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e |dentify the labels and encode as real numbers
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TECHMYSTERIES
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How an internet mapping glitch turned a random Kansas
farm into a digital hell

55 KashmirHill  4/10/16 10 AM
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Using a representative # for a range

* Potential pitfall: level of detail might be treated as
meaningful (by you or others using the data)

A way to diagnose many problems: plot your data!
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How an internet mapping glitch turned a random Kansas
farm into a digital hell

55 KashmirHill  4/10/16 10 AM

14

[https://fusion.tv/story/287592/internet-mapping-glitch-kansas-farm/?utm_medium=social]



Encode data in usable form

* |dentity the features and encode as real numbers

resting
heart rate pain? j1,j2,j3,j4,]5 m1, m2 age
(bpm)
1 55 0 1,0,0,0,0 1,0 45
2 /1 0 0,1,0,0,0 1,1 ! 25
3 89 1 1,0,0,0,0 0,1 55

4 67 0 0.0.0.1,0 0.0 E 55
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Encode data in usable form

* |dentity the features and encode as real numbers

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (USD)

1 55 0 1.0,0,0,0 1.0 4 133000
2 71 0 0,1,0,0,0 1.1 i 2 i 34000
3 89 1 1.0,0,0,0 0,1 5 40000
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Encode ordinal data

e Numerical data: order on data values, and differences In

value are meaningful

» Categorical data: no order on data values
e Ordinal data: order on data values, but differences not

meaningful
* E.g. Likert scale:
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Encode ordinal data

e Numerical data: order on data values, and differences In
value are meaningful

» Categorical data: no order on data values
e Ordinal data: order on data values, but differences not

meamngful Sirongly Disagree Neutral Agree Strongly

. di
» E.g. Likert scale; |7°99%° 2l
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Encode data in usable form

* |dentity the features and encode as real numbers

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (USD)

1 55 0 1.0,0,0,0 1.0 4 133000
2 71 0 0,1,0,0,0 1.1 i 2 i 34000
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Encode data in usable form

* |dentity the features and encode as real numbers

resting
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade
(bpm)
1 55 0 1,0,0,0,0 1,0 4
2 /1 0 0,1,0,0,0 1,1 2
3 89 1 1,0,0,0,0 0,1 5
4 67 0 0,0,0,1,0 0,0 5
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* A closer look at the output of a linear classifier
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Encode numerical data

* A closer look at the output of a linear classifier
* |dea: standardize numerical data

(5)

; — l1ceall;

stddev;

+ For tth feature and data point j ¢ = -

standardized
resting heart
rate (bpm)

* Conclusion: it may be easier to visualize and interpret

,, learned parameters if you standardize data
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Encode numerical data

e Standardization can also affect which hypothesis is
chosen — e.g. when using a ridge penalty
» Recall: J;,(0,60) = L 30 Lan(a(07 2 + 65),y@) + \||0]|2

: '
Income )\(9% e (9%)
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Encode numerical data

23

e Standardization can also affect which hypothesis is
chosen — e.g. when using a ridge penalty

» Recall: Ji.(0,00) = 23 Lan(a(0T 2 4 65),yD) + A||6))?

: T
Income - = _ = )\(@%+9%)

resting heart
rate (bpm)

e |[f we don't standardize the data, the penalties tor
different dimensions of 8 can be wildly different



More benefits of plotting your data

24



More benefits of plotting your data
 And talking to experts

24



More benefits of plotting your data
 And talking to experts
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particular
hospital?

resting heart
rate (bpm)
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Encode data in usable form

* |dentity the features and encode as real numbers

resting
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade
(bpm)
1 55 0 1,0,0,0,0 1,0 4
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Encode data in usable form

* |dentity the features and encode as real numbers
e Standardize numerical features

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (USD)

1 55 0 1,0,0,0,0 1,0 4 133000
2 /1 0 0,1,0,0,0 1,1 2 34000
3 89 1 1,0,0,0,0 0,1 5 40000
4 67 0 0,0,0,1,0 0,0 5 120000

20



Encode data in usable form

* |dentity the features and encode as real numbers
e Standardize numerical features

resting family
heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income

(bpm) (USD)

133000

0 0,1,0,0,0 1,1 2 34000
1 1,0,0,0,0 0,1 5 40000
0 0,0,0,1,0 0,0 120000

20



Encode data in usable form

* |dentity the features and encode as real numbers
e Standardize numerical features

resting family

heart rate pain? j1,j2,j3,j4,]5 m1, m2 decade income
(bpm) (VE]))

1 -1.5 0 1,0,0,0,0 1,0 1 2.075
2 0.1 0 0,1,0,0,0 1,1 -1 -0.4
3 1.9 1 1,0,0,0,0 0,1 2 -0.25
4 -0.3 0 0,0,0,1,0 0,0 2 1.75
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Nonlinear boundaries
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