

6.036: Introduction to Machine Learning

Lecture start: Tuesdays 9:35am

Who's talking? Prof. Tamara Broderick

Questions? Ask on Piazza: "lecture (week) 4" folder

Materials: slides, video will all be available on Canvas

Live Zoom feed: https://mit.zoom.us/j/94238622313

Last Time(s)

- Linear regression
 - data, hypothesis class, loss, regularizer
- II. Gradient descent & SGD

Today's Plan

- Linear classification
- II. Linear logistic classification/logistic regression

Recall Regression

Regression

• Datum *i*:

Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

Regression

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d \qquad x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

• Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

• Datum *i*: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Hypothesis $h: \mathbb{R}^d \to \{-1, +1\}$

Regression

Datum i: feature vector

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \mathbb{R}$
- Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

Compare

(Two-class) Classification

$$x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$$

- Label $y^{(i)} \in \{-1, +1\}$
- Hypothesis $h: \mathbb{R}^d \to \{-1, +1\}$

• Classification hypothesis: $h: \mathbb{R}^d \to \{-1, +1\}$

$$h: \mathbb{R}^d o \{-1, +1\}$$

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts! 1xd, dx1

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classificațion hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts! v. O. v.

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts! v. O. v.

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts!

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Math facts! $x \cdot \theta \cdot x + \theta \circ \theta \cdot \theta \circ \theta = 0$

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

y =Wearing a coat? x_2 beed (kph Exercise: where does the line intersect each axis?

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

y =Wearing a coat?

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

y =Wearing a coat?

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0 \\ -1 & \text{if } \theta^{\top} x + \theta_0 < 0 \end{cases}$$

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

y =Wearing a coat?

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 < 0 \end{cases}$$

Linear classifiers

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

y = Wearing a coat?

Linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 \le 0 \end{cases}$$

Linear classifiers

Classification hypothesis:

$$h: \mathbb{R}^d \to \{-1, +1\}$$

 Linear classifiers H: Hypotheses that label +1 on one side of a line & -1 on the other side

y = Wearing a coat?

Linear classifier:

$$h(x; \theta, \theta_0) = \operatorname{sign}(\theta^\top x + \theta_0)$$

$$= \begin{cases} +1 & \text{if } \theta^{\top} x + \theta_0 > 0\\ -1 & \text{if } \theta^{\top} x + \theta_0 \le 0 \end{cases}$$

• Note: θ tells us direction

• Should predict well on future data

• Should predict well on future data

• Should predict well on future data

- Should predict well on future data
 - Example: 0-1 loss

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \begin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array} \right.$$

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \left[egin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array}
ight.
ight.$$

Example: asymmetric loss

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \begin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array} \right.$$

- Example: asymmetric loss
- But:

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

uncertainty (how well do we know what we know?) y =wearing a coat? Wind speed (kph)

Temperature (C)

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. \begin{array}{ll} \mbox{g: guess,} \\ \mbox{a: actual} \end{array} \right.$$

 But: 0-1 loss & linear classifiers don't have a notion of uncertainty (how well do we know what we know?)

- Should predict well on future data
 - Example: 0-1 loss

$$L(g,a) = \left\{ egin{array}{ll} 0 & \mbox{if } g = a \\ 1 & \mbox{else} \end{array} \right. \left. egin{array}{ll} \mbox{g: guess,} \mbox{a: actual} \end{array}
ight.$$

Temperature

 x_1

speed

How to make this shape?

How to make this shape?

How to make this shape?

- How to make this shape?
 - Sigmoid/logistic function

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

- How to make this shape?
 - Sigmoid/logistic function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

1 feature:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x)$$

2 features:

Capturing uncertainty

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

1 feature:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

 x_1

2 features:

1 feature:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

 x_1

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$
1

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

 x_1

 x_2

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

 x_1

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\{-(\theta x + \theta_0)\}}$$

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

2 features:

$$g(x) = \sigma(\theta x + \theta_0)$$

$$= \frac{1}{1 + \exp\left\{-(\theta x + \theta_0)\right\}}$$

Linear logistic classification (aka logistic regression)

• What's an appropriate loss for this guess?

• What's an appropriate loss for this guess?

• What's an appropriate loss for this guess?

What's an appropriate loss for this guess?

What's an appropriate loss for this guess?

• What's an appropriate loss for this guess?

• What's an appropriate loss for this guess?

• What's an appropriate loss for this guess?

Probability(data)

• What's an appropriate loss for this guess?

Probability(data)

 $= \prod_{i=1} \text{Probability}(\text{data point } i)$

What's an appropriate loss for this guess?

Probability(data)

 $= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$

What's an appropriate loss for this guess?

Probability(data)

=
$$\prod_{i=1}$$
 Probability(data point i)
 $i=1$ [Let $g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)$]

• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

 $= \prod_{i=1} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

Temperature (C)

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

Temperature (C)

aka logistic regression

• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

 $= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$

Temperature (C)

log probability(data)

i=1

aka logistic regression

• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) =

log probability(data)

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \sum_{i=1}^{n} [\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)]$$

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} - \text{Temperature (C)}$$

Loss(data) =
$$-\log \text{ probability(data)}$$

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)}=+1\}\log g^{(i)}+\mathbf{1}\{y^{(i)}\neq+1\}\log(1-g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \sum_{i=1}^{n} [\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0)]$$

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$

$$Loss(data) = -$$

Loss(data) = -log probability(data) =
$$\sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

Temperature (C)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

Temperature (C)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

 $= \prod (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$

Temperature (C)

$$= \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\}\log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\}\log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1}^{n} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left[g^{(i)} \text{ if } y^{(i)} = +1 \right]$$

$$= \prod_{i=1}^{n} \begin{cases} g^{(i)} & \text{if } y^{(i)} = +1 \\ (1 - g^{(i)}) & \text{else} \end{cases}$$

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

 $= \prod_{i=1} \text{Probability}(\text{data point } i)$ $= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$ $= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

• What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

aka logistic regression

What's an appropriate loss for this guess?

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1-g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}}$$
Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Negative log likelihood loss (g for guess, a for actual):

• What's an appropriate loss for this guess?

aka logistic regression

Probability(data)

$$= \prod_{i=1} \text{Probability}(\text{data point } i)$$

$$= \prod_{i=1}^{n} \left[\text{Let } g^{(i)} = \sigma(\theta^{\top} x^{(i)} + \theta_0) \right]$$

$$= \prod_{i=1}^{n} \left\{ \begin{array}{l} g^{(i)} \text{ if } y^{(i)} = +1 \\ (1 - g^{(i)}) \text{ else} \end{array} \right.$$

$$= \prod_{i=1}^{n} (g^{(i)})^{\mathbf{1}\{y^{(i)}=+1\}} (1 - g^{(i)})^{\mathbf{1}\{y^{(i)}\neq+1\}} \blacktriangleleft$$

Temperature (C)

Loss(data) = -(1/n) * log probability(data)

$$= \frac{1}{n} \sum_{i=1}^{n} -\left(\mathbf{1}\{y^{(i)} = +1\} \log g^{(i)} + \mathbf{1}\{y^{(i)} \neq +1\} \log(1 - g^{(i)})\right)$$

Negative log likelihood loss (g for guess, a for actual):

$$-L_{\text{nll}}(g, a) = (1\{a = +1\} \log g + 1\{a \neq +1\} \log(1 - g))$$

 Want to minimize average (negative log likelihood) loss across the data

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\rm nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\rm nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{\rm lr}(\Theta) = J_{\rm lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{\rm nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

 Want to minimize average (negative log likelihood) loss across the data (objective is differentiable and convex)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

Can still have practical issues though!

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr}, \nabla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{\mathrm{init}}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_\Theta J_{lr}, \epsilon$)

- Can still have practical issues though!
- Run Gradient-Descent ($\Theta_{
 m init}, \eta, J_{lr},
 abla_{\Theta} J_{lr}, \epsilon$)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)})$$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

• A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda ||\theta||^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

$$J_{lr}(\Theta) = J_{lr}(\theta, \theta_0)$$

$$= \frac{1}{n} \sum_{i=1}^{n} L_{nll}(\sigma(\theta^{\top} x^{(i)} + \theta_0), y^{(i)}) + \lambda \|\theta\|^2 \qquad (\lambda \ge 0)$$

- A "regularizer" or "penalty" $R(\theta) = \lambda \|\theta\|^2$
- Penalizes being overly certain
- Objective is still differentiable & convex (gradient descent)

How to choose hyperparameter? One option: consider

 a handful of possible values and compare via CV