

6.036: Introduction to Machine Learning

Lecture start: Tuesdays 9:35am

Who's talking? Prof. Tamara Broderick

Questions? Ask on Piazza: "lecture (week) 10" folder

Materials: slides, video will all be available on Canvas

Live Zoom feed: https://mit.zoom.us/j/94238622313

Last Time(s)

- Supervised Learning
 - Classification
 - Regression

Today's Plan

- I. Unsupervised learning
- II. Clustering
- III. k-means clustering

TOGETHER, WE CAN DELIVER.

 Where should I have my k food trucks park?

 Where should I have my k food trucks park?

 Where should I have my k food trucks park?

 Where should I have my k food trucks park?

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck j location $\mu^{(j)}$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck j location $\mu^{(j)}$

x₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck j location $\mu^{(j)}$

x₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if *i* walks to truck *j*:

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j:

$$||x^{(i)} - \mu^{(j)}||_2^2$$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

*x*₁: longitude

*x*₁: longitude

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\sum_{i=1}^{n} \|x^{(i)} - \mu^{(y^{(i)})}\|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\overline{\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\overline{\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{1} \{ y^{(i)} = j \}} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\overline{\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{1} \{ y^{(i)} = j \}} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

$$\sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

*x*₁: longitude

 $\arg\min_{\mu,y} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if i walks to truck j: $\|x^{(i)} \mu^{(j)}\|_2^2$
- Loss across all people:

 x_1 : longitude $\arg\min_{\mu,y}\sum_{j=1}^k\sum_{i=1}^n\mathbf{1}\{y^{(i)}=j\}\|x^{(i)}-\mu^{(j)}\|_2^2$

• a.k.a. *k-means objective*

- Where should I have my k food trucks park?
- Want to minimize the loss of people we serve
- Person *i* location $x^{(i)}$
- Food truck *j* location $\mu^{(j)}$
- Index of truck where person i walks: $y^{(i)}$
- Loss if *i* walks to truck *j*: $||x^{(i)} - \mu^{(j)}||_2^2$
- Loss across all people:

*x*₁: longitude

$$rg\min_{\mu,y}$$

$$\sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|$$

a.k.a. k-means objective

k-means algorithm

k-means algorithm

k-means

k-means (k, τ)

k-means (k, τ)

k-means(k, τ)

k-means (k, τ)

k-means (k, τ)

k-means (k, τ)

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$

*x*₁: longitude

k-means(k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$

Some options:

1. Choose *k* data points uniformly at random, without replacement

x₁: longitude

k-means(k, τ)
Init $\{\mu^{(j)}\}_{j=1}^k$

Some options:

- 1. Choose *k* data points uniformly at random, without replacement
- 2. Choose uniformly at random within the span of the data

k-means(k,au) Init $\{\mu^{(j)}\}_{j=1}^k$

Some options:

- 1. Choose *k* data points uniformly at random, without replacement
- 2. Choose uniformly at random within the span of the data

x₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ

x₁: longitude

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

for i = 1 to n

x₁: longitude

*x*₁: longitude

k-means (k,
$$\tau$$
)
Init $\{\mu^{(j)}\}_{j=1}^k$
for t = 1 to τ

$$\begin{aligned} & \textbf{for i} = 1 \text{ to n} \\ & y^{(i)} = \\ & \arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned}$$

*x*₁: longitude

k-means (k,
$$\tau$$
)
Init $\{\mu^{(j)}\}_{j=1}^k$
for t = 1 to τ

for i = 1 to n

$$\begin{aligned} & \mathbf{for} \ \mathbf{i} = 1 \ \text{to n} \\ & y^{(i)} = \\ & \arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_2^2 \end{aligned}$$

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ

$$\begin{aligned} & \textbf{for i} = 1 \text{ to n} \\ & y^{(i)} = \\ & \arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_2^2 \end{aligned}$$

x₁: longitude

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

$$\begin{aligned} & \textbf{for i} = 1 \text{ to n} \\ & y^{(i)} = \\ & \arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_2^2 \end{aligned}$$

x₁: longitude

k-means(k,au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

$$\begin{aligned} &\textbf{for} \ \mathbf{i} = 1 \ \text{to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned}$$

$$\mathbf{for} \ \mathbf{j} = 1 \ \text{to k}$$

x₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for $t = 1 to \tau$ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

x₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for $t = 1 to \tau$ for i = 1 to n $\arg \min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

x₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ for i = 1 to n $\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}}$

*x*₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ for i = 1 to n $\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \mathbf{x}^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

*x*₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for $t = 1 to \tau$ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

x₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for $t = 1 to \tau$ for i = 1 to n $\arg \min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

*x*₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ for i = 1 to n $\arg \min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k

 $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

x₁: longitude

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

 $\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$

*x*₁: longitude

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

 $\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

 $\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$

k-means (k,
$$au$$
)
Init $\{\mu^{(j)}\}_{j=1}^k$
for t = 1 to au

$$\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$$

k-means
$$(k, \tau)$$

Init $\{\mu^{(j)}\}_{j=1}^k$
for $t=1$ to τ

$$\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$$

k-means
$$(k, \tau)$$

Init $\{\mu^{(j)}\}_{j=1}^k$
for $t=1$ to τ

$$\begin{array}{l} \textbf{for i} = 1 \text{ to n} \\ y^{(i)} = \\ \arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{array}$$

$$\begin{array}{l} \textbf{for j} = 1 \text{ to k} \\ \mu^{(j)} = \\ \underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{array}$$

*x*₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t=1 to τ

$$\begin{array}{l} \textbf{for i} = 1 \text{ to n} \\ y^{(i)} = \\ \arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{array}$$

$$\begin{array}{l} \textbf{for j} = 1 \text{ to k} \\ \mu^{(j)} = \\ \underline{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}} \\ \underline{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{array}$$

x₁: longitude

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for $t = 1 to \tau$ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

x₁: longitude

$$x_1$$
: longitude

k-means
$$(k, \tau)$$

Init $\{\mu^{(j)}\}_{j=1}^k$
for $t = 1$ to τ
for $i = 1$ to n
 $y^{(i)} = \arg\min_j \|x^{(i)} - \mu^{(j)}\|_2^2$
for $j = 1$ to k
 $\mu^{(j)} = \sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\}x^{(i)}$
 $\sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\}$

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for $t = 1 to \tau$ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

k-means
$$(k, \tau)$$

Init $\{\mu^{(j)}\}_{j=1}^k$
for $t = 1$ to τ
for $i = 1$ to n
 $y^{(i)} = \underset{j}{\arg\min} \|x^{(i)} - \mu^{(j)}\|_2^2$
for $j = 1$ to k
 $\mu^{(j)} = \underbrace{\sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\}}$

k-means
$$(k, \tau)$$

Init $\{\mu^{(j)}\}_{j=1}^k$
for $t = 1$ to τ
for $i = 1$ to n
 $y^{(i)} = \underset{j}{\arg\min} \|x^{(i)} - \mu^{(j)}\|_2^2$
for $j = 1$ to k
 $\mu^{(j)} = \underbrace{\sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\}}$

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

$$\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underline{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}} \\ &\underline{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$$

k-means (k, au)
Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to au

 $\begin{aligned} &\textbf{for i} = 1 \text{ to n} \\ &y^{(i)} = \\ &\arg\min_{j} \|x^{(i)} - \mu^{(j)}\|_{2}^{2} \end{aligned} \\ &\textbf{for j} = 1 \text{ to k} \\ &\mu^{(j)} = \\ &\underbrace{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}x^{(i)}}_{\sum_{i=1}^{n} \mathbf{1}\{y^{(i)} = j\}} \end{aligned}$

How can I be so sure?

k-means (k, τ) Init $\{\mu^{(j)}\}_{j=1}^k$ for t = 1 to τ $y_{\text{old}} = y$ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$

4

k-means (k, τ) Init $\{\mu^{(j)}\}_{i=1}^k, \{y^{(i)}\}_{i=1}^n$ for t = 1 to τ $y_{\text{old}} = y$ for i = 1 to n $\arg\min_{i} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$ for j = 1 to k $\frac{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \}}$ if $y = y_{\text{old}}$ break return $\{\mu^{(j)}\}_{i=1}^k, \{y^{(i)}\}_{i=1}^n$

*x*₁: longitude

 Did we just do k-class classification?

*x*₁: longitude

*x*₁: longitude

- Did we just do *k*-class classification?
- Looks like we assigned a label $y^{(i)}$ which takes k different values, to each feature vector $x^{(i)}$

*x*₁: longitude

- Did we just do *k*-class classification?
- Looks like we assigned a label $y^{(i)}$ which takes k different values, to each feature vector $x^{(i)}$
- But we didn't use any labeled data

*x*₁: longitude

- Did we just do k-class classification?
- Looks like we assigned a label y⁽ⁱ⁾ which takes k different values, to each feature vector x⁽ⁱ⁾
- But we didn't use any labeled data

*x*₁: longitude

- Did we just do k-class classification?
- Looks like we assigned a label y⁽ⁱ⁾ which takes k different values, to each feature vector x⁽ⁱ⁾
- But we didn't use any labeled data
- The "labels" here don't have meaning; I could permute them and have the same result

*x*₁: longitude

- Did we just do k-class classification?
- Looks like we assigned a label y⁽ⁱ⁾ which takes k different values, to each feature vector x⁽ⁱ⁾
- But we didn't use any labeled data
- The "labels" here don't have meaning; I could permute them and have the same result

*x*₁: longitude

- Did we just do k-class classification?
- Looks like we assigned a label y⁽ⁱ⁾ which takes k different values, to each feature vector x⁽ⁱ⁾
- But we didn't use any labeled data
- The "labels" here don't have meaning; I could permute them and have the same result

*x*₁: longitude

- Did we just do k-class classification?
- Looks like we assigned a label $y^{(i)}$ which takes k different values, to each feature vector $x^{(i)}$
- But we didn't use any labeled data
- The "labels" here don't have meaning; I could permute them and have the same result
- Output is really a partition of the data

x₁: longitude

*x*₁: longitude

• So what did we do?

*x*₁: longitude

- So what did we do?
- We *clustered* the data

*x*₁: longitude

- So what did we do?
- We clustered the data: we grouped the data by similarity

*x*₁: longitude

- So what did we do?
- We clustered the data: we grouped the data by similarity

*x*₁: longitude

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data?

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should!

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also:

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- So what did we do?
- We clustered the data: we grouped the data by similarity
 - Why not just plot the data? You should! But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, & we're finding patterns

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

Is this clustering worse than the one we found before?

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

Is this clustering worse than the one we found before?

Why or why not?

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!
- The initialization can make a big difference

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!
- The initialization can make a big difference
- Some options:

- Theorem. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!
- The initialization can make a big difference
- Some options: random restarts

- **Theorem**. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!
- The initialization can make a big difference
- Some options: random restarts

- **Theorem**. If run for enough outer iterations, the k-means algorithm will converge to a local minimum of the kmeans objective
- That local minimum could be bad!
- The initialization can make a big difference
- Some options: random restarts, k-means++

• Different k will give us different results

• Different k will give us different results

- Different k will give us different results
- Larger k gets trucks closer to people

- Different k will give us different results
- Larger k gets trucks closer to people

Sometimes we know k

Sometimes we know k

Sometimes we know k

Sometimes we know k

Sometimes we'd like to choose/learn k

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$$

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu,\frac{k}{k}} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$$

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu, \textcolor{red}{k}} \sum_{j=1}^k \sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\} \|x^{(i)} - \mu^{(j)}\|_2^2$$

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu,\frac{k}{k}} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \|x^{(i)} - \mu^{(j)}\|_{2}^{2}$$

Sometimes we know k

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\operatorname{arg\,min}_{y,\mu,k} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

How to choose k depends on what you'd like to do

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu,k} \sum_{j=1}^{k} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} = j \} \| x^{(i)} - \mu^{(j)} \|_{2}^{2}$$

- How to choose k depends on what you'd like to do
 - E.g. cost-benefit trade-off

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu,k} \sum_{j=1}^k \sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\} \|x^{(i)} - \mu^{(j)}\|_2^2 + \operatorname{cost}(k)$$

- How to choose k depends on what you'd like to do
 - E.g. cost-benefit trade-off

- Sometimes we'd like to choose/learn k
 - Can't just minimize the k-means objective over k too

$$\arg\min_{y,\mu,k} \sum_{j=1}^k \sum_{i=1}^n \mathbf{1}\{y^{(i)} = j\} \|x^{(i)} - \mu^{(j)}\|_2^2 + \operatorname{cost}(k)$$

- How to choose k depends on what you'd like to do
 - E.g. cost-benefit trade-off
 - Often no single "right answer"

Binary/two-class classification

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$ • Example: linear classification x_1

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$ Example: linear classification x_1
- Multi-class classification:

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$ Example: linear classification x_1
- Multi-class classification:
 - > 2 label values

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Multi-class

- Binary/two-class classification: Learn a mapping: ℝ^d → {-1,+1}
 Example: linear classification
 - Example: linear classification + + + - - + + ++

Classification

 Multi-class classification:

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification:
 - Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

- Multi-class classification:
 - > 2 label values

Regression

Classification:
 Learn a mapping to
 a discrete set

Binary/two-class classification:

Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

• Example: linear classification

- Multi-class classification:
 - > 2 label values

• Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Multi-class classification:

> 2 label values + + - - - - 00 000 x

• Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:

 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Classification:
 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

Multi-class classification:

> 2 label values + + - - - - 00 000 x

Classification:

 Learn a mapping to
 a discrete set

• Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$

 x_1

Example: linear classification

- Multi-class classification:
- > 2 label values + + - - - - 00 000

Supervised learning

Classification:

 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

 Multi-class classification:

- Supervised learning: Learn a mapping from features to labels
- Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:

 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

 Multi-class classification:

Supervised learning: Learn a mapping from features to labels

 Unsupervised learning

• Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

Classification:

 Learn a mapping to
 a discrete set

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

- Multi-class classification:
- > 2 label values + + - - - - 00 00 x₁

- Supervised learning: Learn a mapping from features to labels
- Regression: Learn a mapping to continuous values: $\mathbb{R}^d \to \mathbb{R}^k$

- Binary/two-class classification: Learn a mapping: $\mathbb{R}^d \to \{-1, +1\}$
 - Example: linear classification

- Unsupervised learning: No labels; find patterns
- Classification:

 Learn a mapping to
 a discrete set

