®EECs 6.036: Introduction to Machine

E:CAI;CTRICAL ENGINEERING Lea 'N | N g

AND COMPUTER SCIENCE

Lecture start: Tuesdays 9:35am

Who’s talking? Prof. Tamara Broderick

Questions? Ask on Piazza: “lecture (week) 10” folder
Materials: slides, video will all be available on Canvas
Live Zoom feed: https://mit.zoom.us/|/94238622313

Last Time(s) Today’s Plan
|. Supervised Learning . Unsupervised learning
» Classification . Clustering

* Regression |. k-means clustering
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