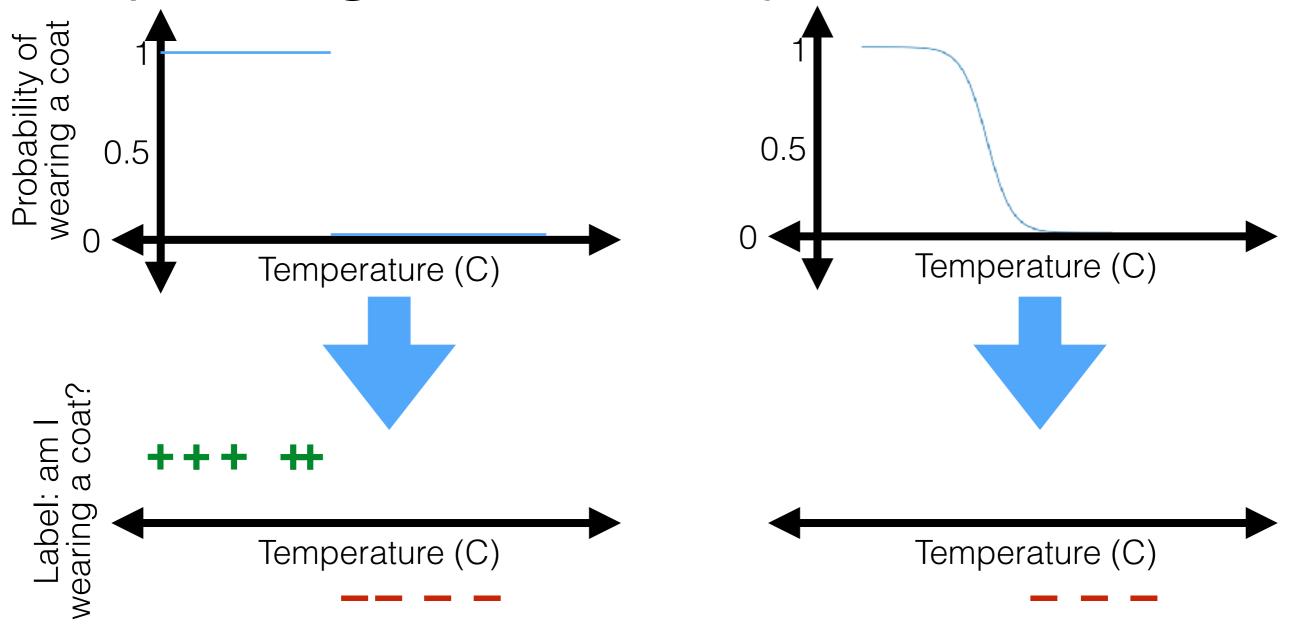


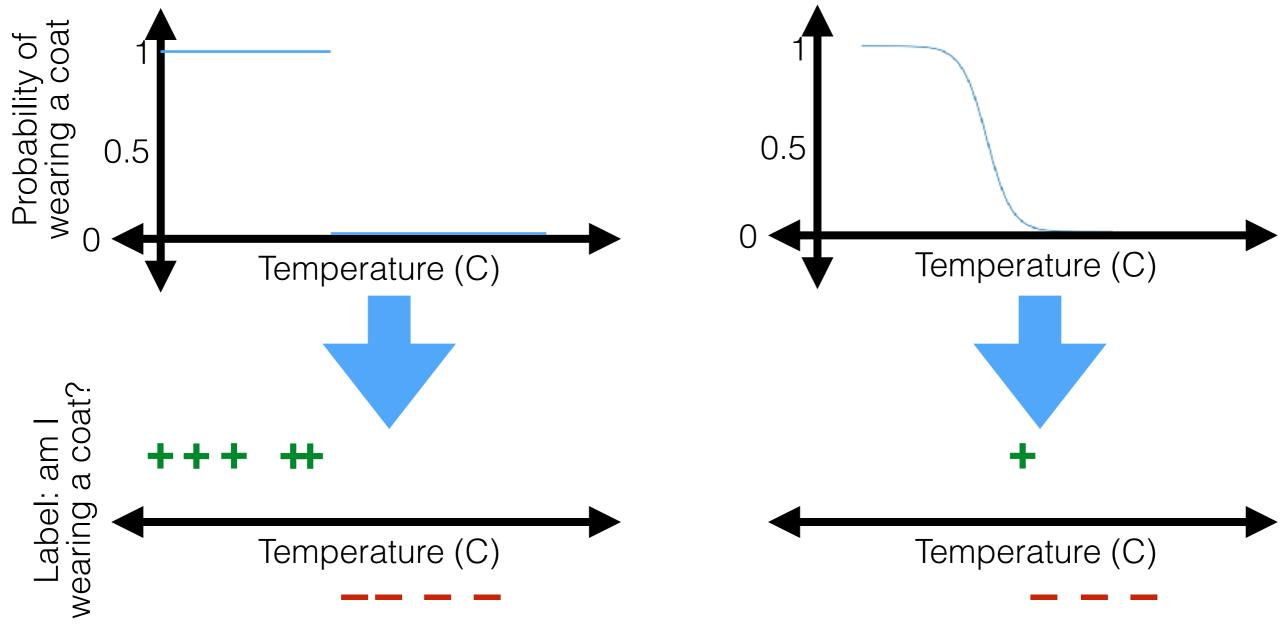


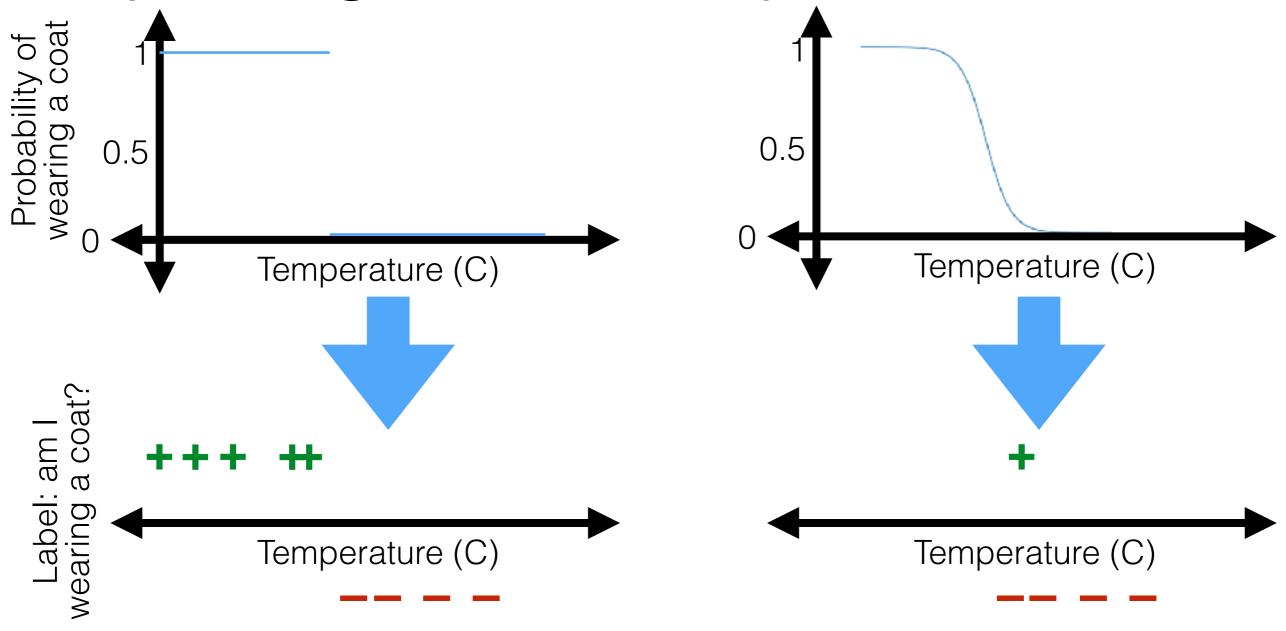


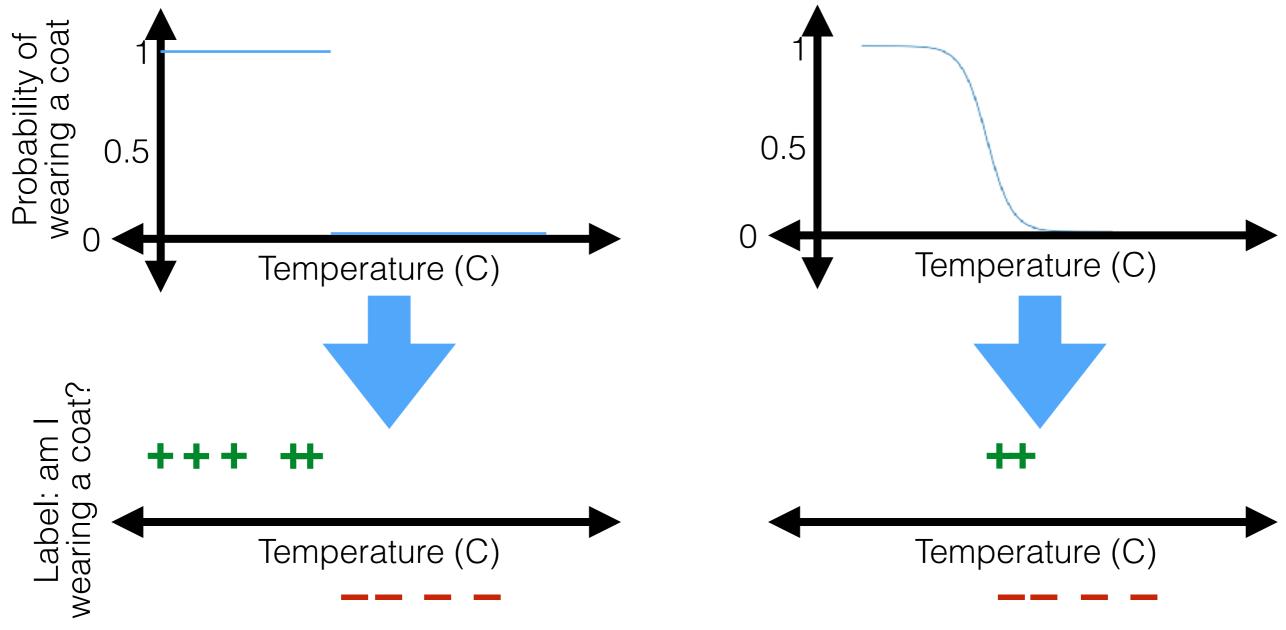


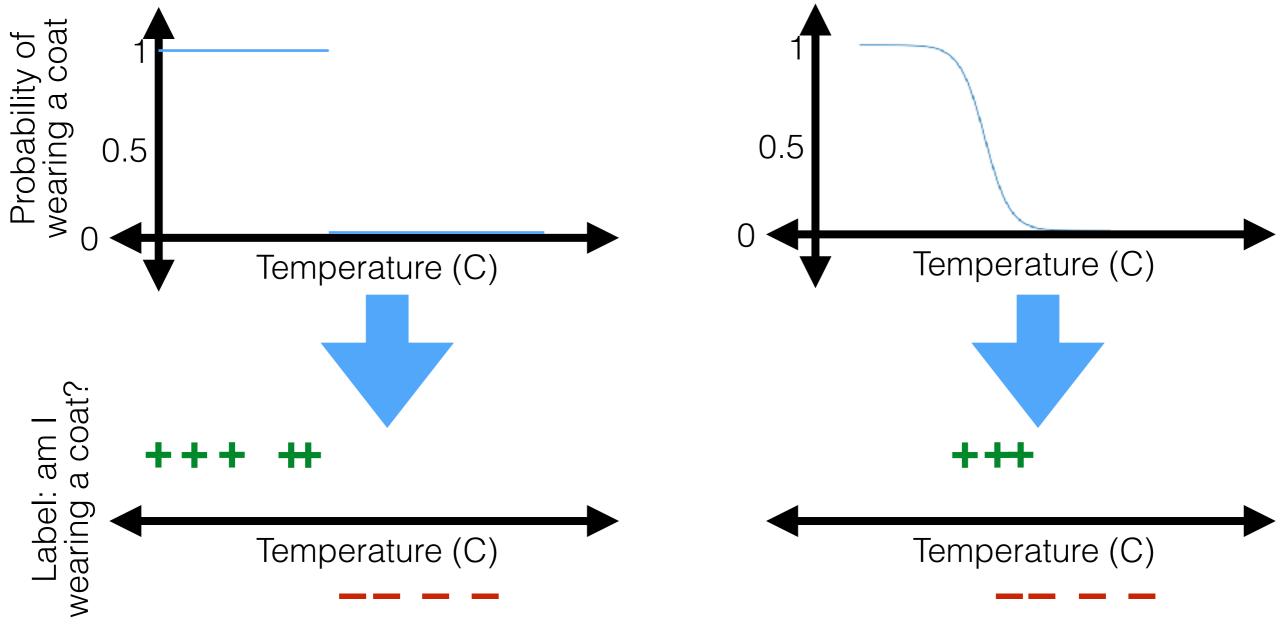


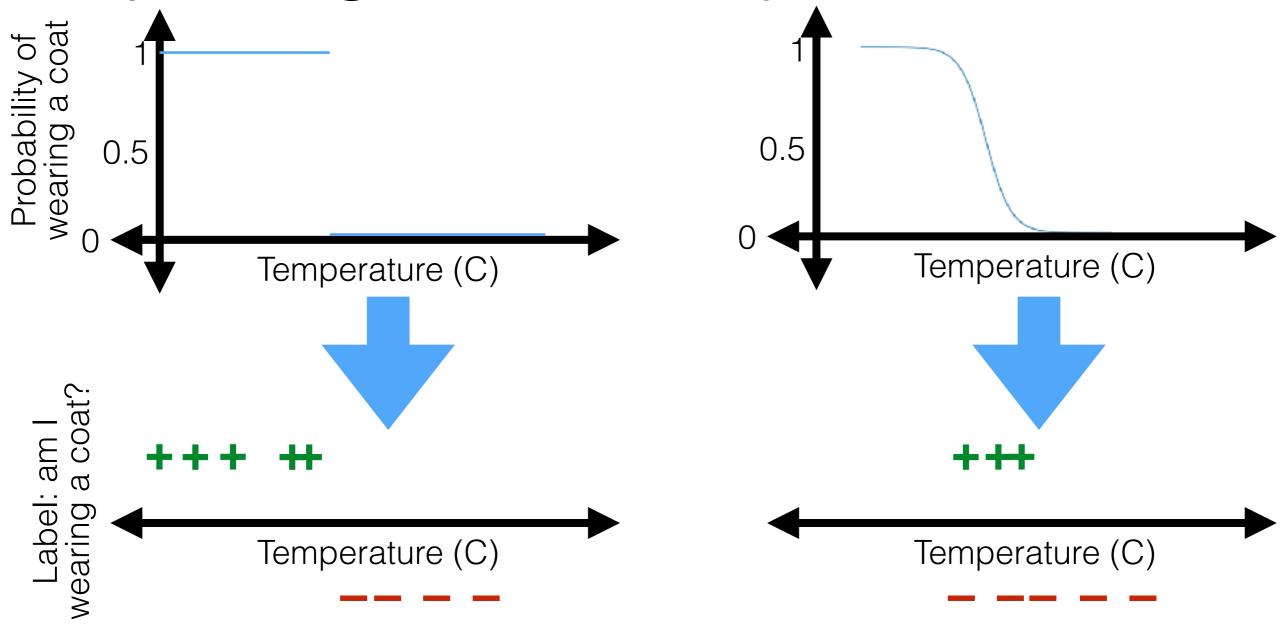


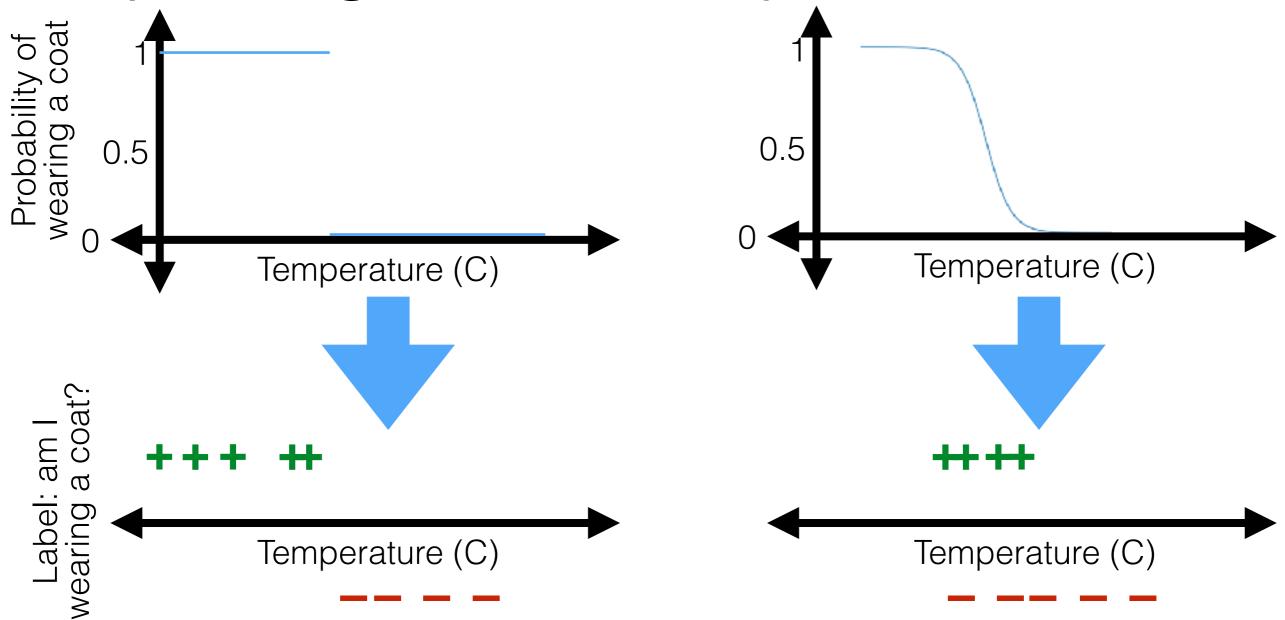


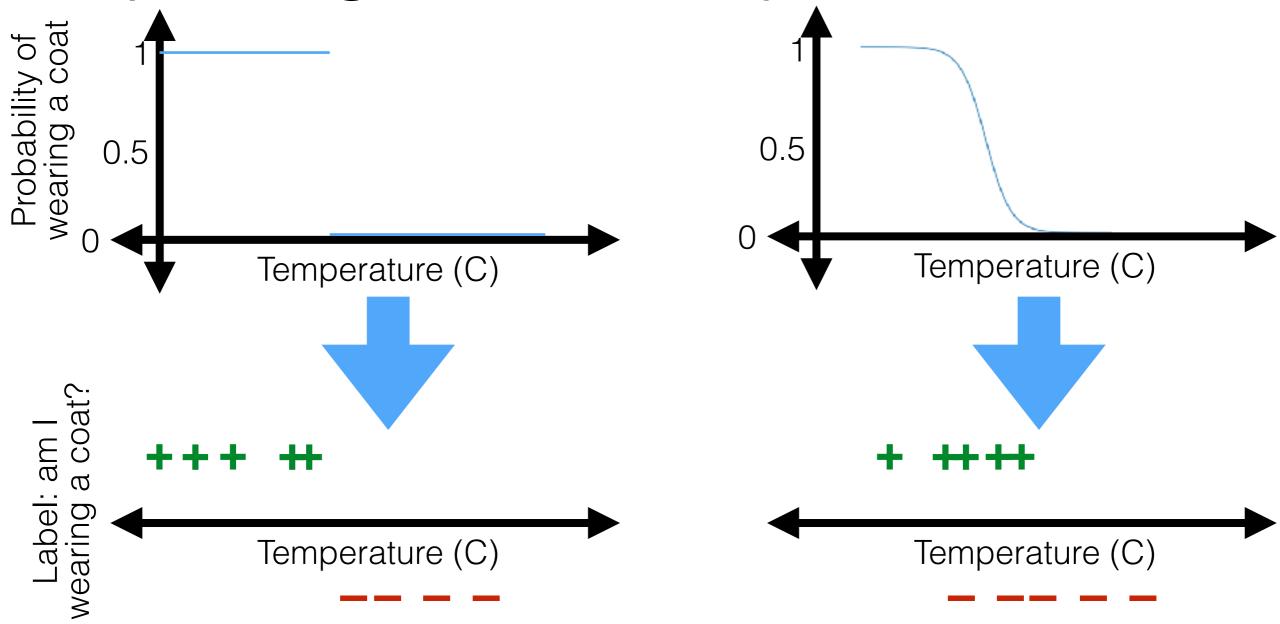


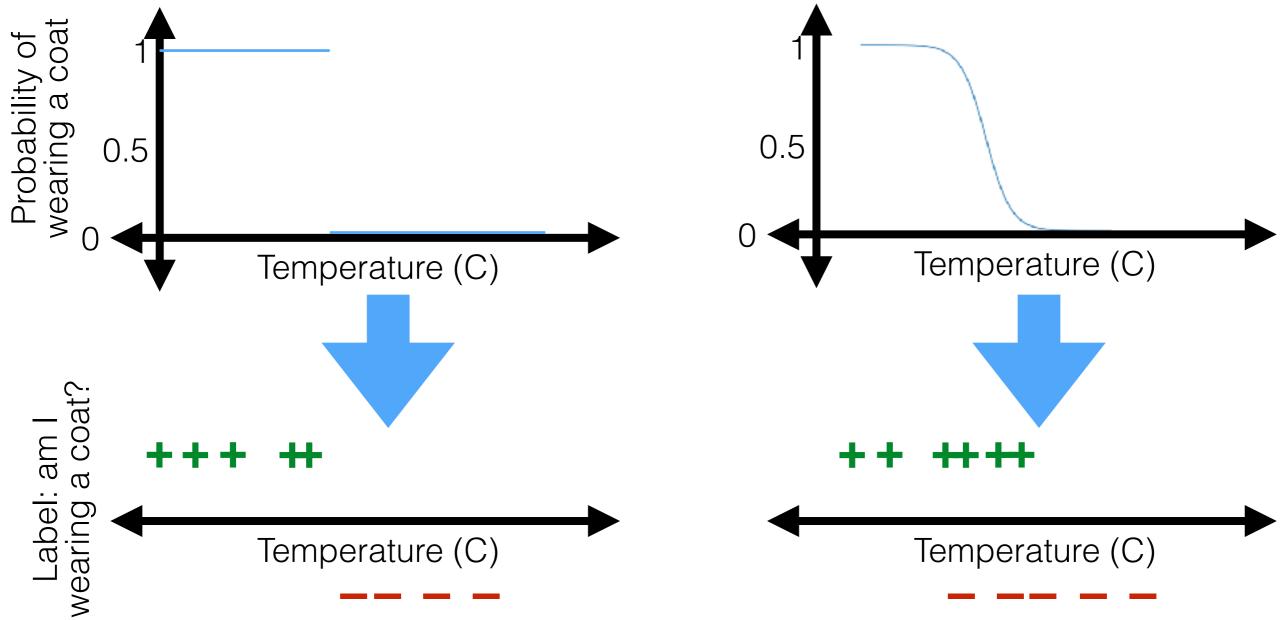


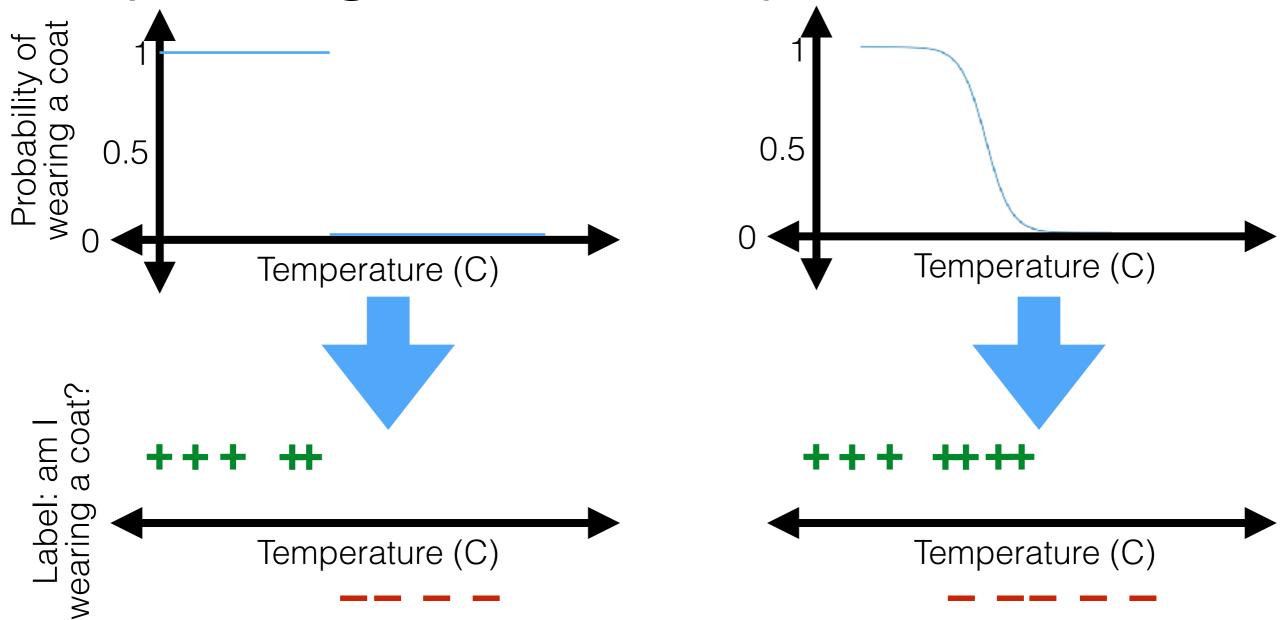


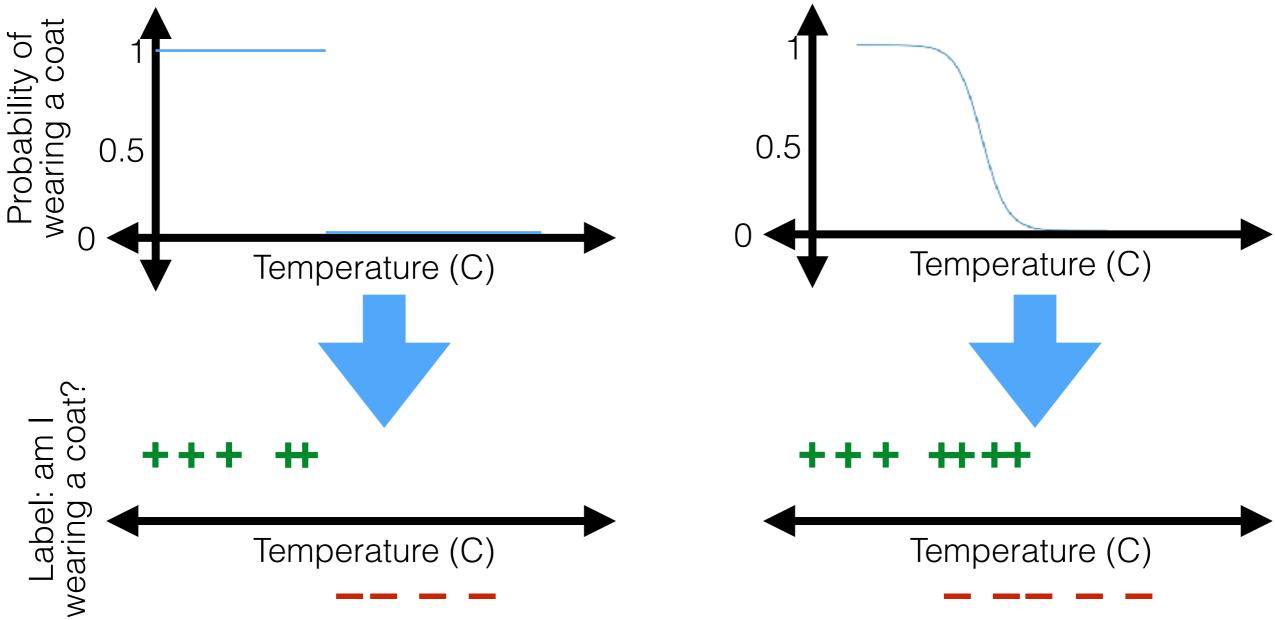




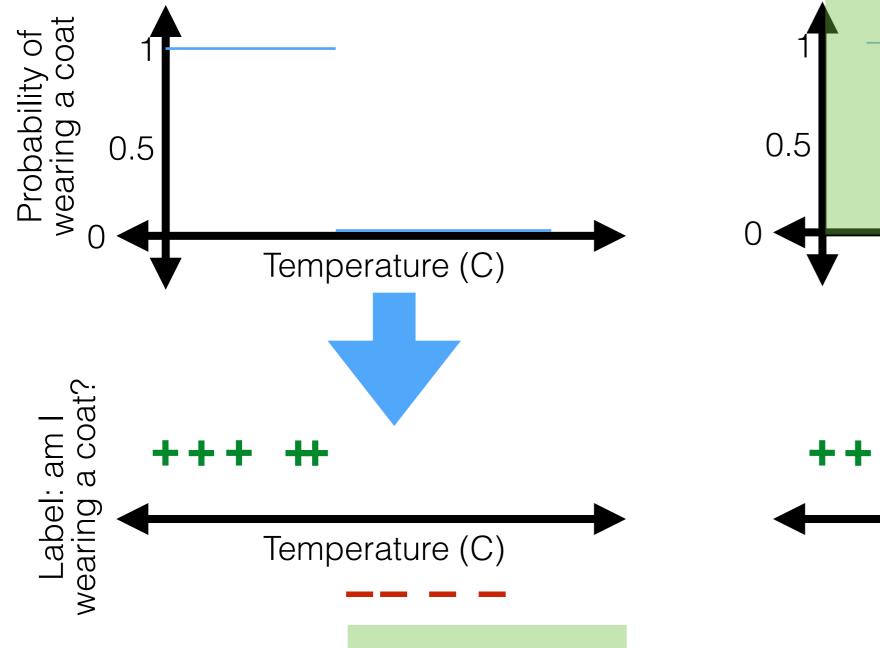




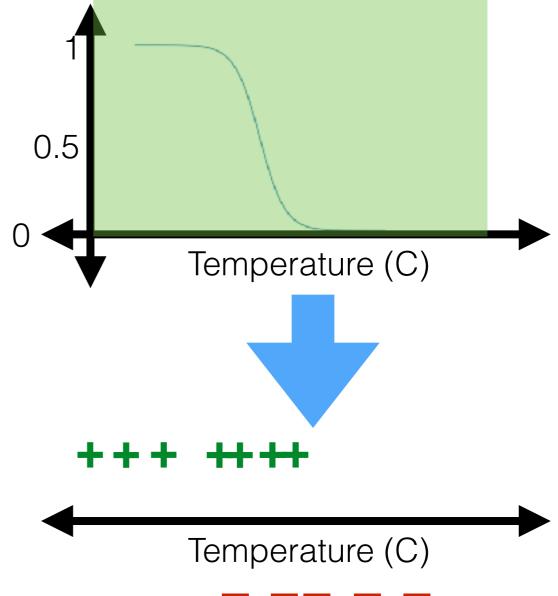


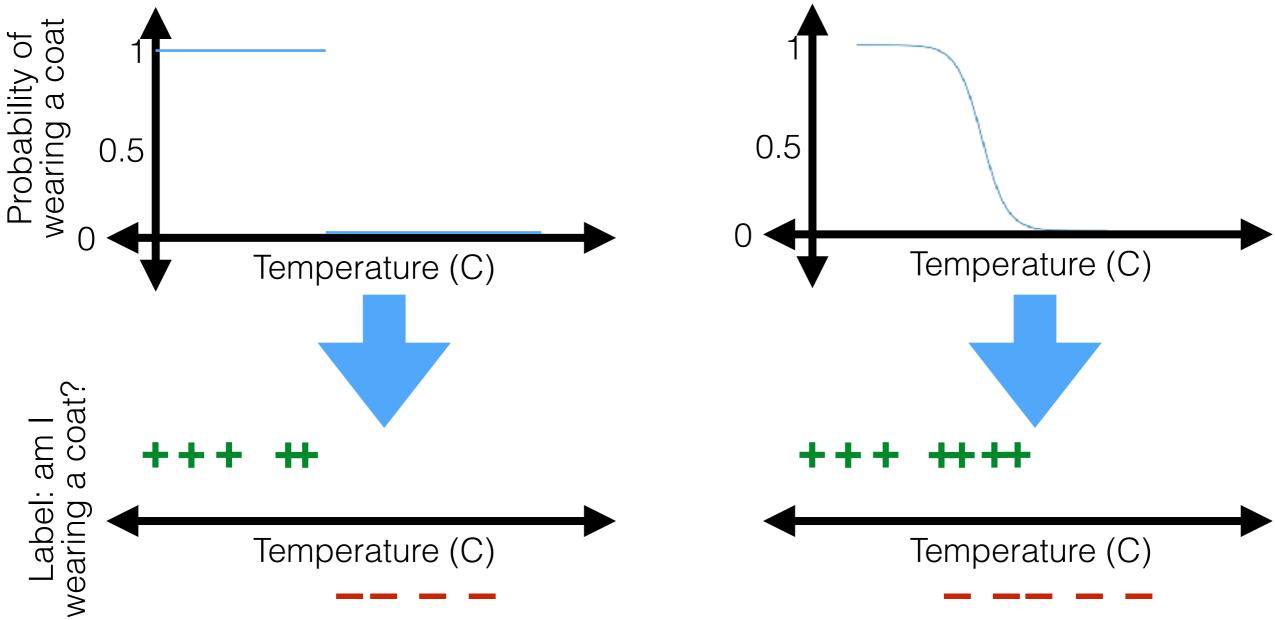


How to make this shape?

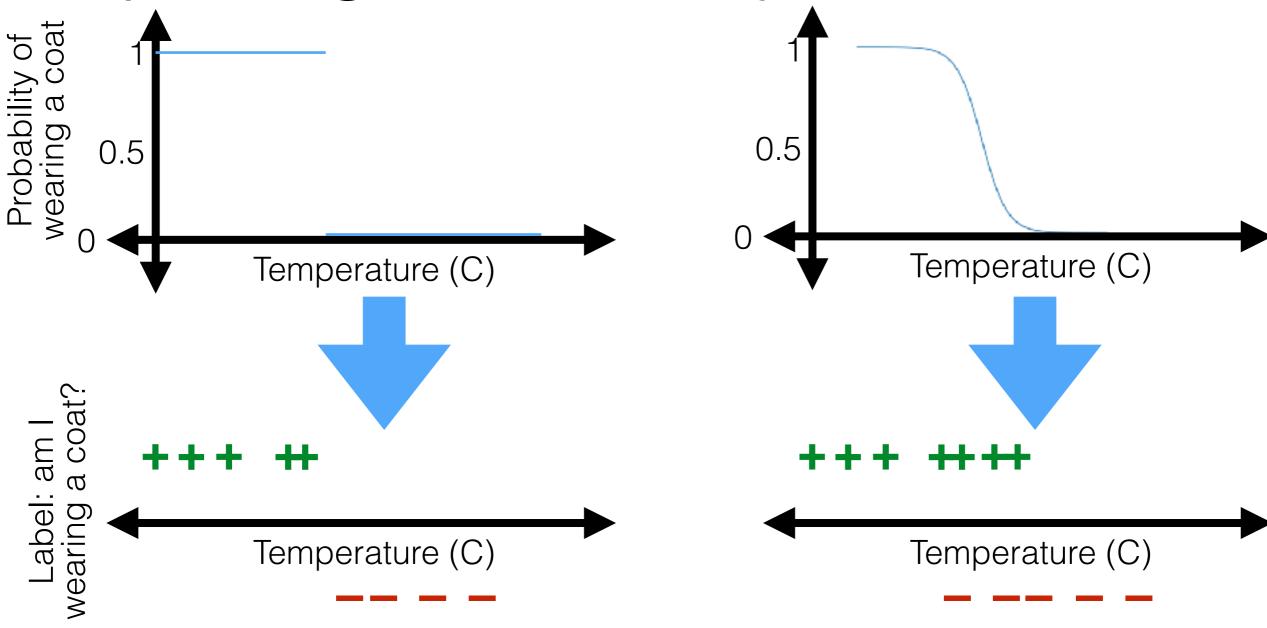


How to make this shape?

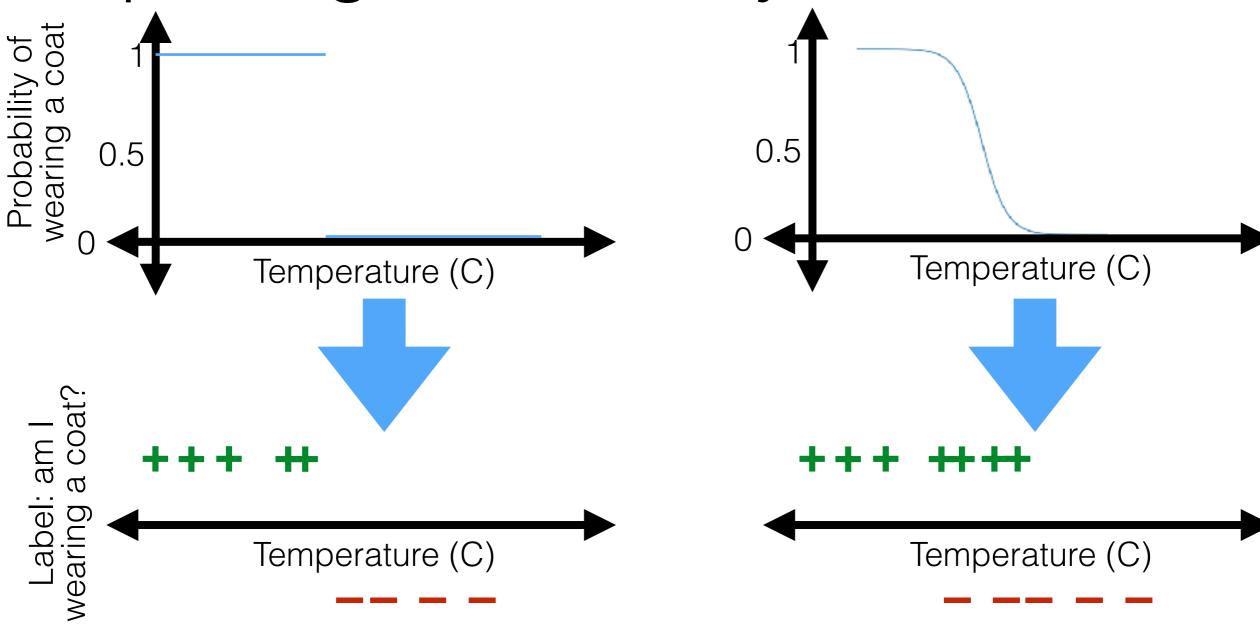




How to make this shape?

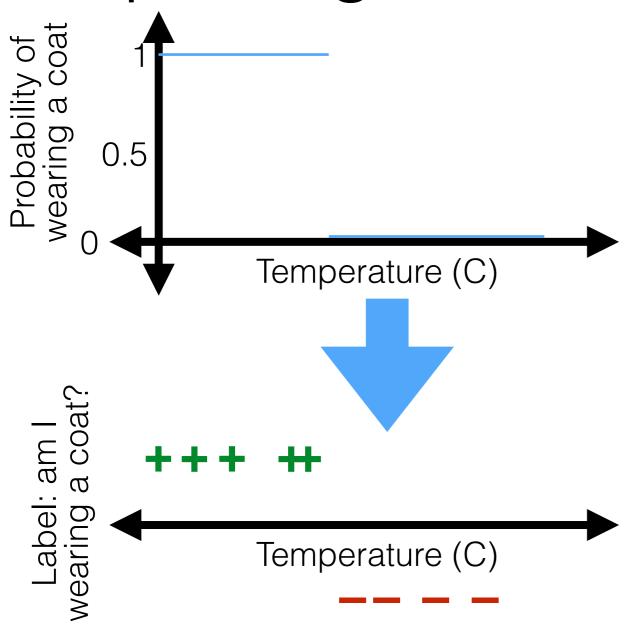


- How to make this shape?
 - Sigmoid/logistic function



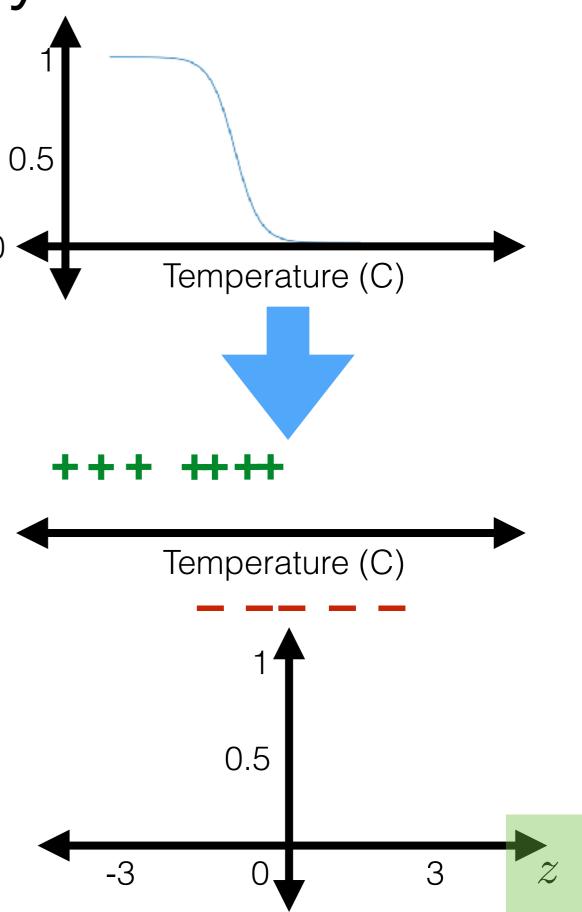
- How to make this shape?
 - Sigmoid/logistic function

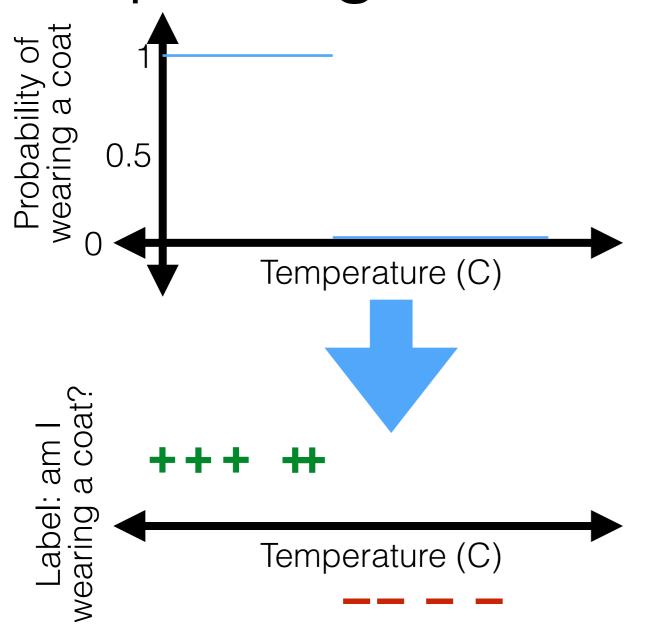
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



- How to make this shape?
 - Sigmoid/logistic function

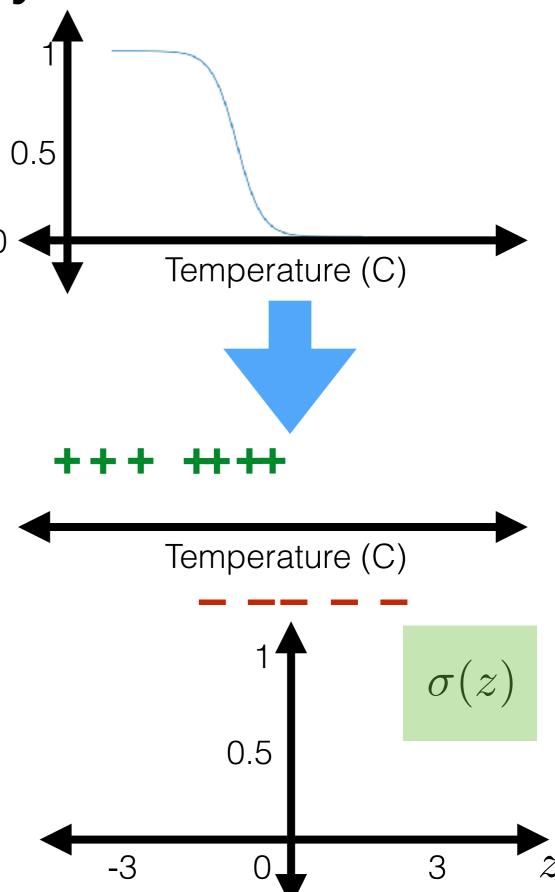
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

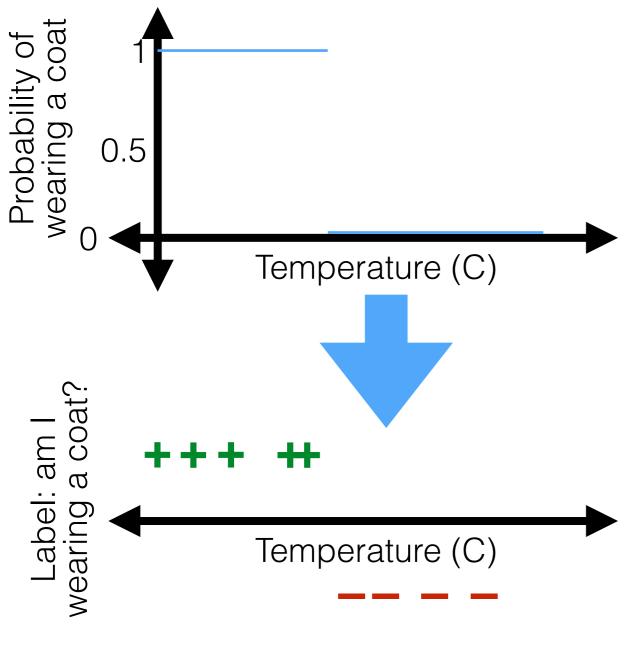




- How to make this shape?
 - Sigmoid/logistic function

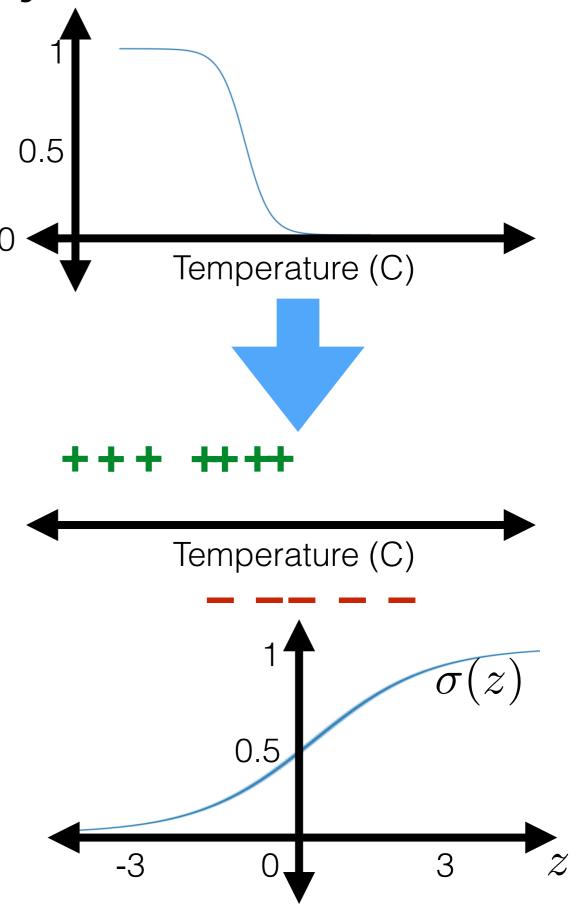
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

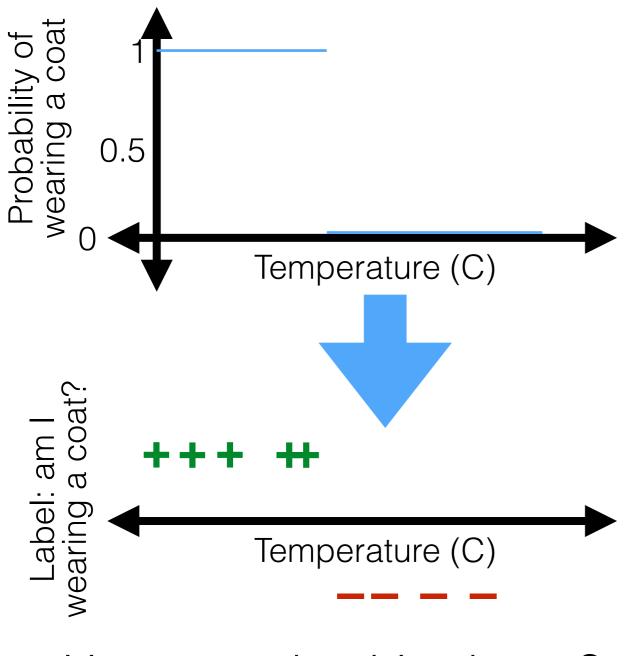




- How to make this shape?
 - Sigmoid/logistic function

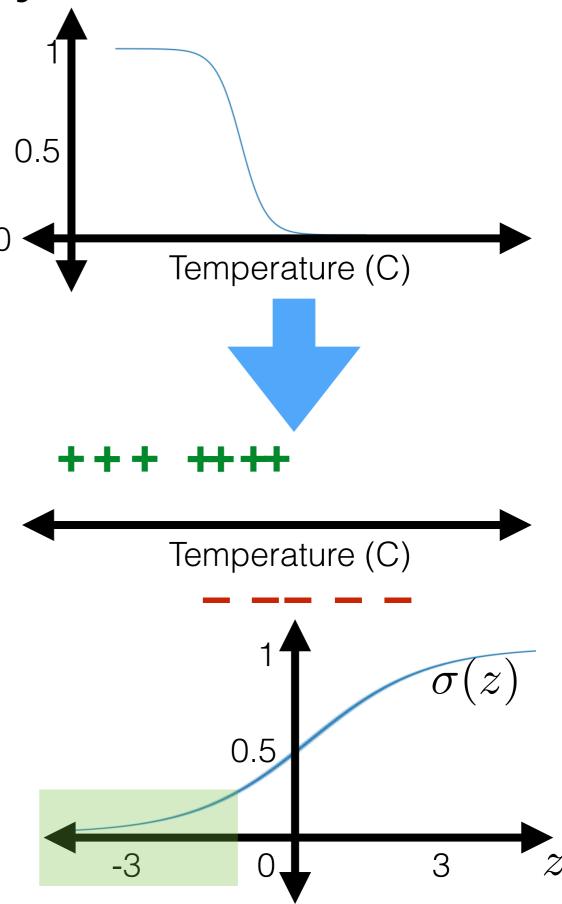
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

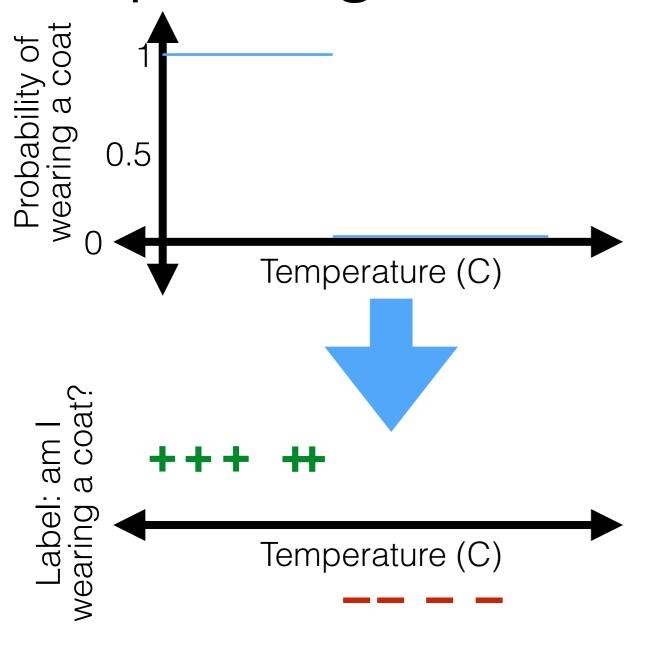




- How to make this shape?
 - Sigmoid/logistic function

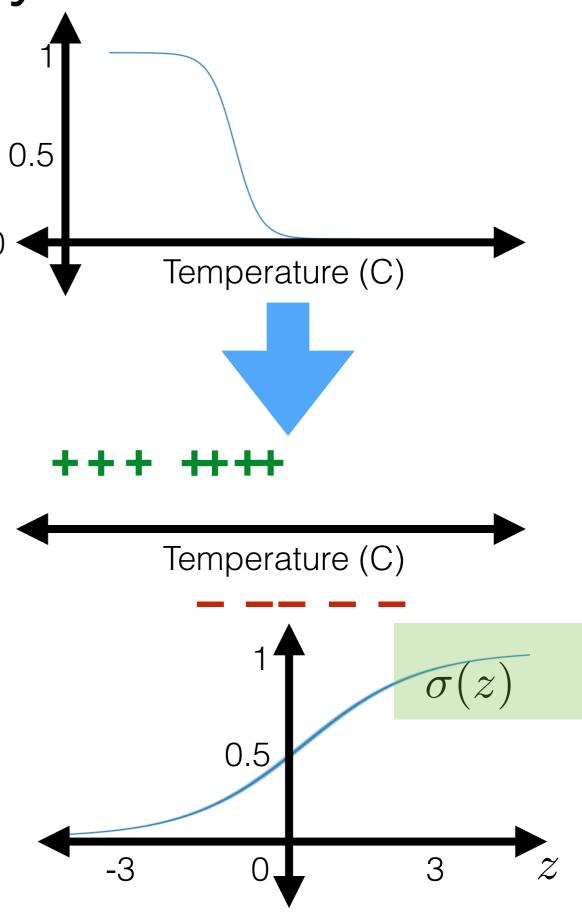
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

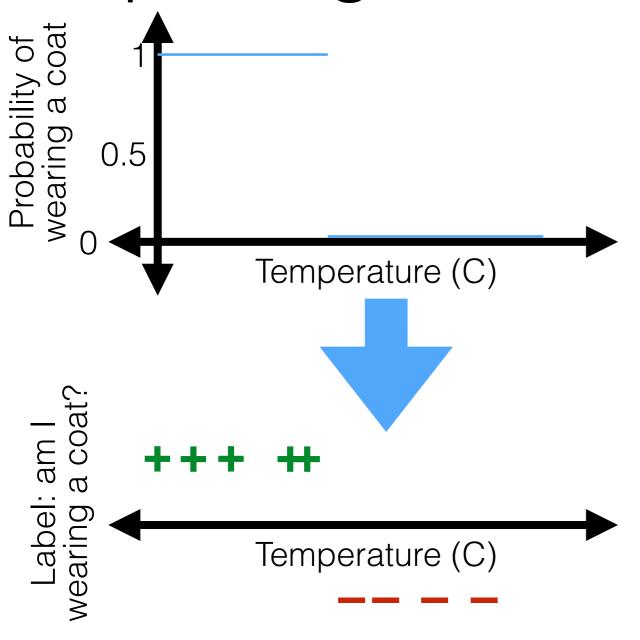




- How to make this shape?
 - Sigmoid/logistic function

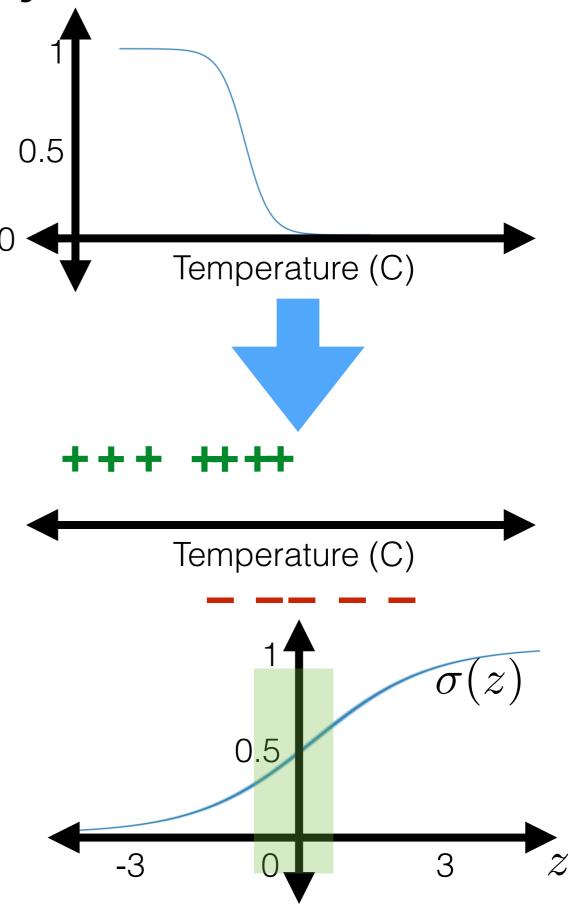
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

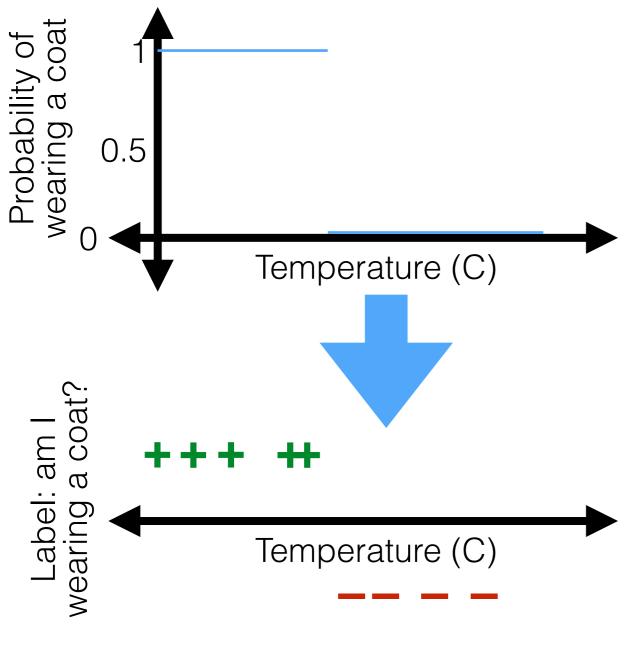




- How to make this shape?
 - Sigmoid/logistic function

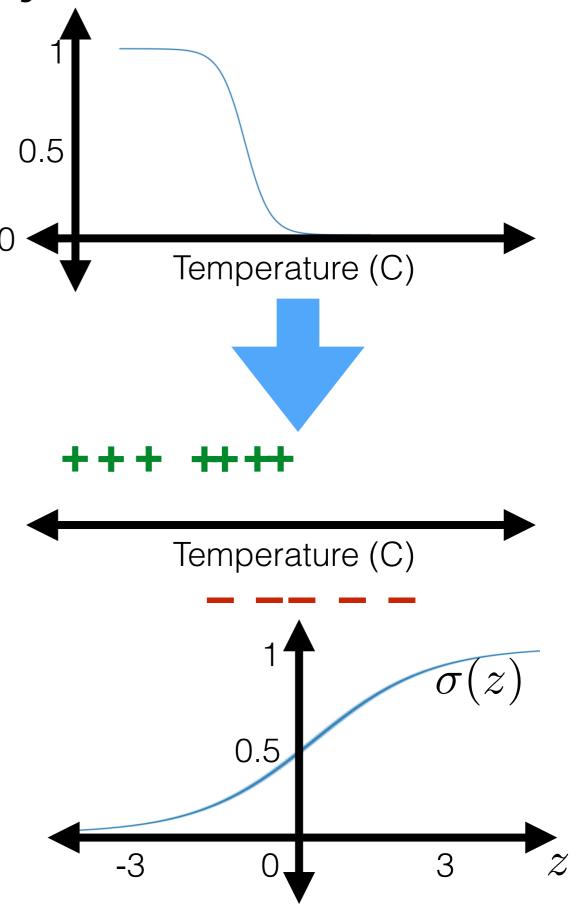
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

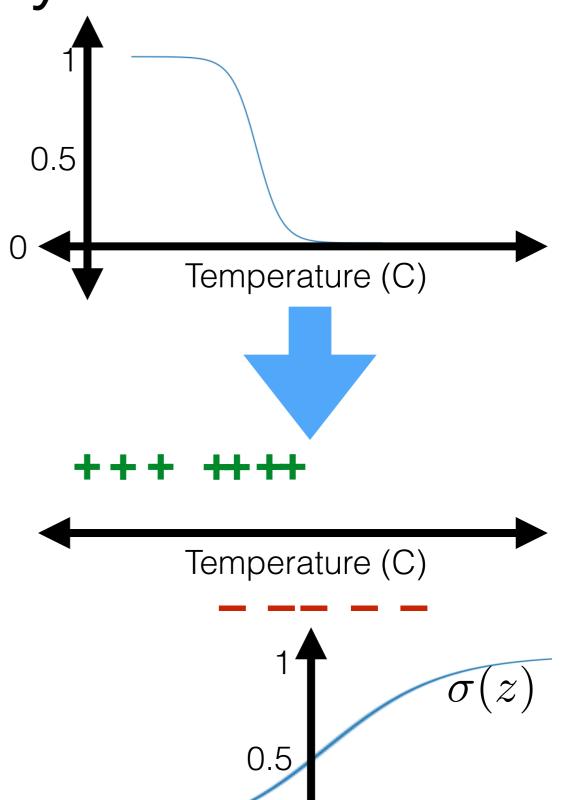




- How to make this shape?
 - Sigmoid/logistic function

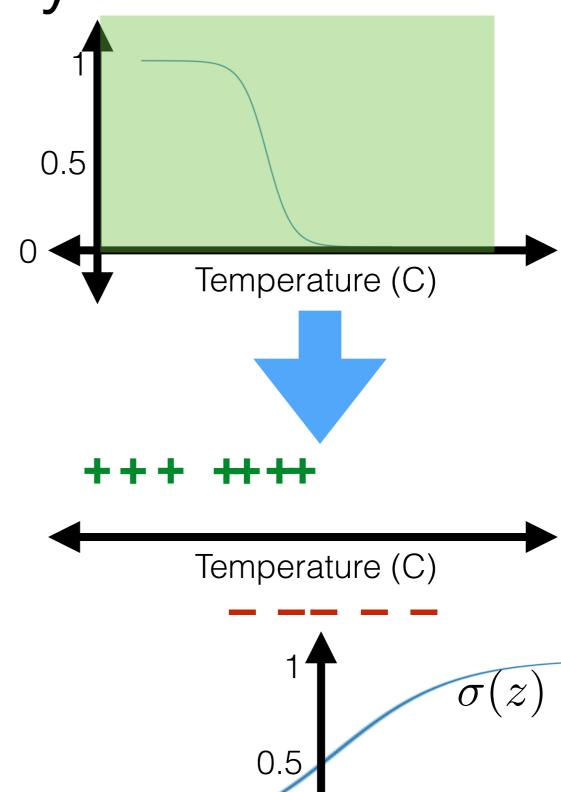
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$





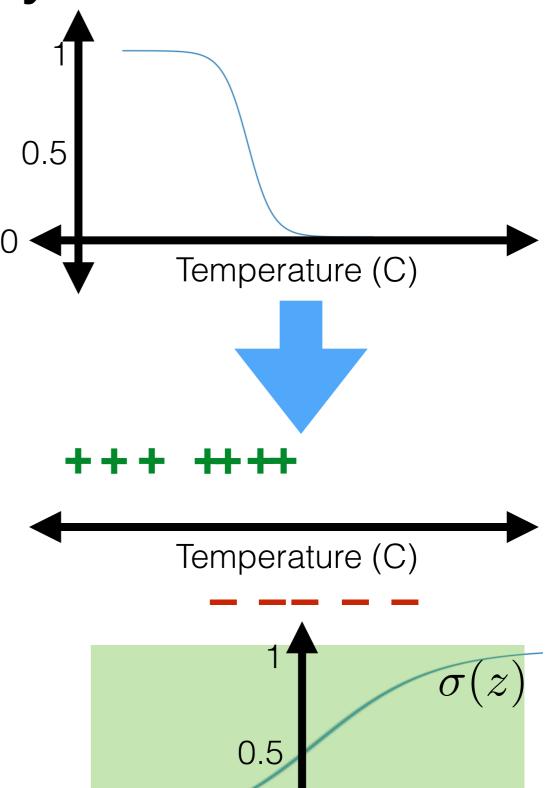
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



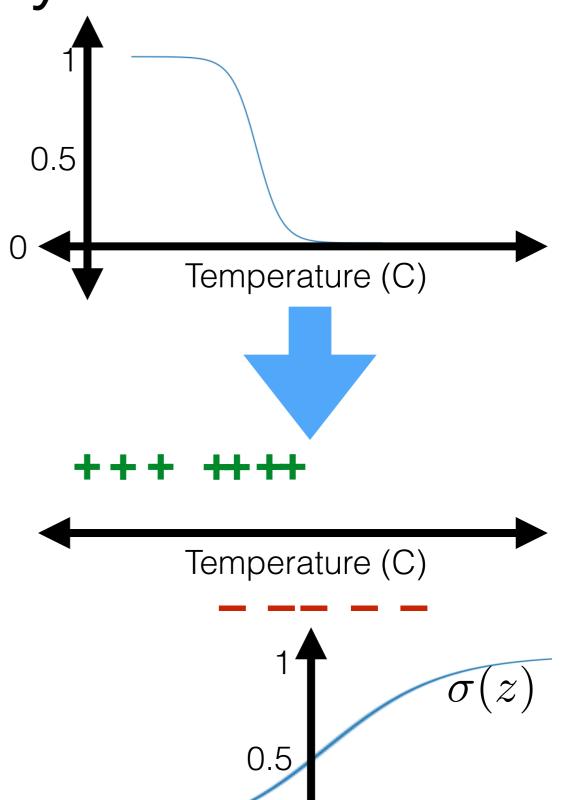
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



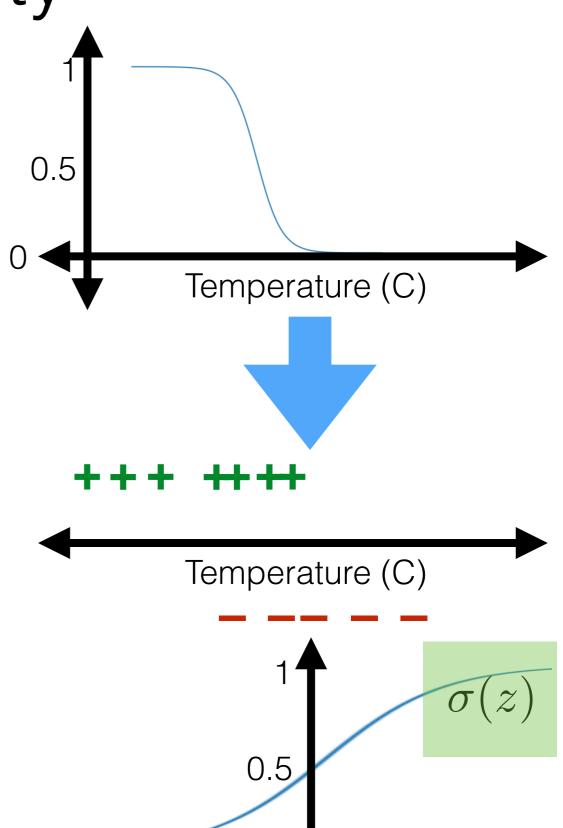
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



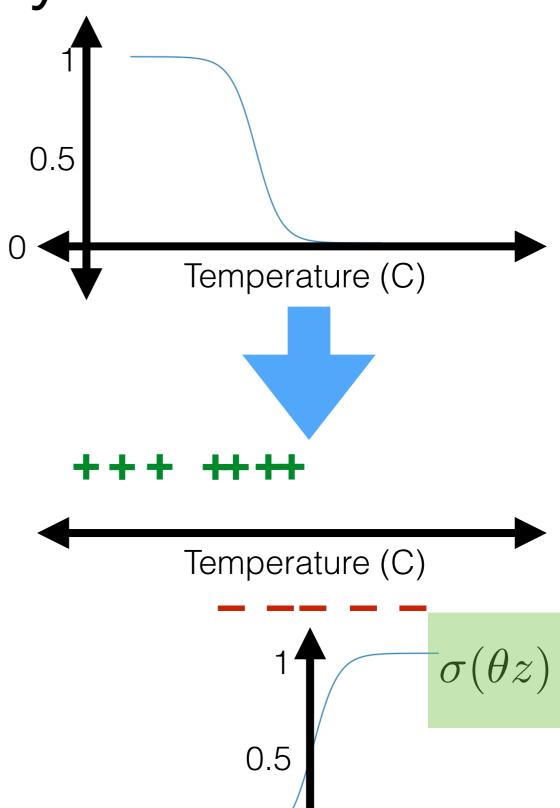
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



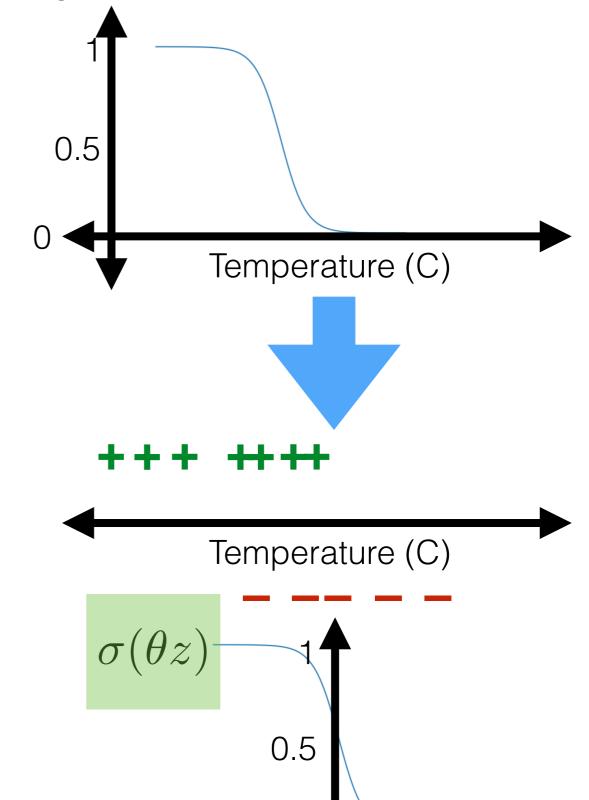
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



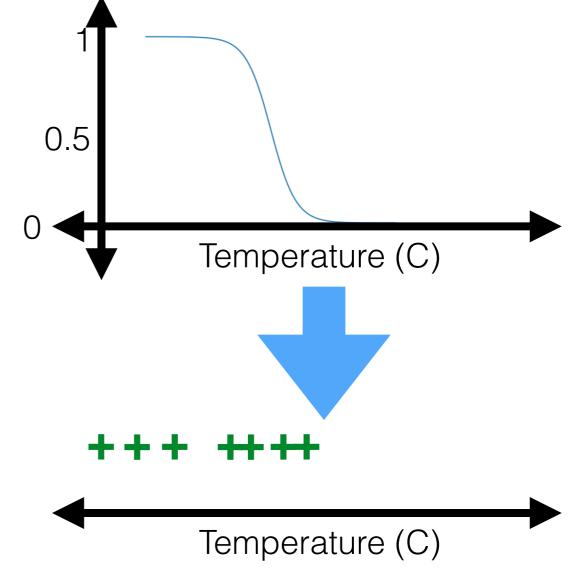
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



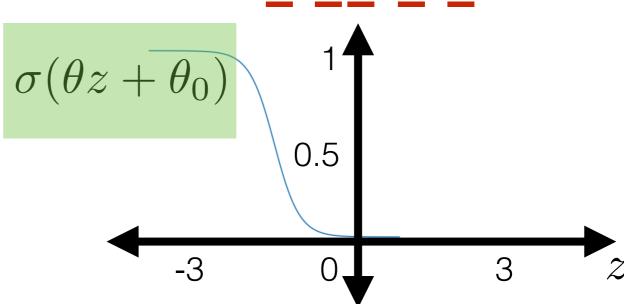
- How to make this shape?
 - Sigmoid/logistic function

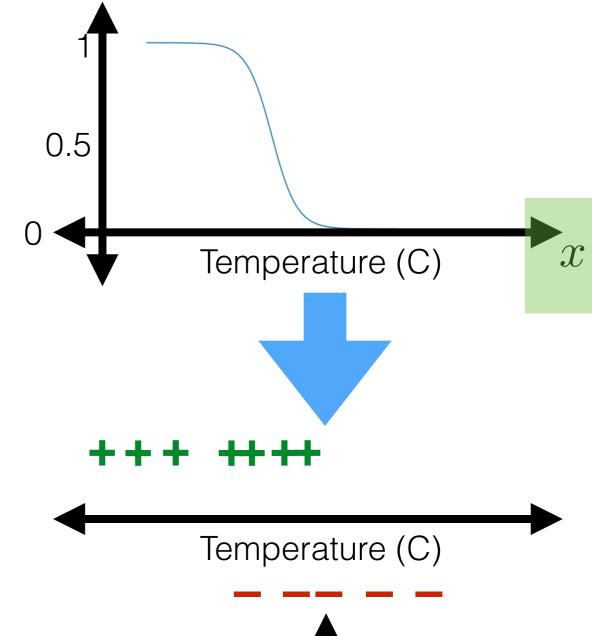
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



- How to make this shape?
 - Sigmoid/logistic function

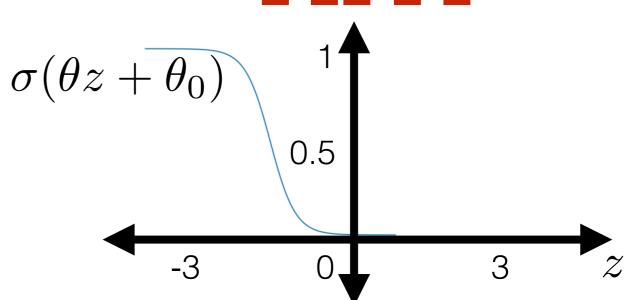
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

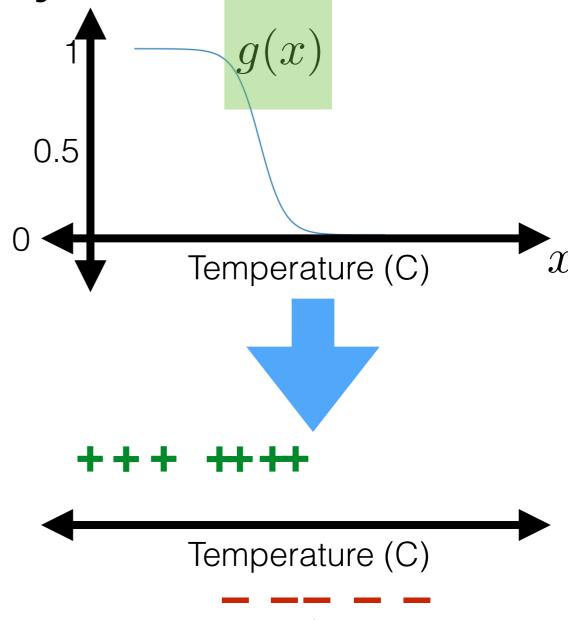




- How to make this shape?
 - Sigmoid/logistic function

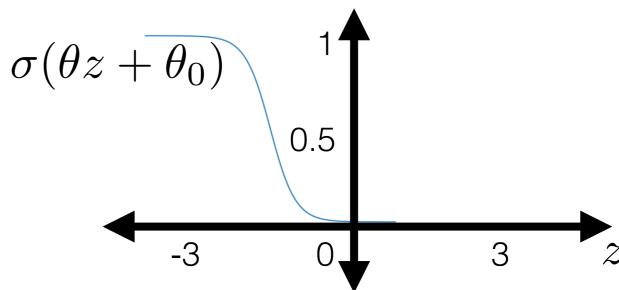
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



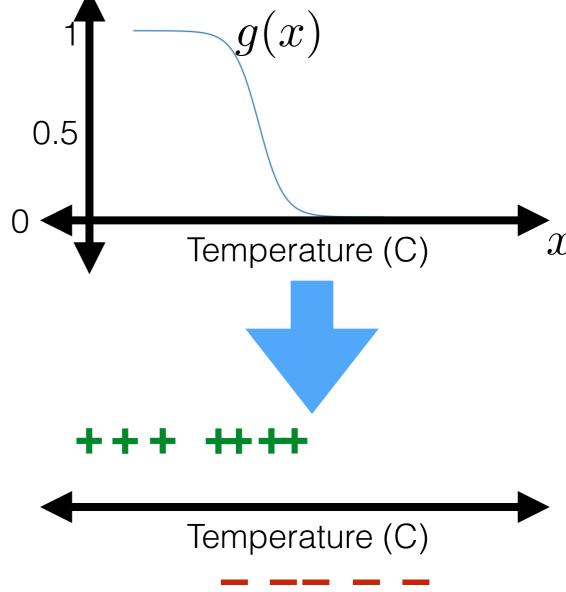


- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

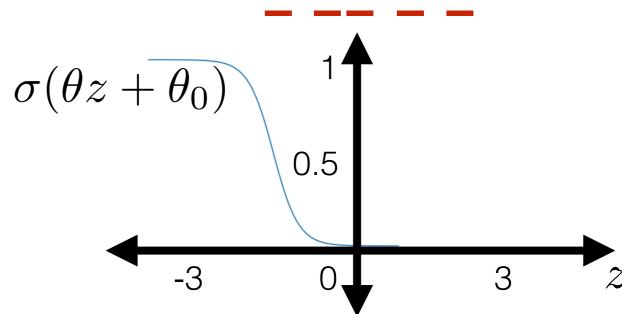


$$g(x) = \sigma(\theta x + \theta_0)$$



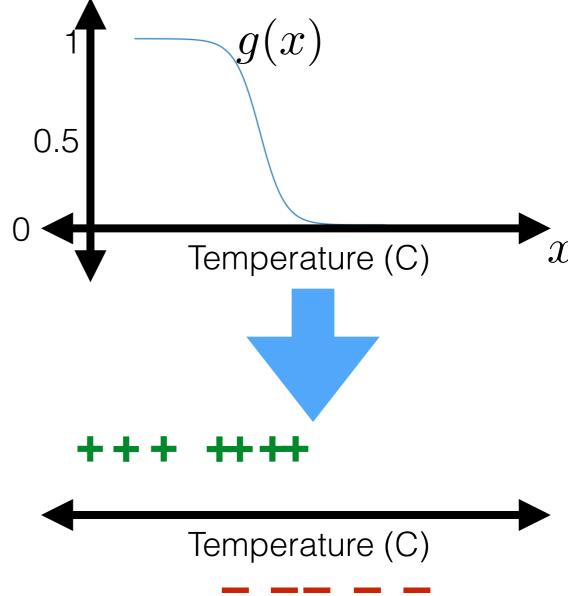
- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



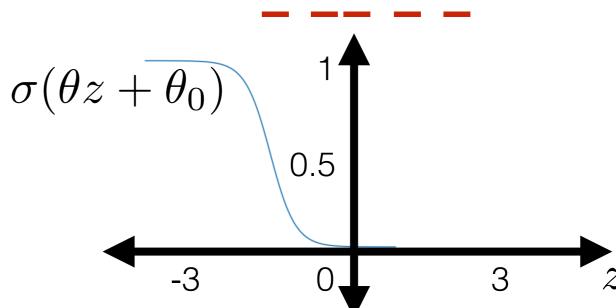
$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$



- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$



1 feature:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

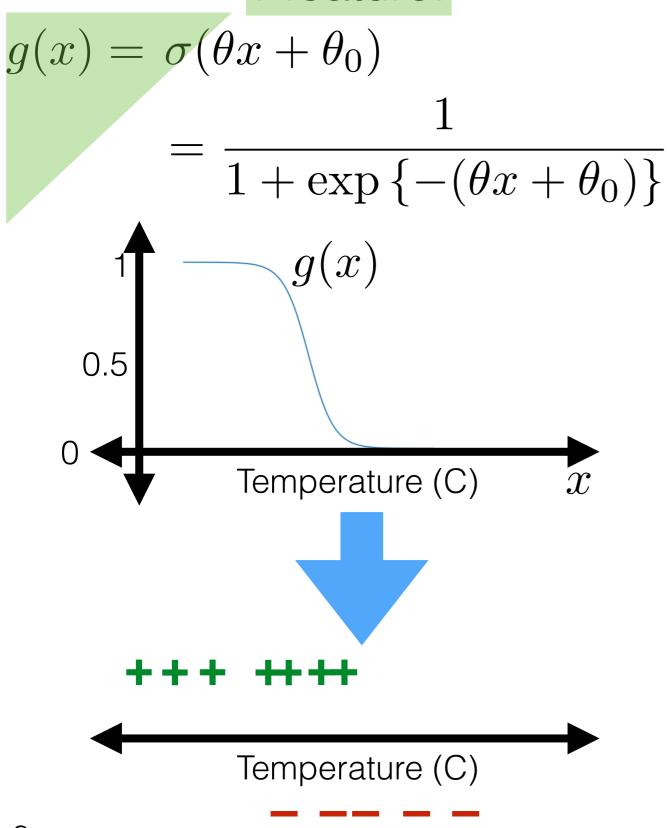
$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

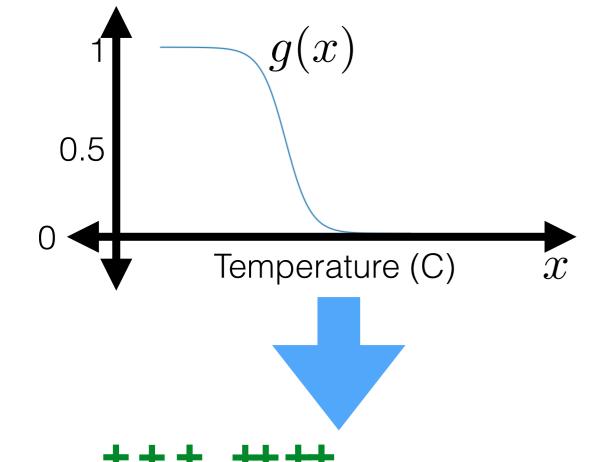
2 features:

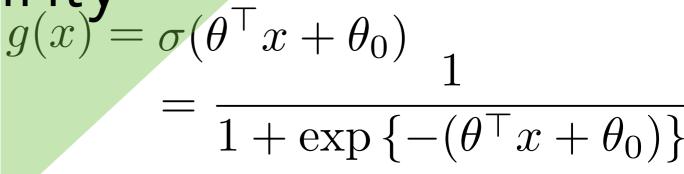
Capturing uncertainty



$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

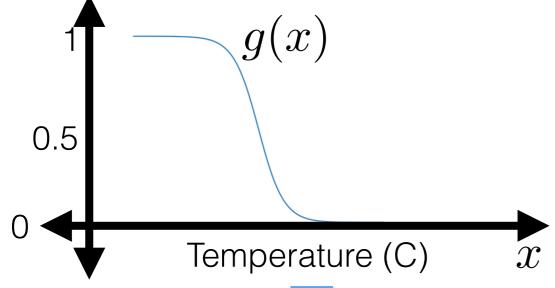


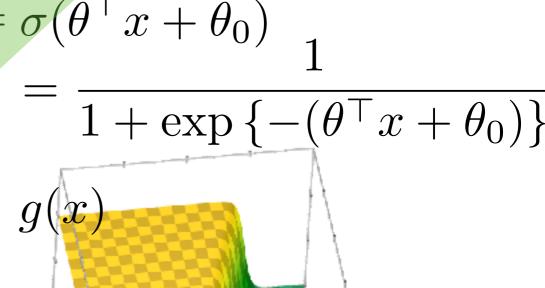


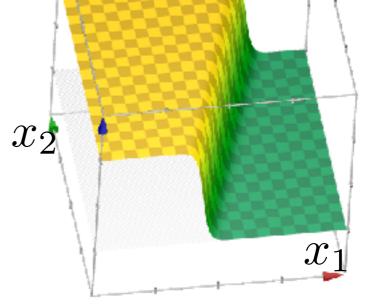
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

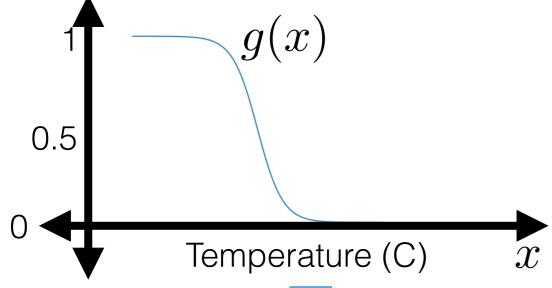


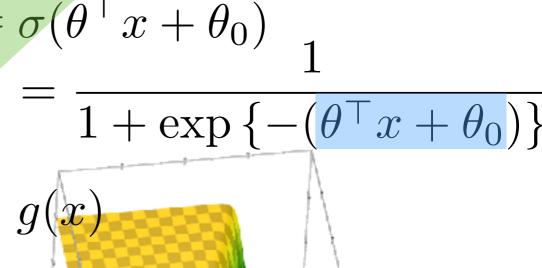


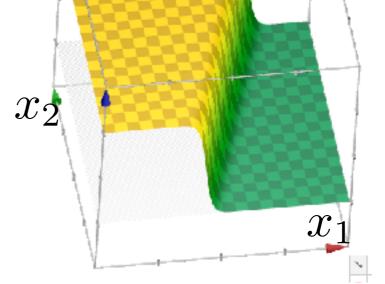


$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$





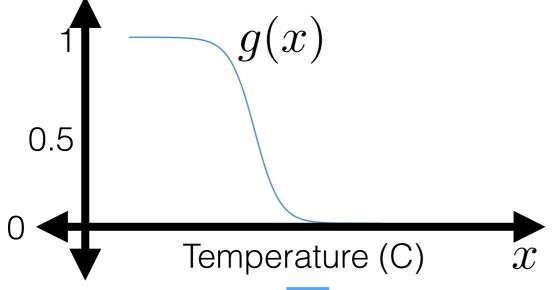


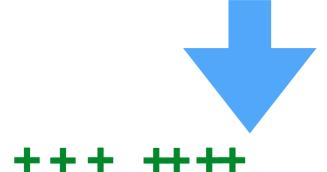
2 features:

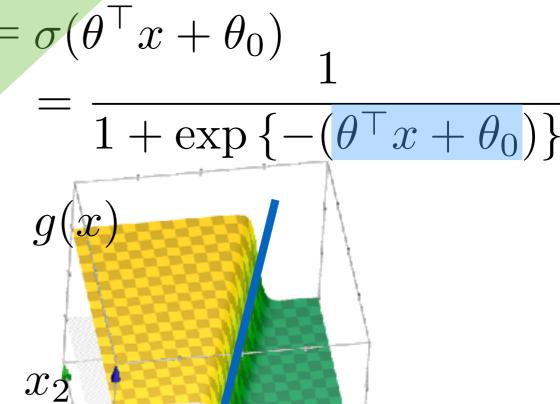
1 feature:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$







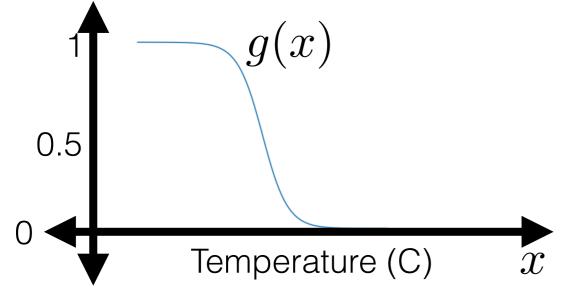
 x_1

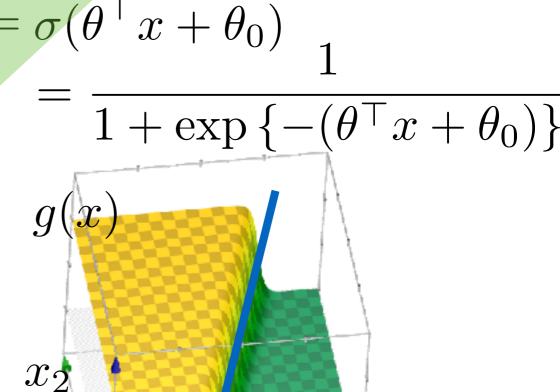
2 features:

1 feature:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



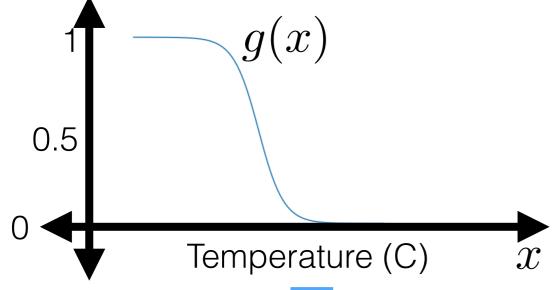


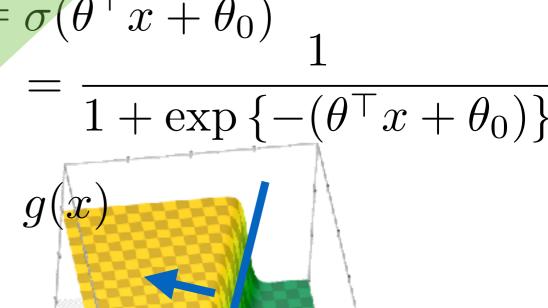
 x_1

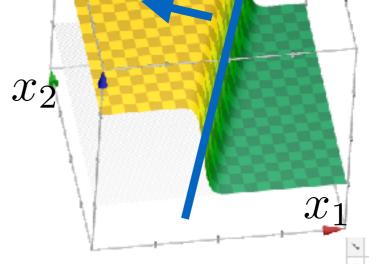
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

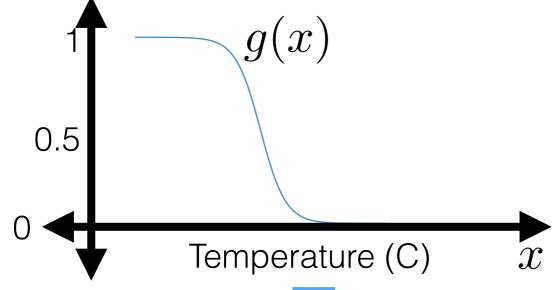


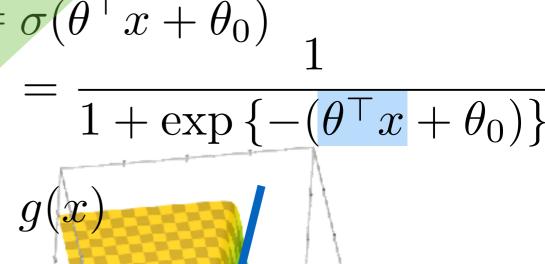


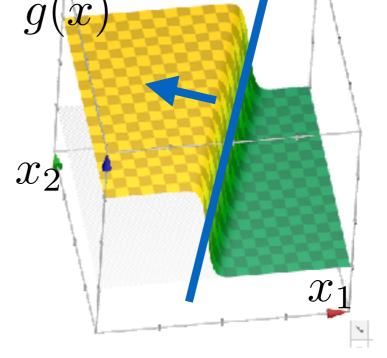


$$g(x) = \sigma(\theta x + \theta_0)$$

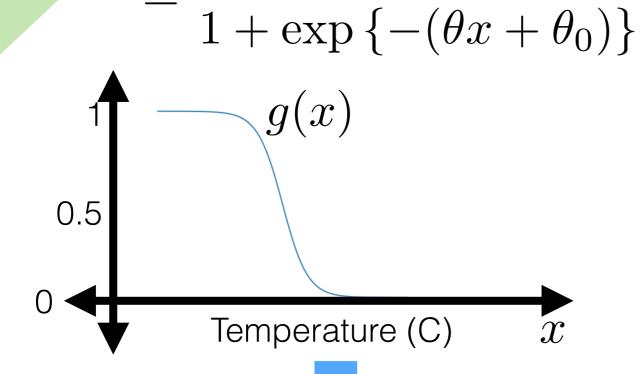
$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

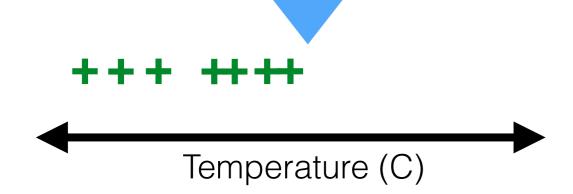


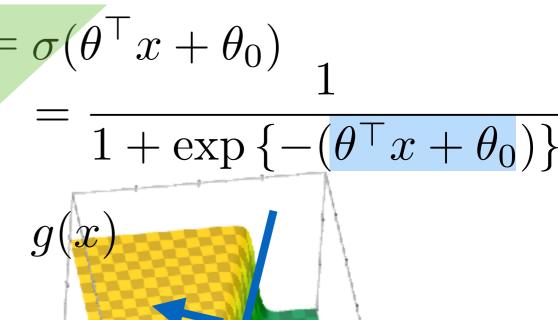


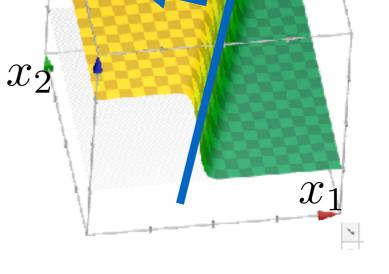


$$g(x) = \sigma(\theta x + \theta_0)$$
1



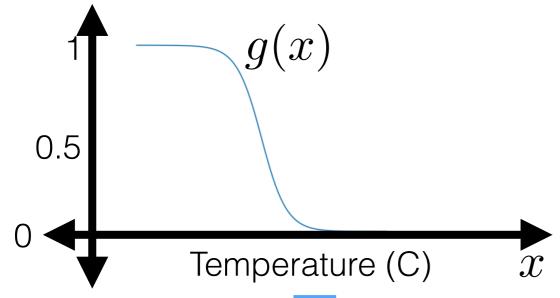




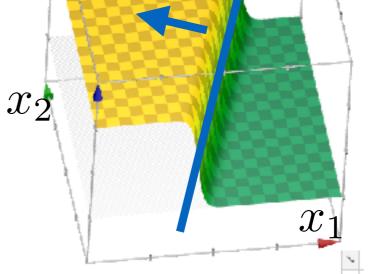


$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



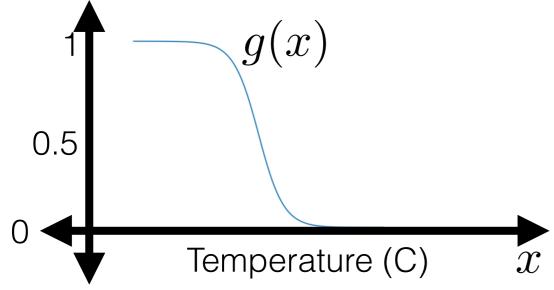


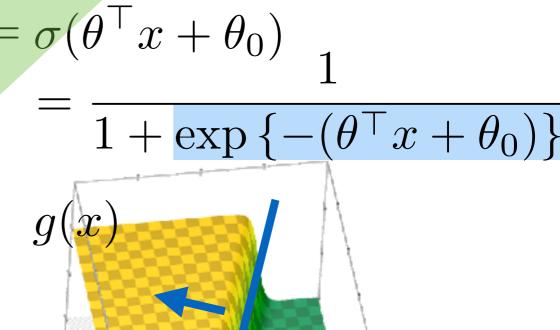


2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

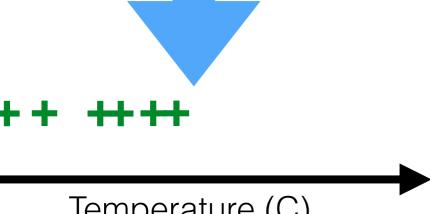
$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$





 x_1

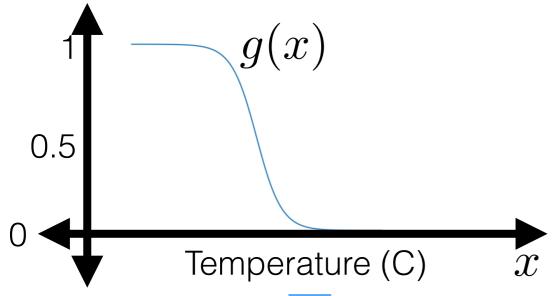
 x_2

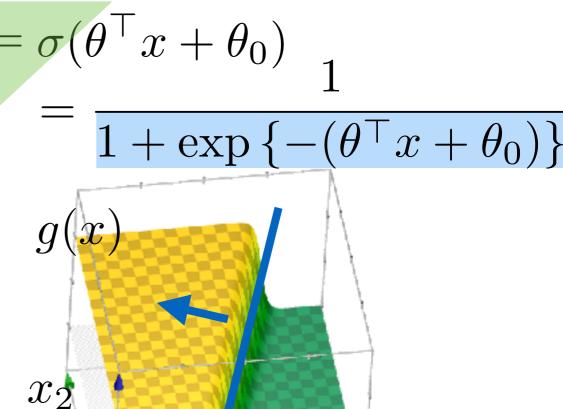


2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



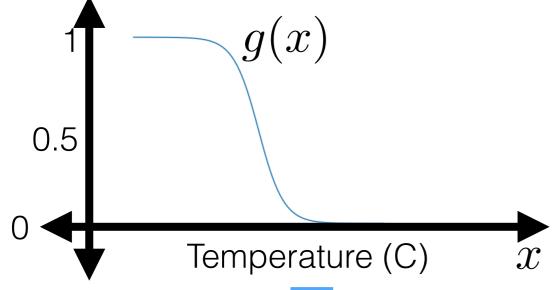


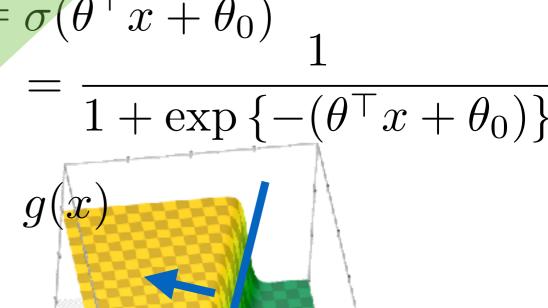
 x_1

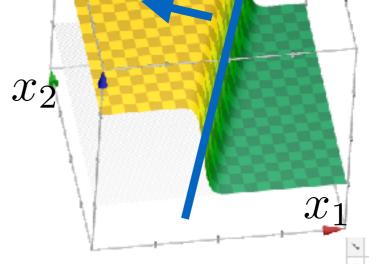
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

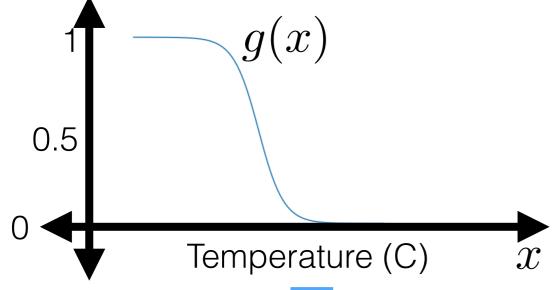


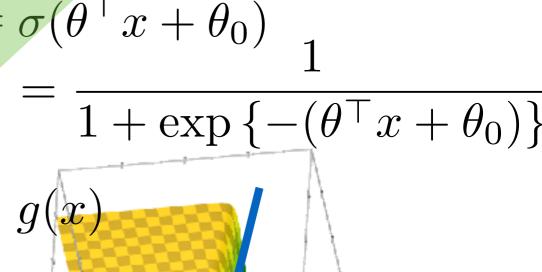


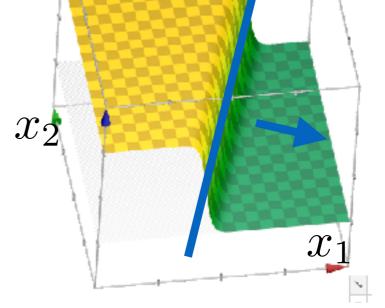


$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

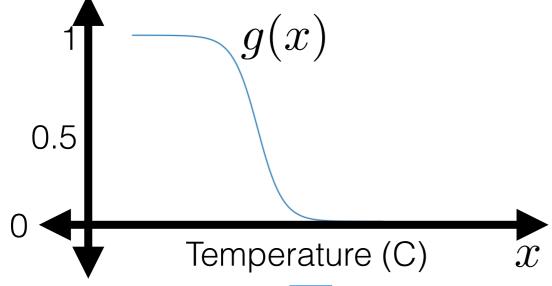


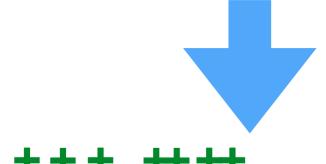


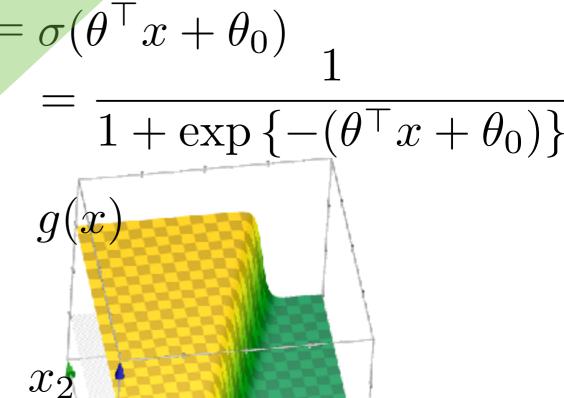


$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



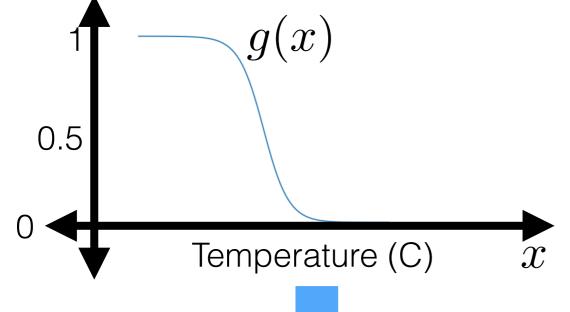


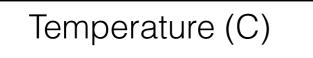


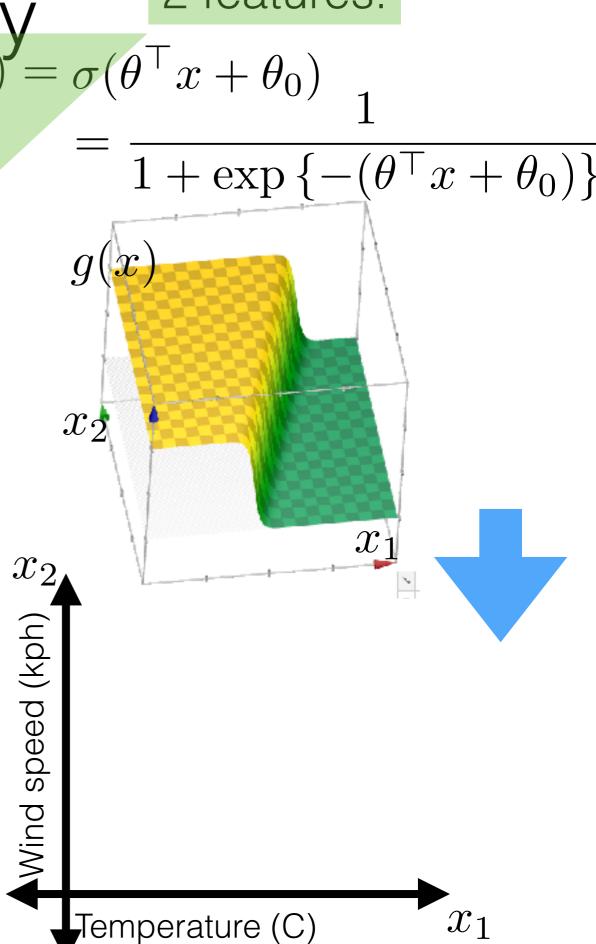
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



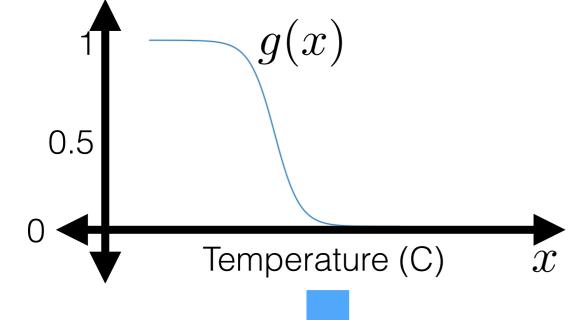


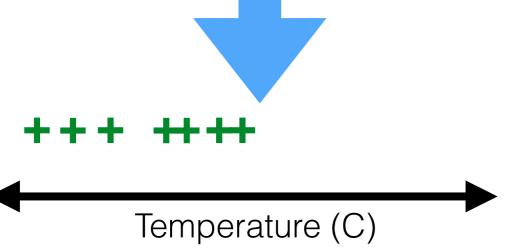


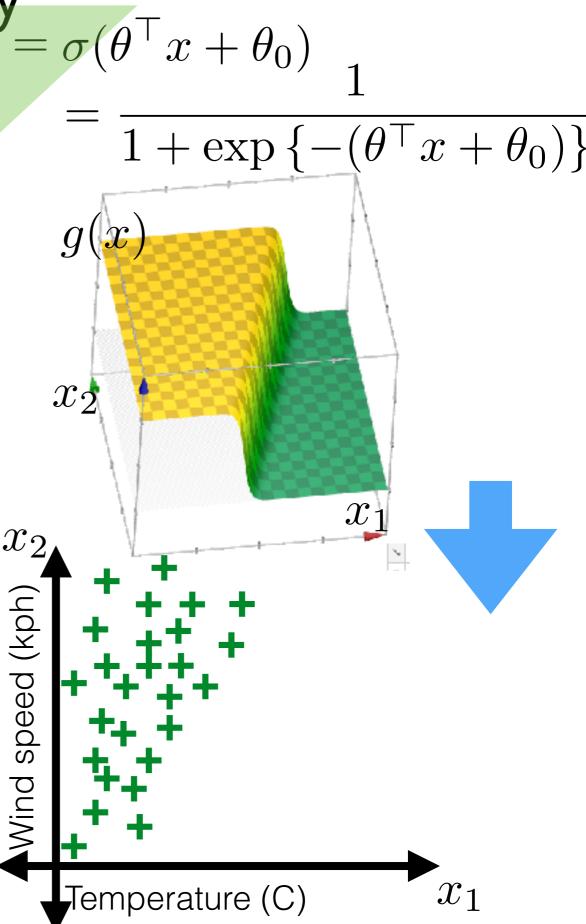
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



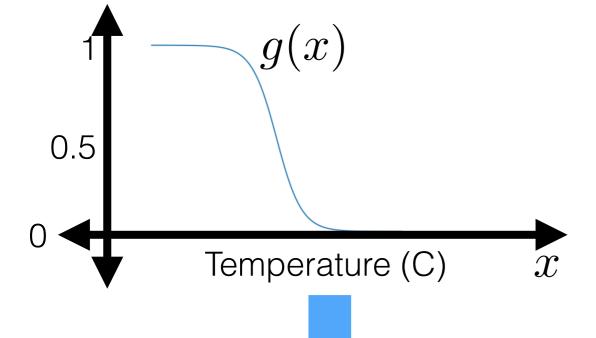


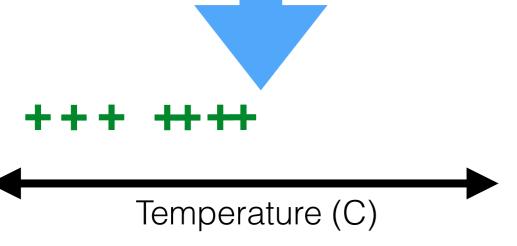


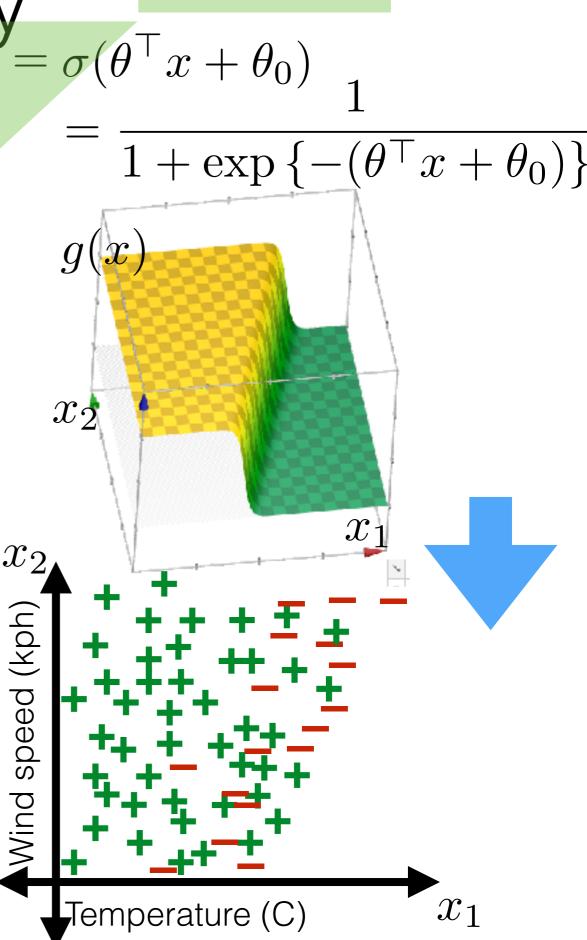
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



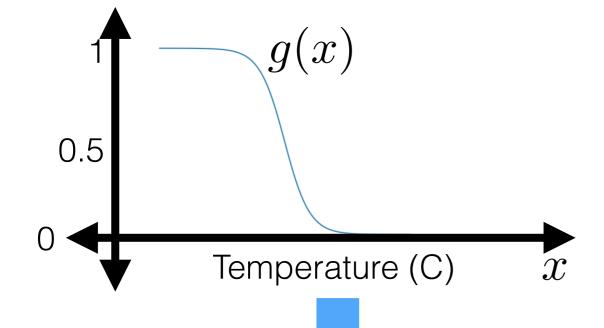


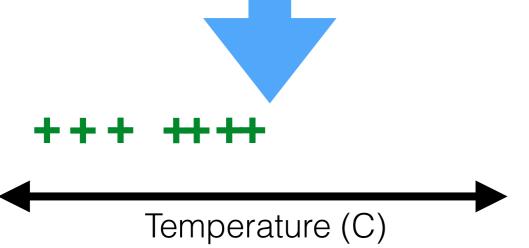


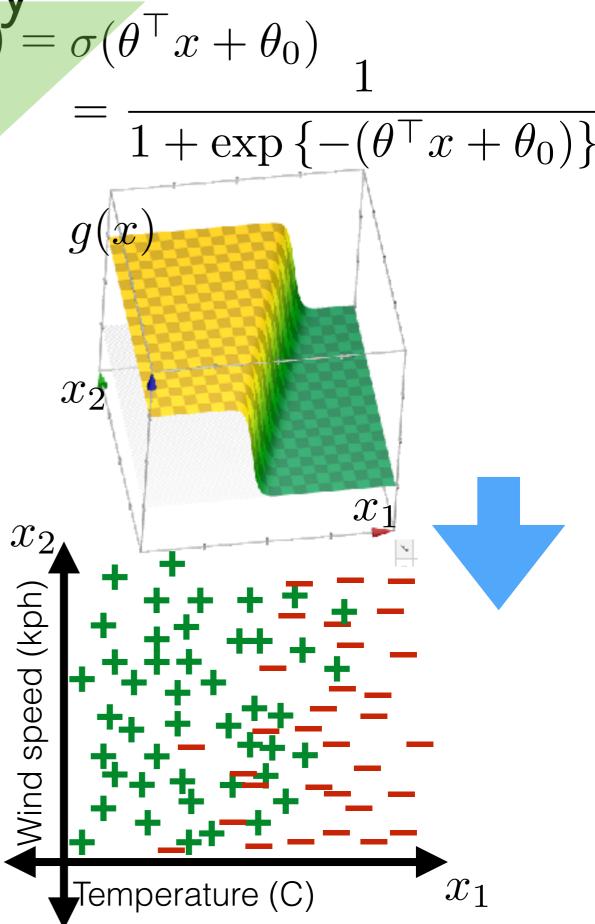
2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$



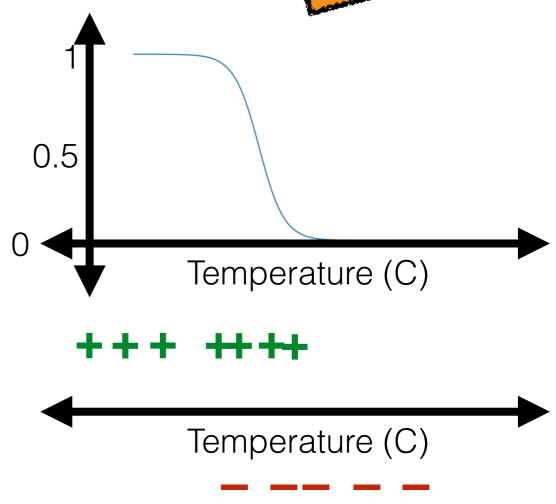




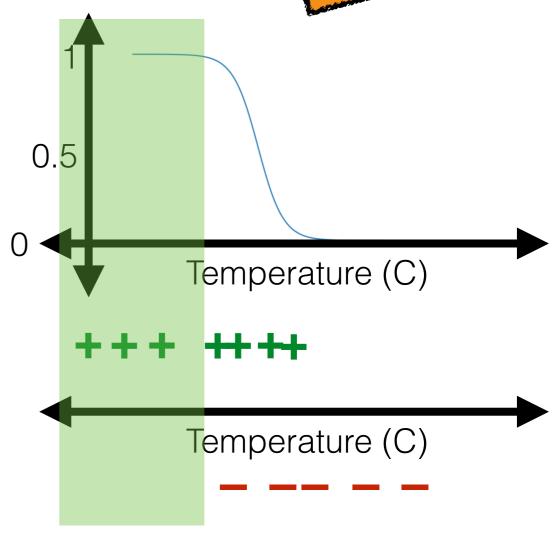
Linear logistic classification (aka logistic regression)

• What's an appropriate loss for this guess?

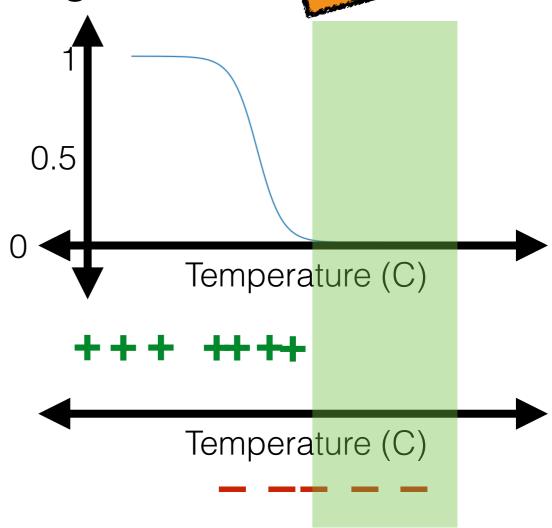
• What's an appropriate loss for this guess?



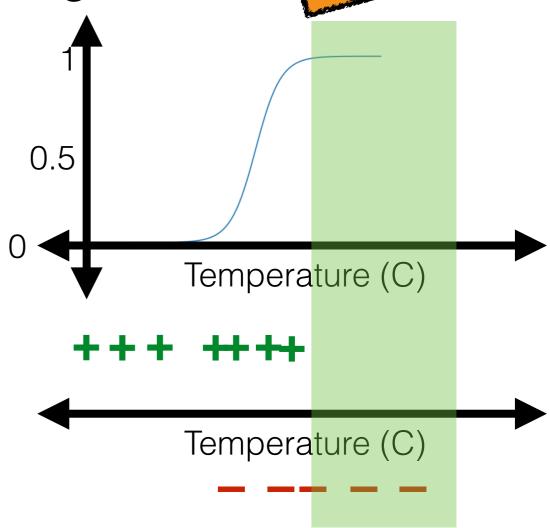
• What's an appropriate loss for this guess?



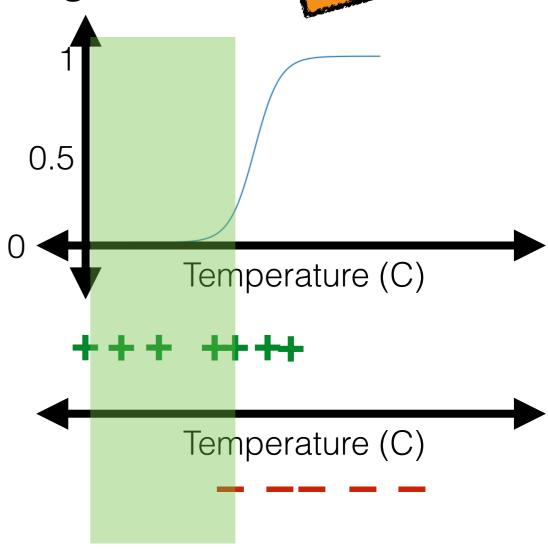
What's an appropriate loss for this guess?



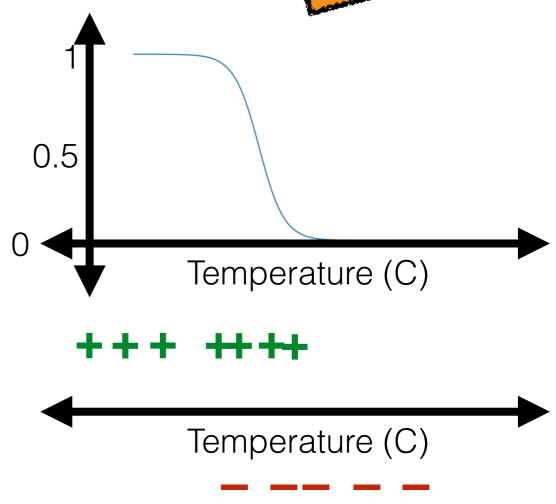
What's an appropriate loss for this guess?



• What's an appropriate loss for this guess?

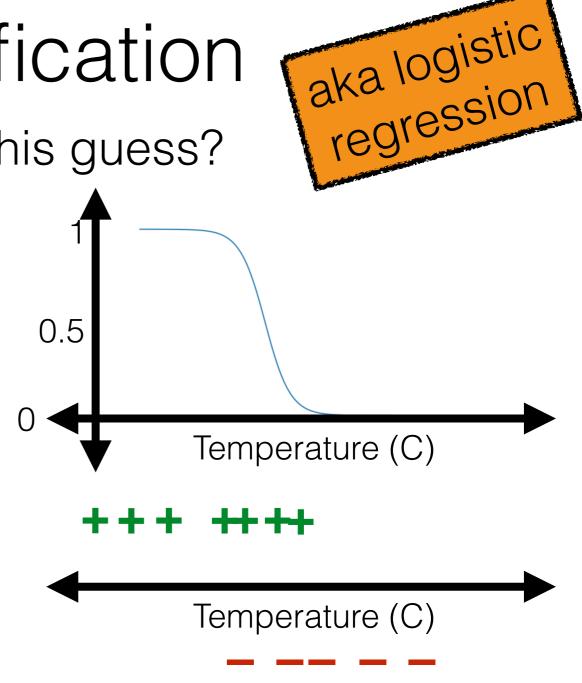


• What's an appropriate loss for this guess?



• What's an appropriate loss for this guess?

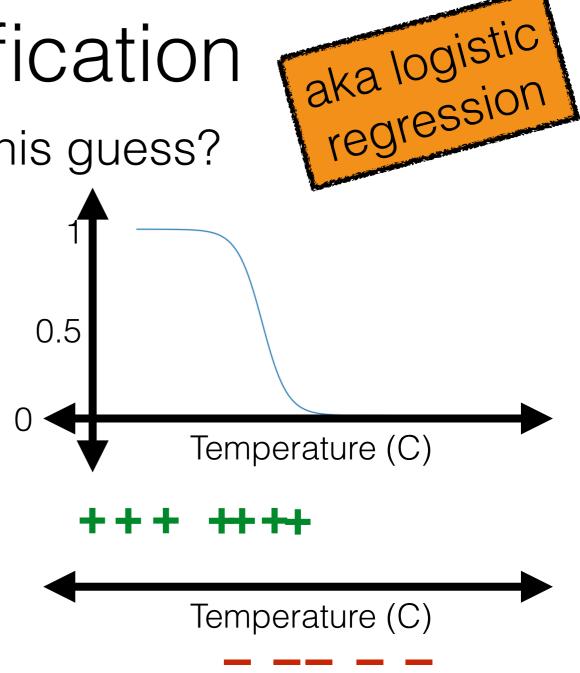
Probability(data)



• What's an appropriate loss for this guess?

Probability(data)

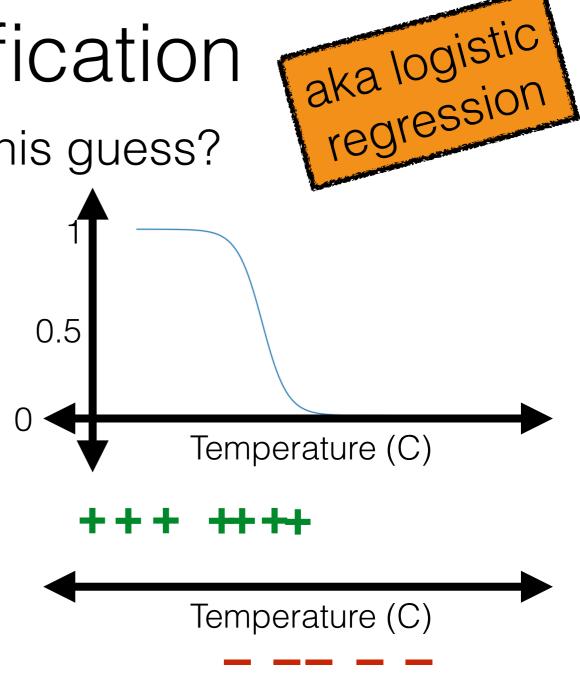
 $= \prod_{i=1} \text{Probability}(\text{data point } i)$



What's an appropriate loss for this guess?

Probability(data)

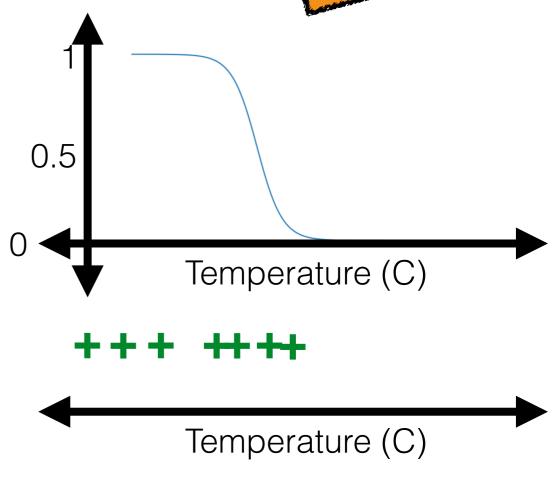
 $= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$



What's an appropriate loss for this guess?

Probability(data)

=
$$\prod_{i=1}$$
 Probability(data point i)
 $i=1$ [Let $g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)$]



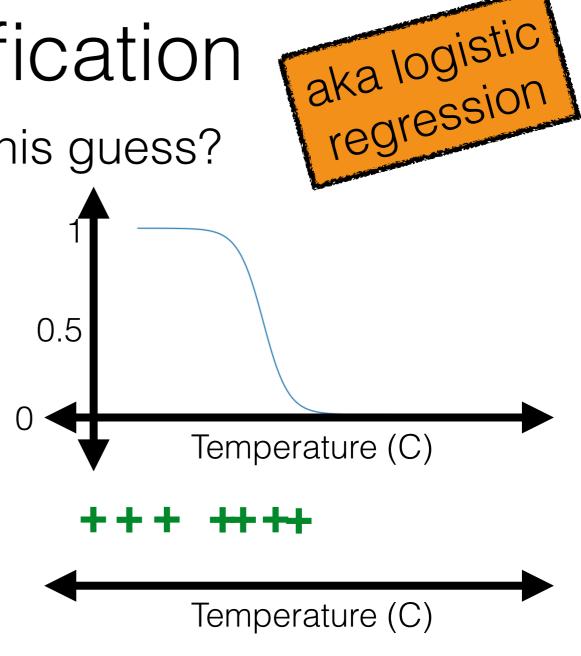
• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



aka logistic regression

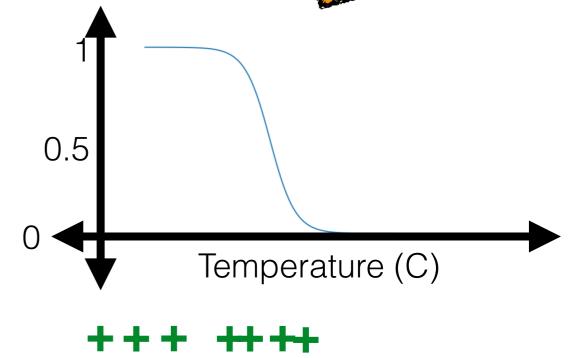
What's an appropriate loss for this guess?

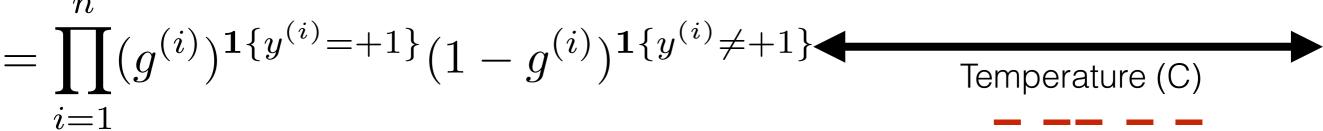
Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



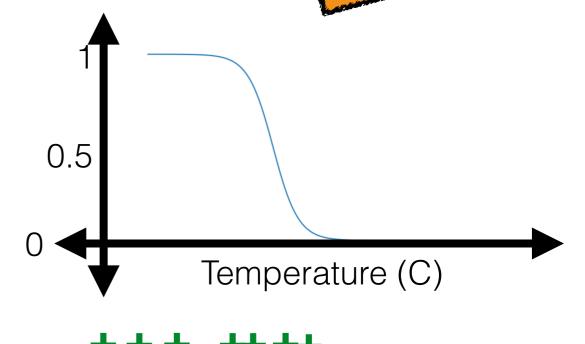


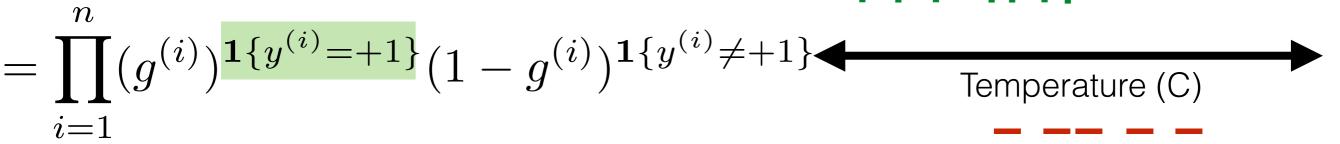
aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

 $= \prod_{i=1} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$





aka logistic regression

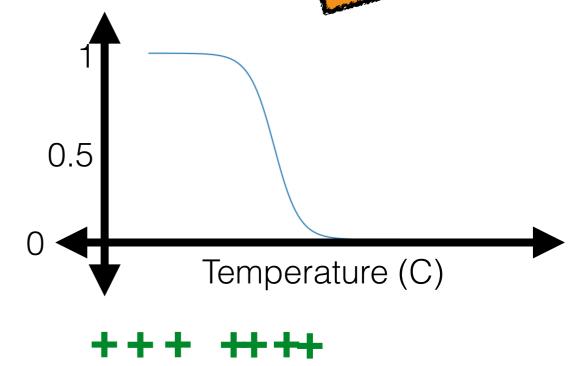
What's an appropriate loss for this guess?

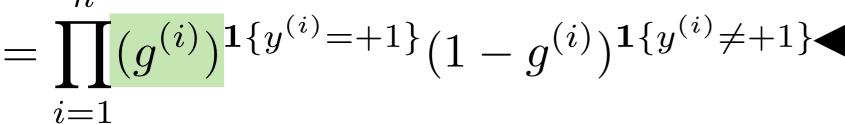
Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$





Temperature (C)

aka logistic regression

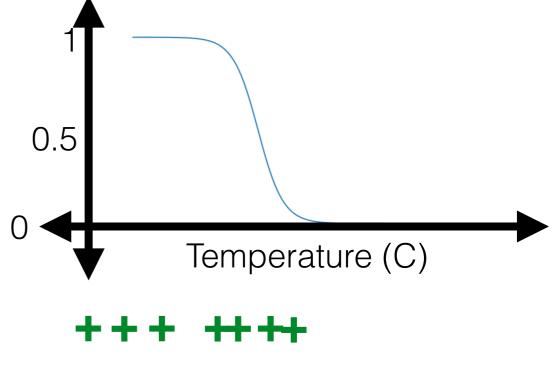
What's an appropriate loss for this guess?

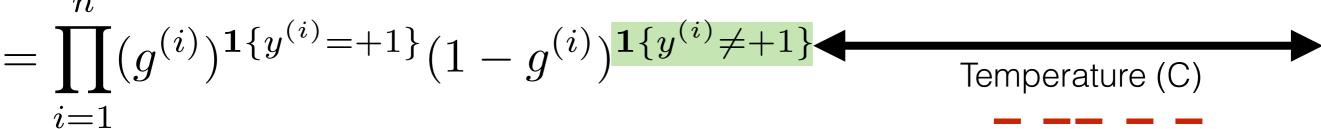
Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$





aka logistic regression

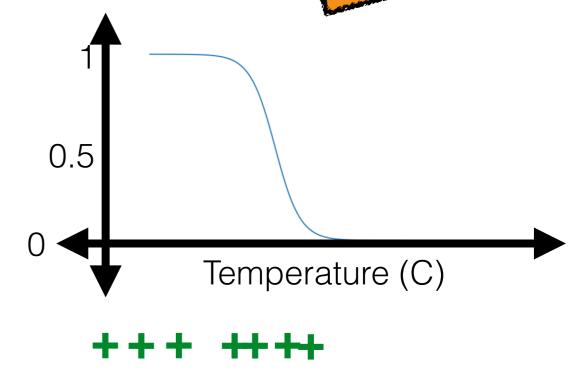
What's an appropriate loss for this guess?

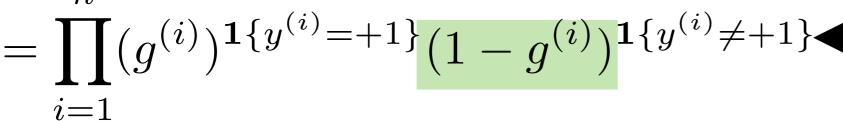
Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$





Temperature (C)

aka logistic regression

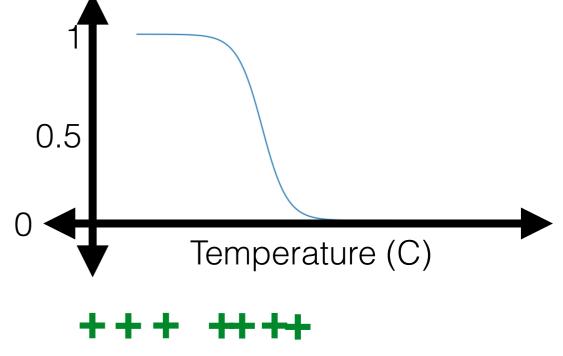
• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



 $= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$

Temperature (C)

log probability(data)

i=1

aka logistic regression

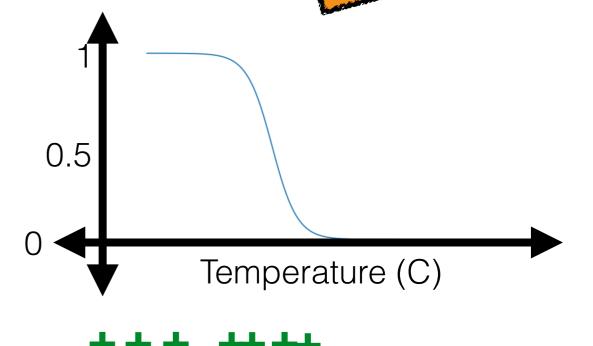
• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) =

log probability(data)

aka logistic regression

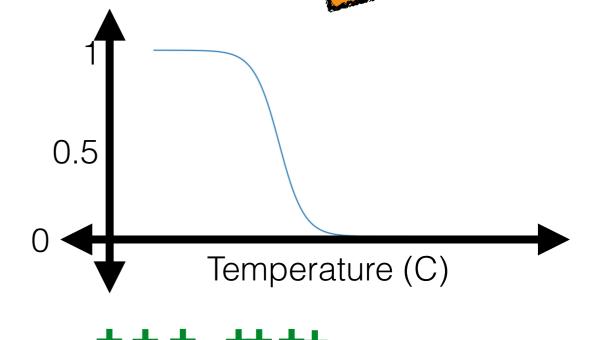
What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \sum_{i=1}^{n} [\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)]$$

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$



$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} - \text{Temperature (C)}$$

Loss(data) =
$$-\log \text{ probability(data)}$$

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)}=+1\}\log g^{(i)}+\mathbf{1}\{y^{(i)}\neq+1\}\log(1-g^{(i)})\right)$$

aka logistic regression

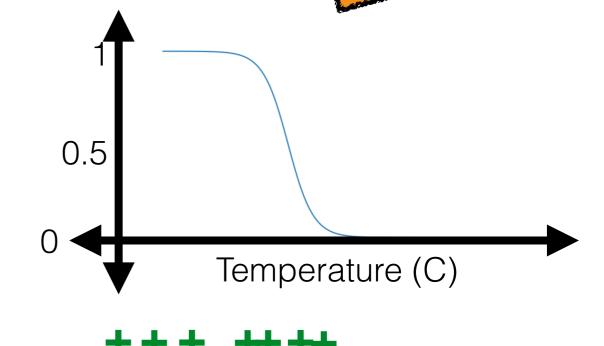
What's an appropriate loss for this guess?

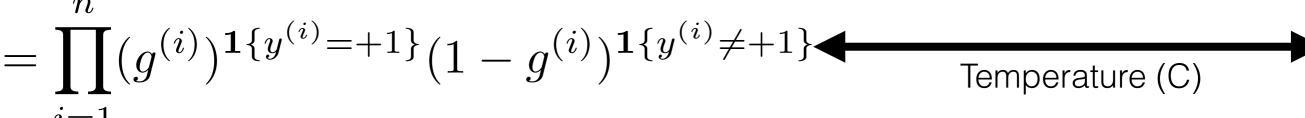
Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \sum_{i=1}^{n} [\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)]$$

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$





$$Loss(data) = -$$

Loss(data) = -log probability(data) =
$$\sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

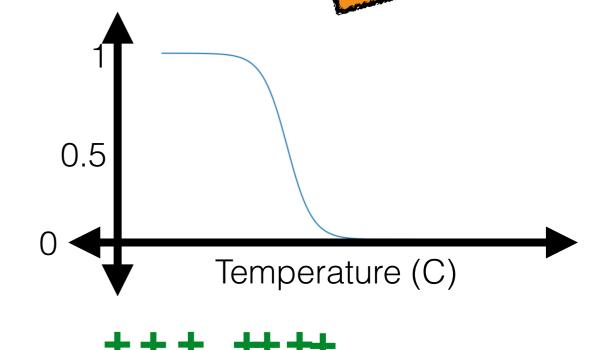
What's an appropriate loss for this guess?

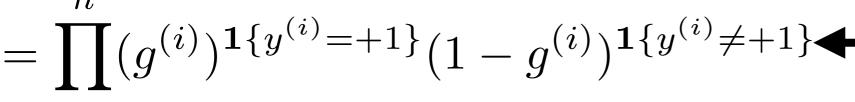
Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$





Temperature (C)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

aka logistic regression

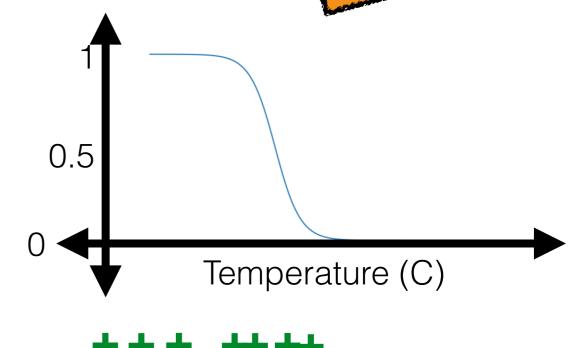
What's an appropriate loss for this guess?

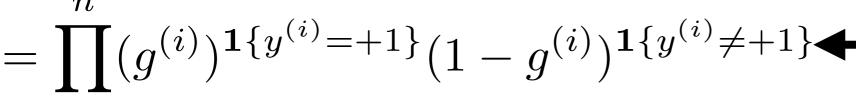
Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$





Temperature (C)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

aka logistic regression

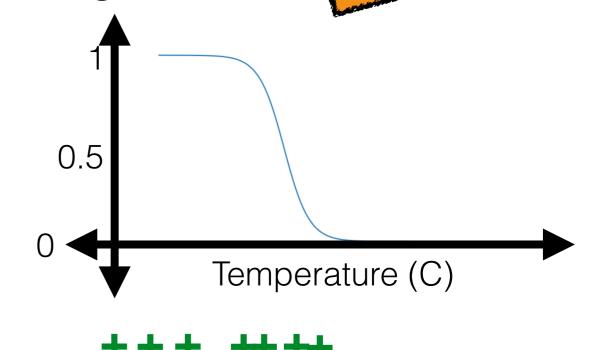
What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



 $= \prod (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$

Temperature (C)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

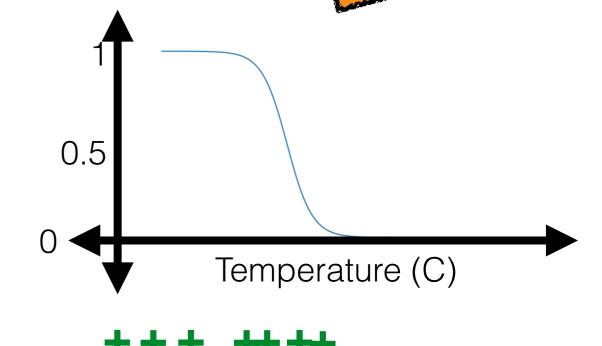
Probability(data)

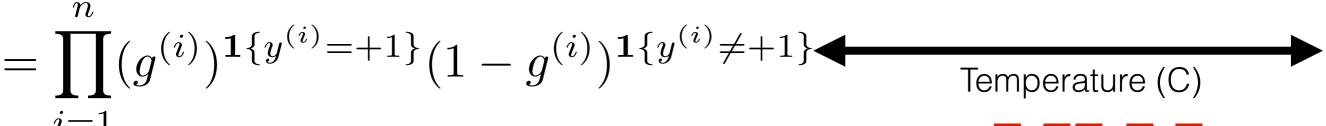
$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left[g^{(i)} \text{ if } y^{(i)} = +1 \right]$$

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$





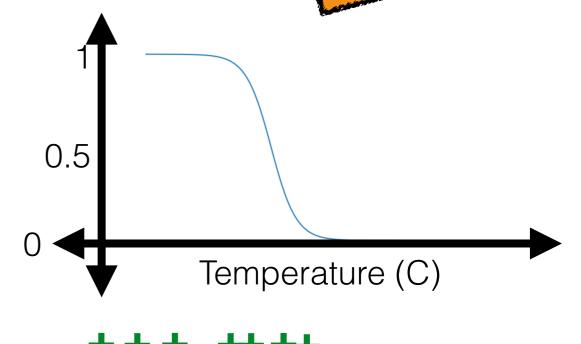
$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

 $= \prod_{i=1} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$



$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

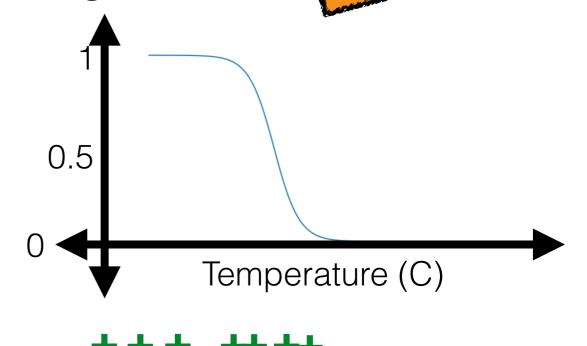
• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

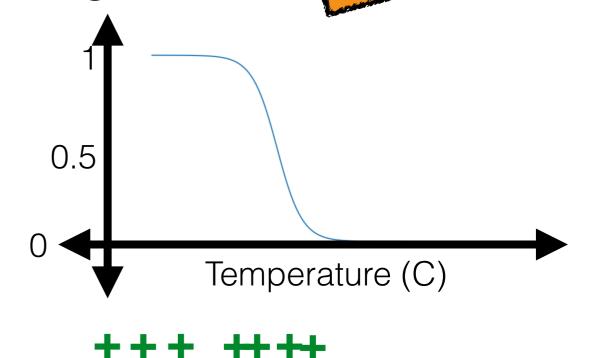
What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Negative log likelihood loss (g for guess, a for actual):

• What's an appropriate loss for this guess?

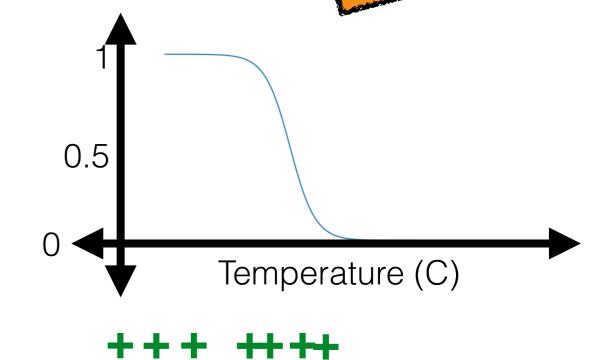
aka logistic regression

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$



$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Negative log likelihood loss (g for guess, a for actual):

$$-L_{\text{nll}}(g, a) = (1\{a = +1\} \log g + 1\{a \neq +1\} \log(1 - g))$$

 Want to minimize average (negative log likelihood) loss across the data

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\rm nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

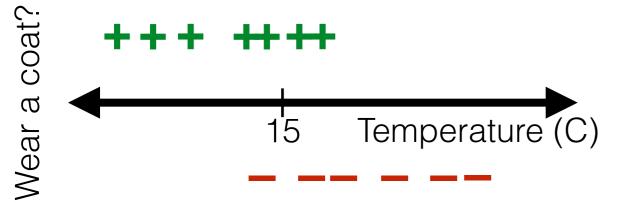
$$J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\rm nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\rm nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

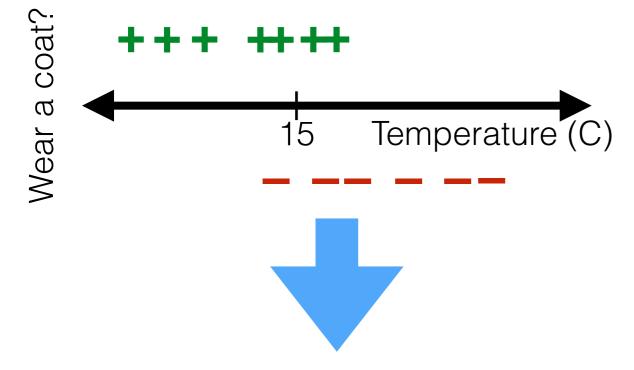
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



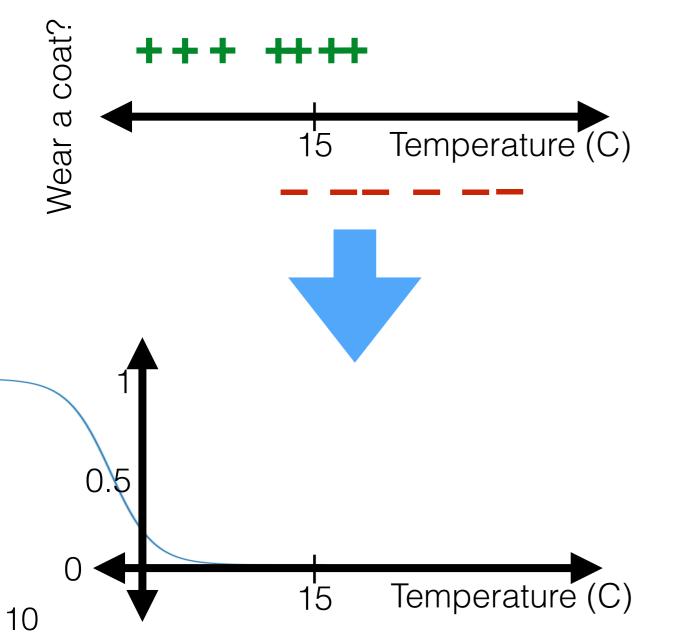
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



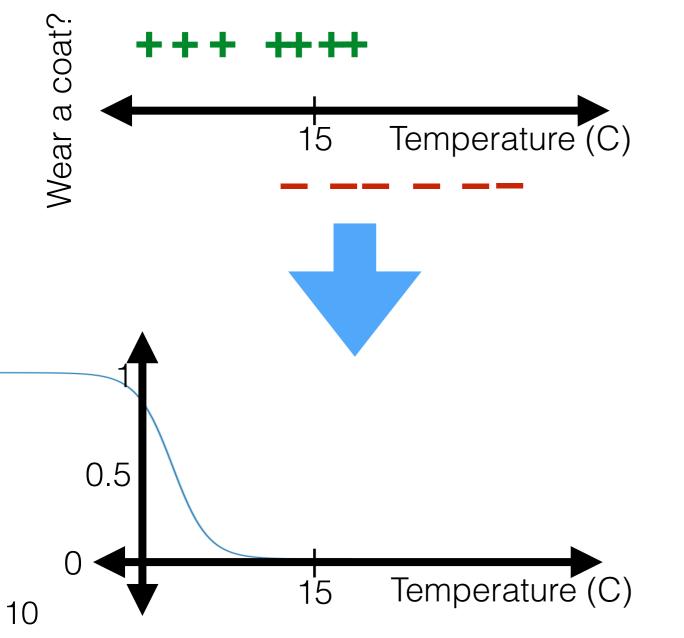
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



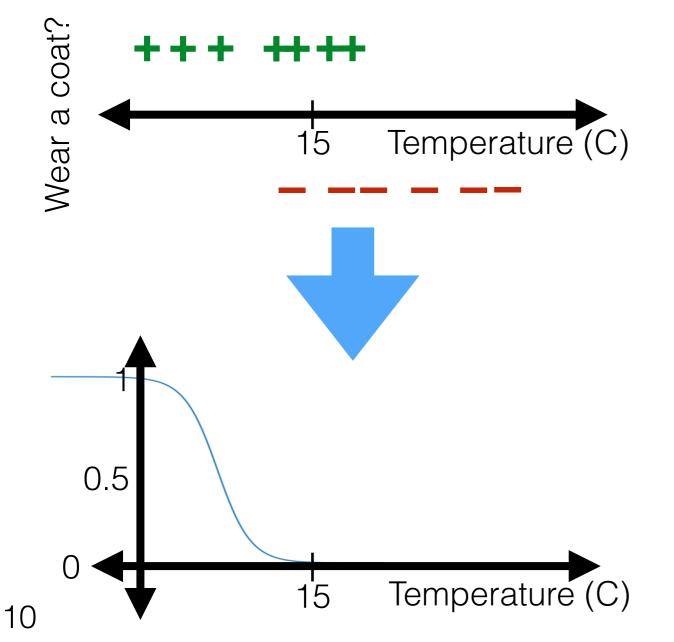
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



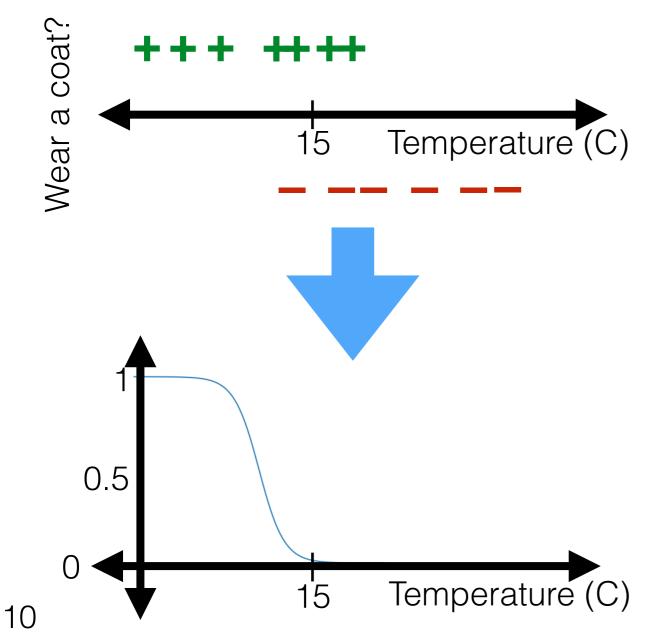
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



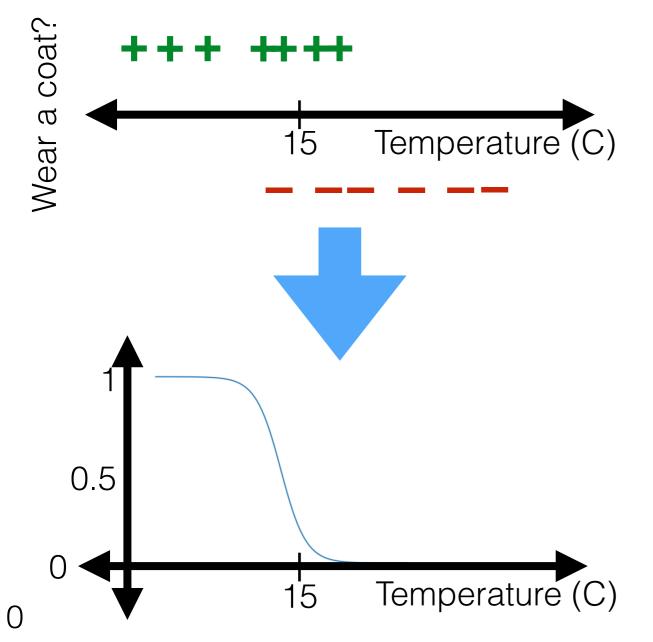
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



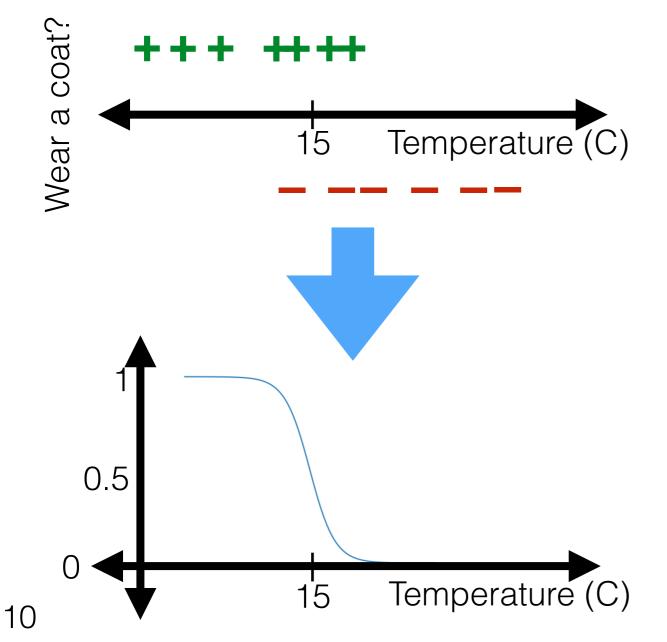
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



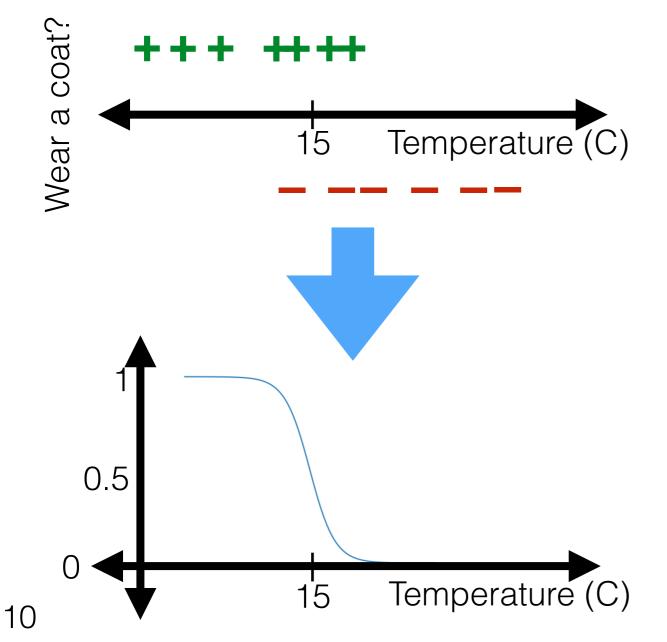
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



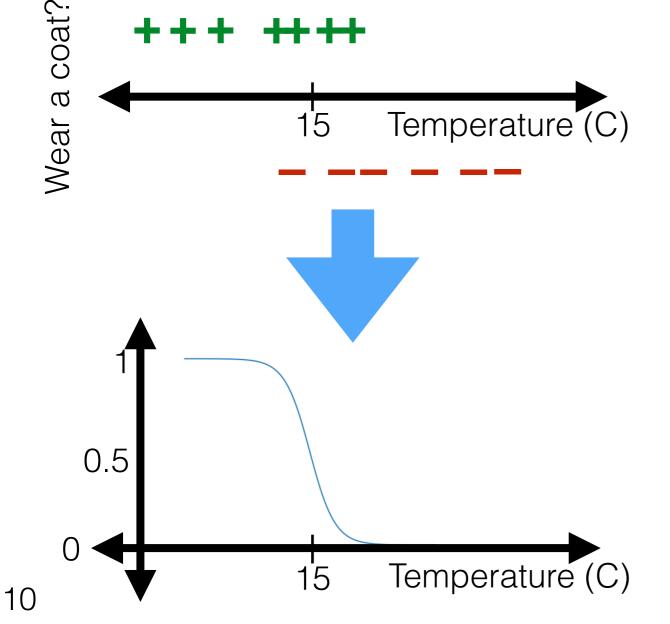
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

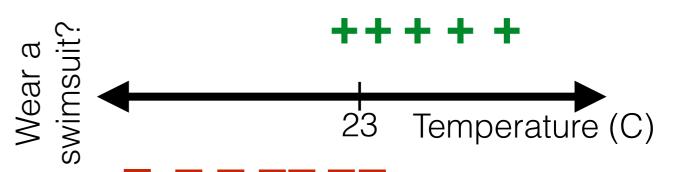
$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

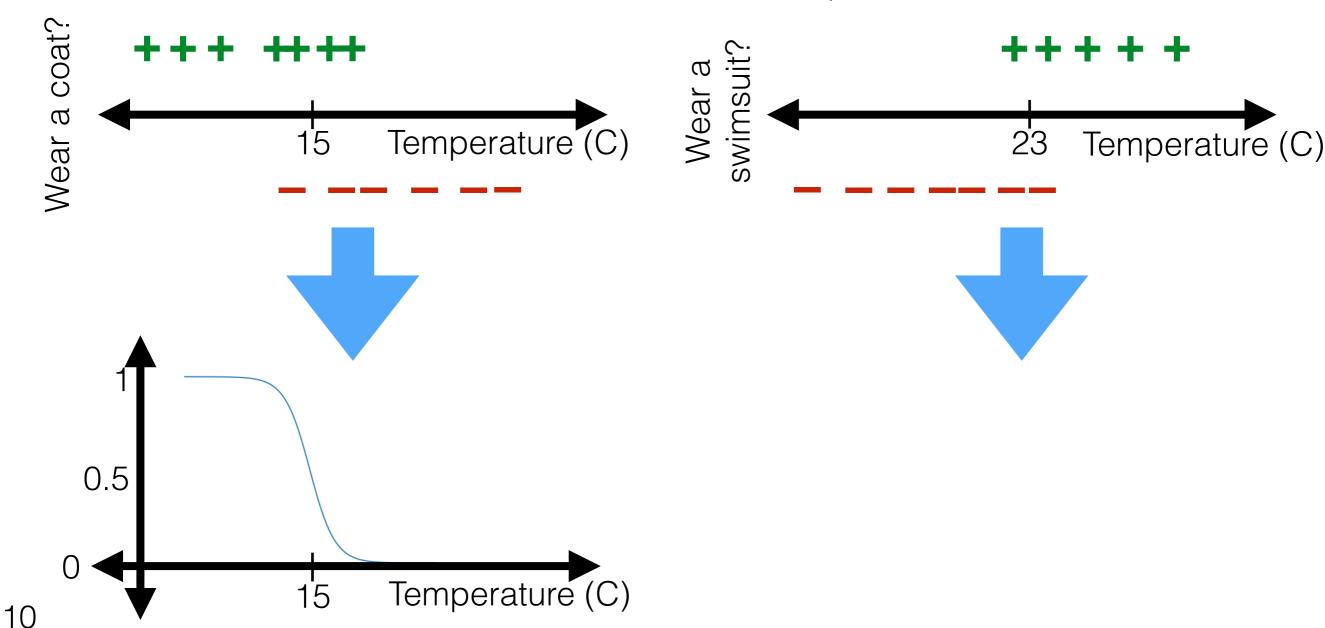
$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$





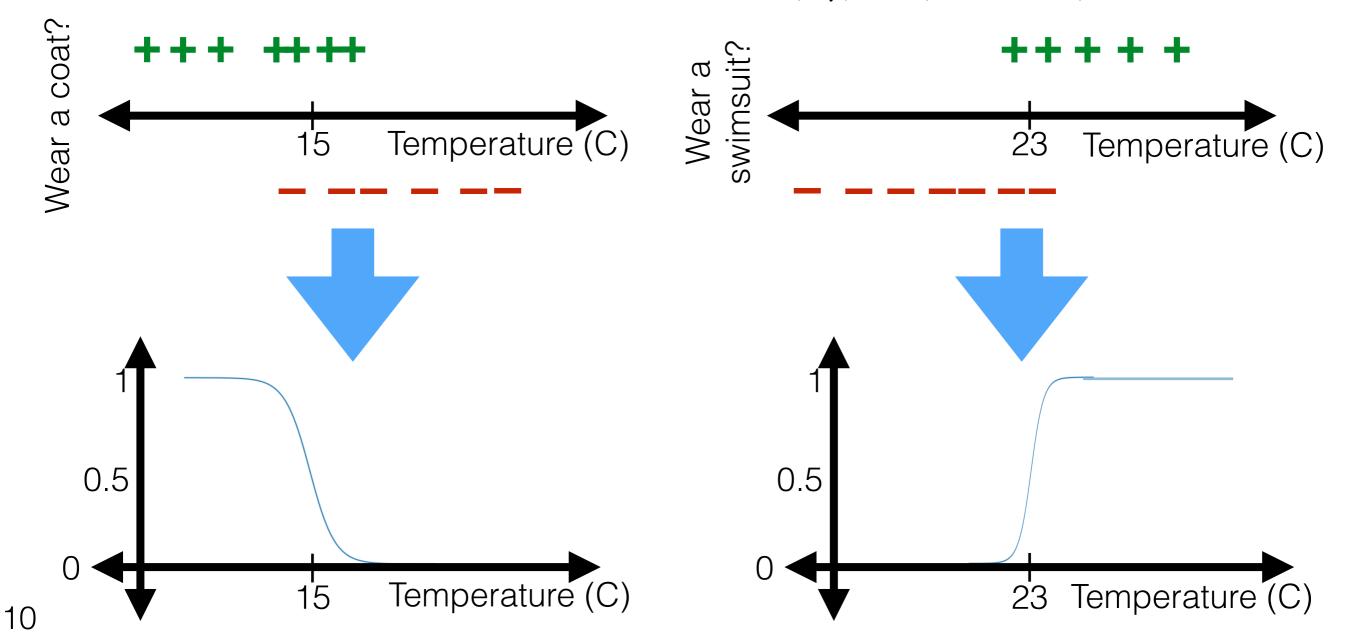
 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

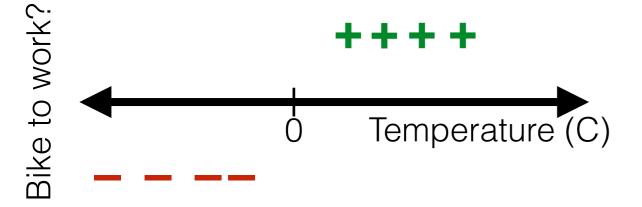
$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$



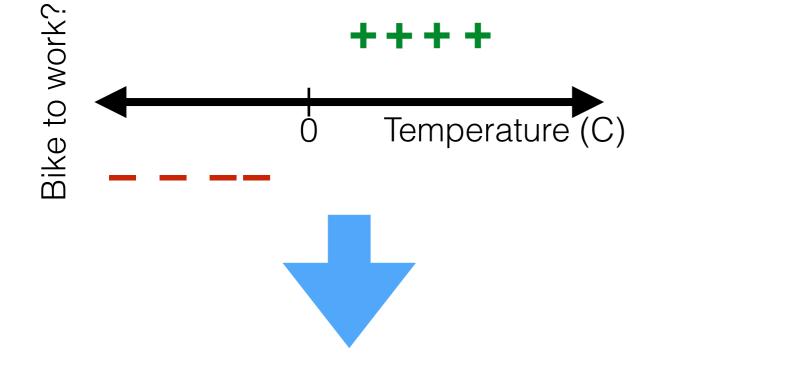
Can still have practical issues though!

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr}, \nabla_{\Theta} J_{lr}, \epsilon$)

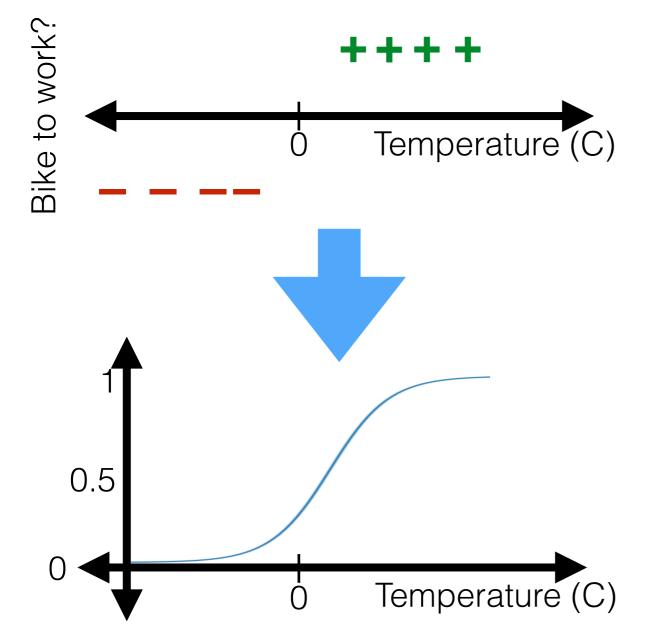
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



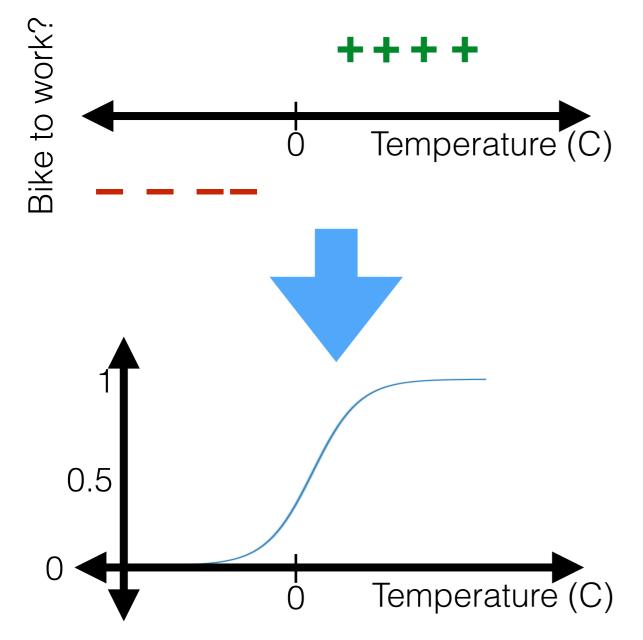
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



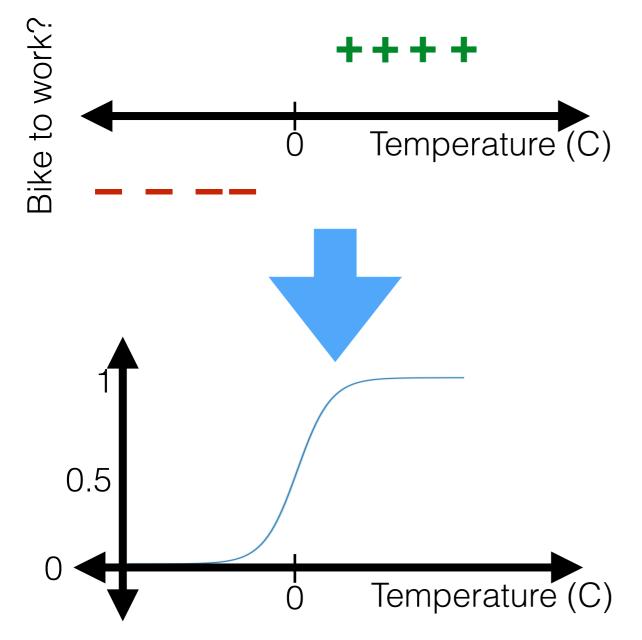
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



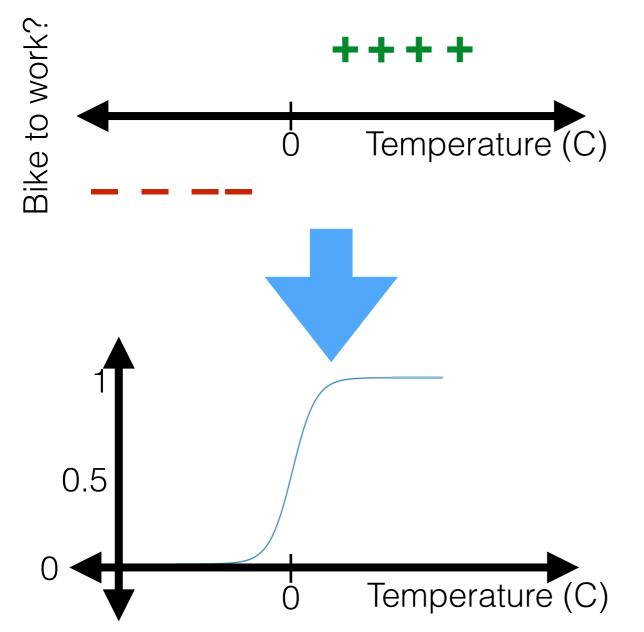
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



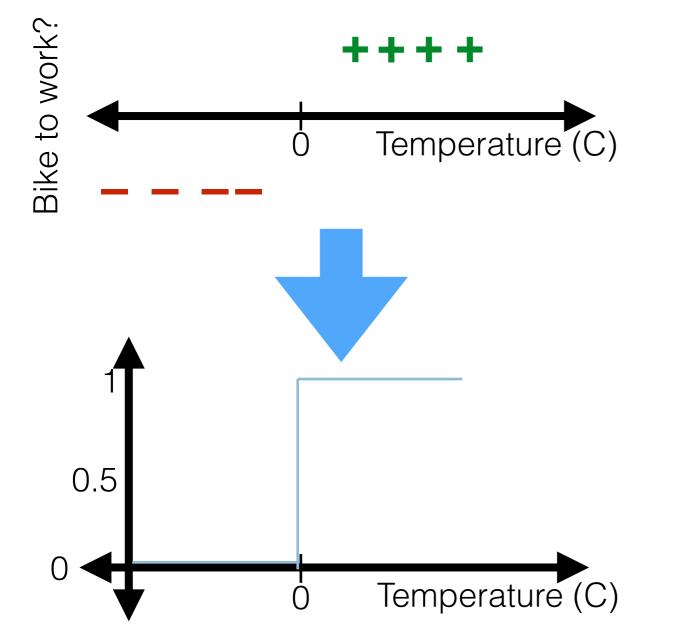
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



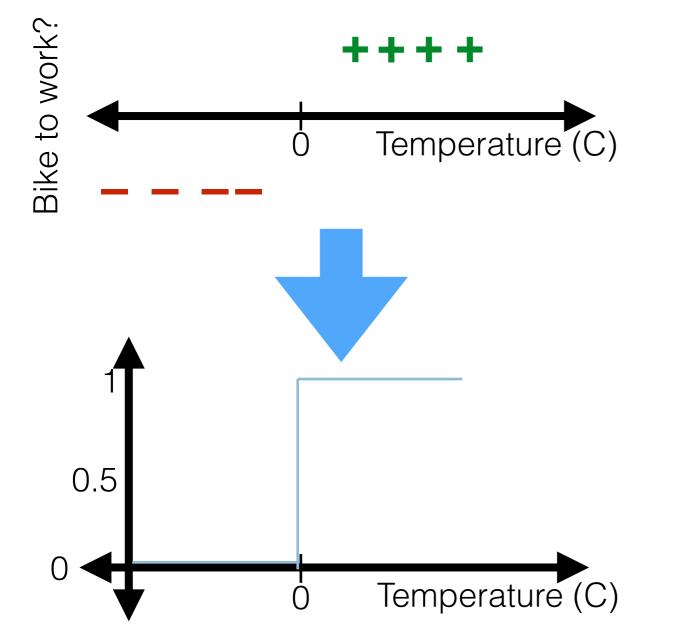
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



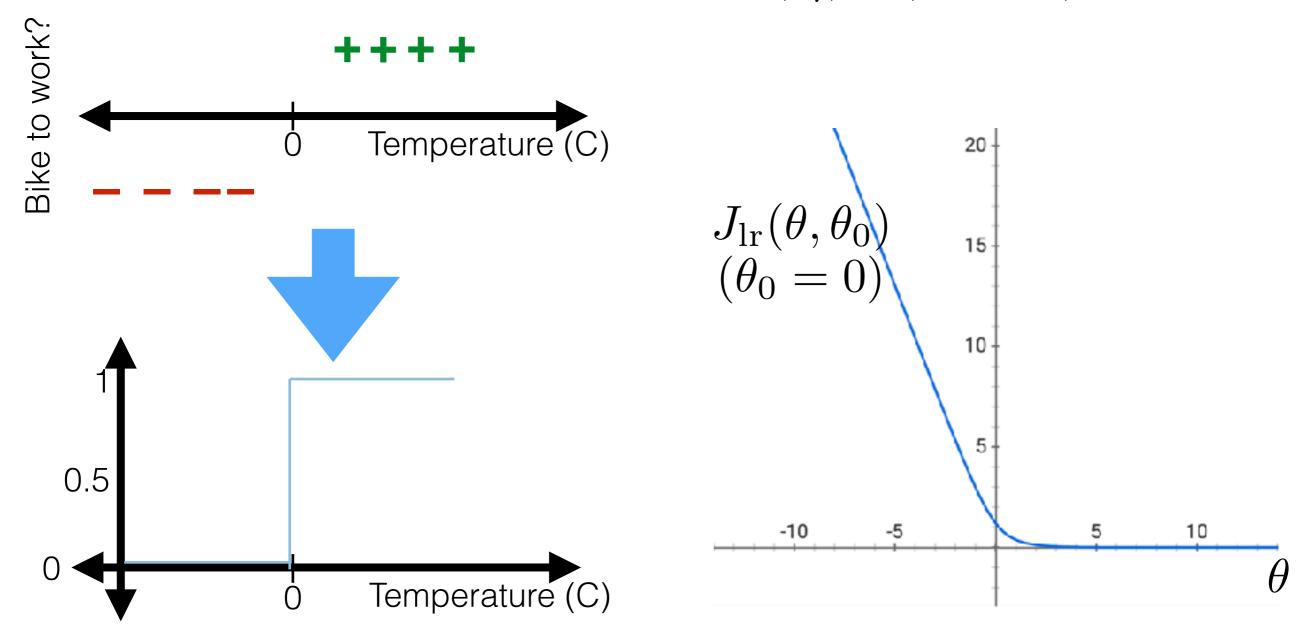
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



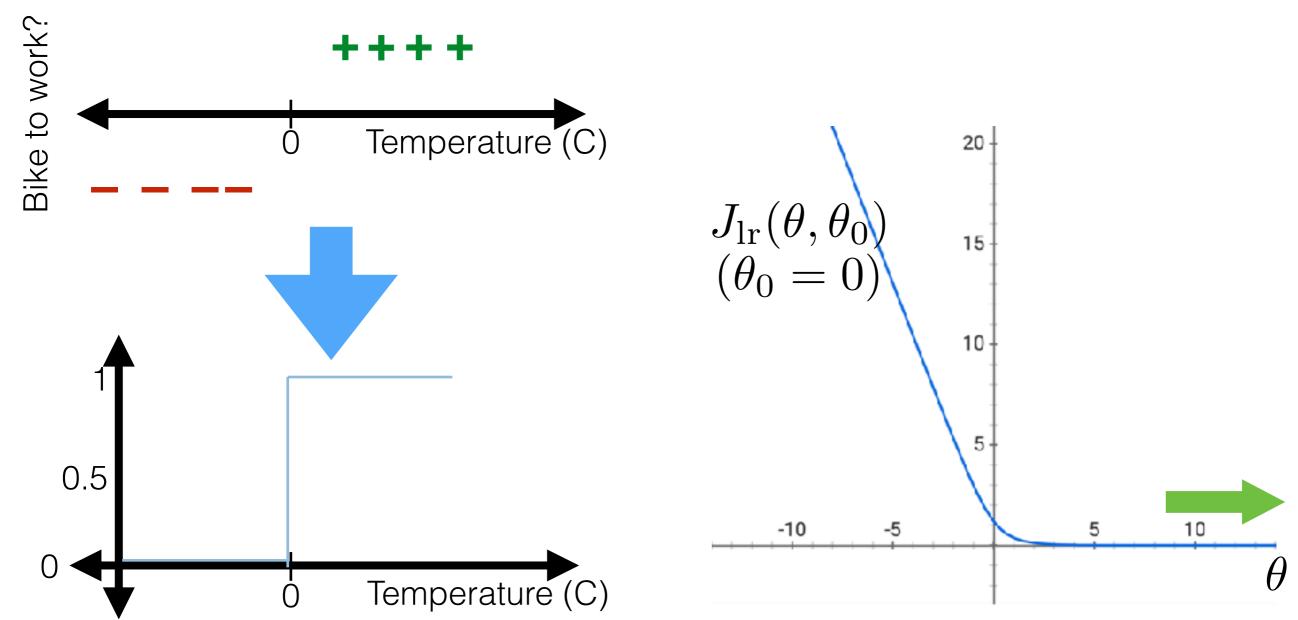
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



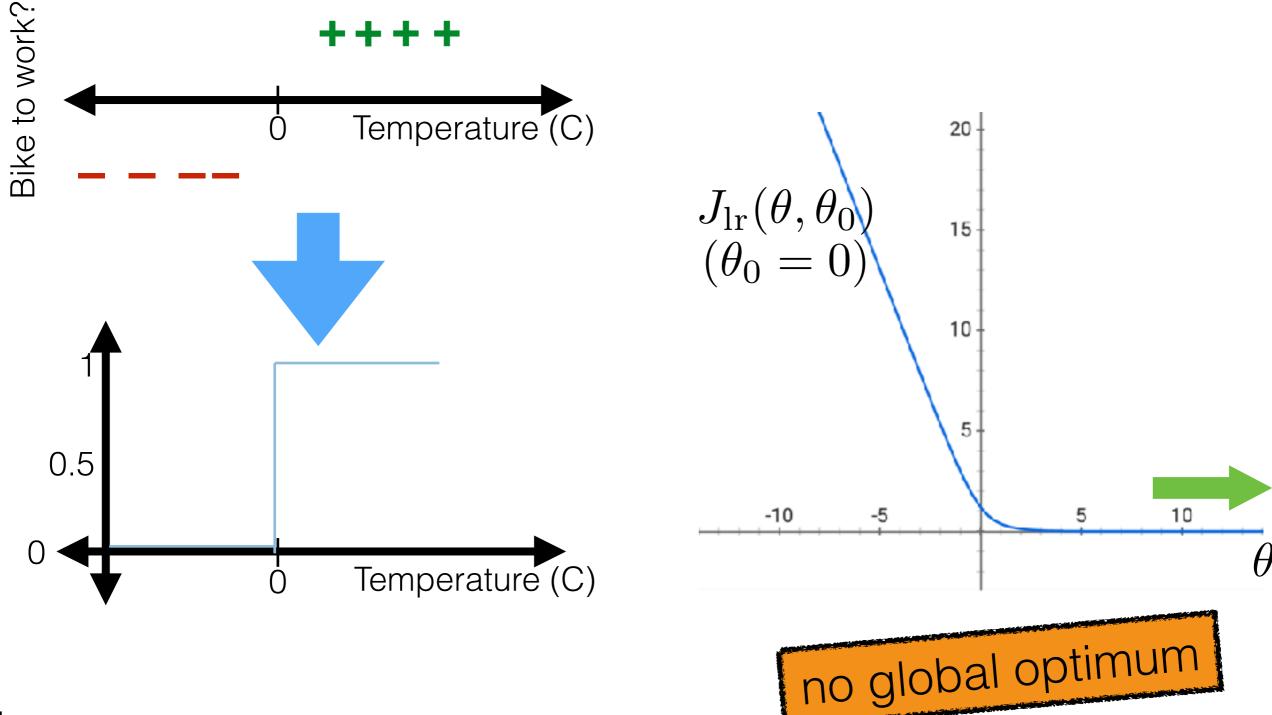
- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_\Theta J_{lr}, \epsilon$)



- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)



$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

• A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

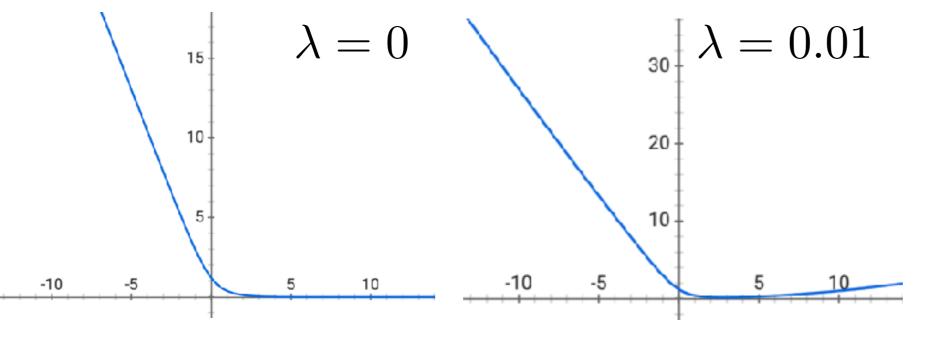
- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)



$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

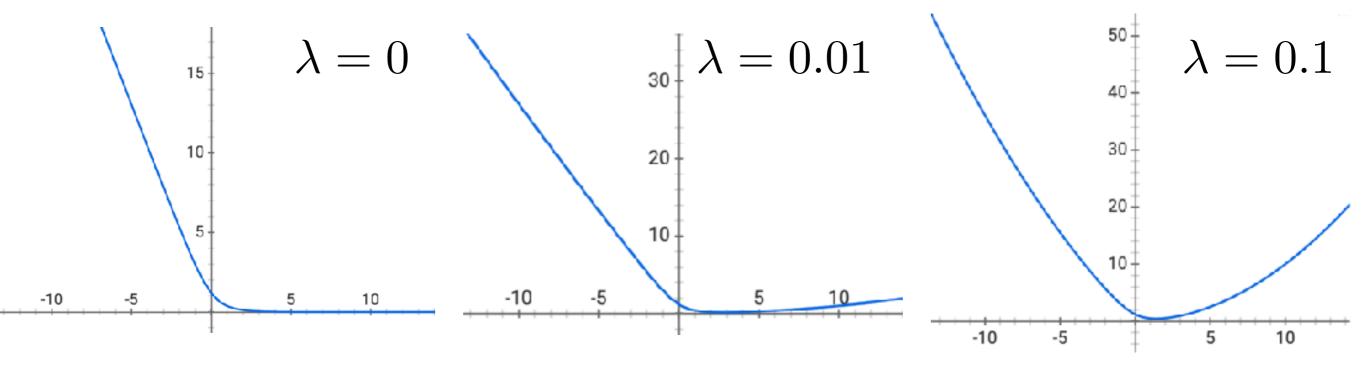
- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)



$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

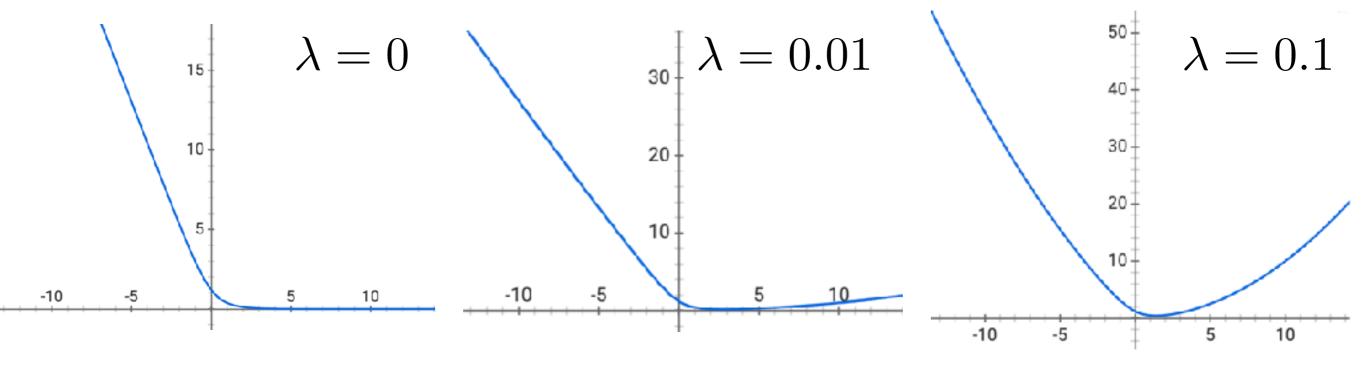
- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)



$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda \|\theta\|^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)



How to choose hyperparameter? One option: consider

 a handful of possible values and compare via CV