

6.036: Introduction to Machine

Learning

Final exam: Thurs 12/16, 1:30pm. See Canvas for full info

Lecture start: Tuesdays 9:35am

Who's talking? Prof. Tamara Broderick

Questions? Ask on Piazza: "lecture (week) 11" folder

Materials: slides, video will all be available on Canvas

Live Zoom feed: https://mit.zoom.us/j/94238622313

Last Time(s)

- Supervised learning
- II. Unsupervised learning
- III. Decisions incur loss but don't have broader effect

Today's Plan

- Decisions change the state of the world
- II. State machines
- III. Markov decision processes (MDPs)

Decision-Analytic Assessment of the Economic Value of Weather Forecasts: The Fallowing/Planting Problem

RICHARD W. KATZ

National Center for Atmospheric Research, U.S.A.

and

BARBARA G. BROWN* and ALLAN H. MURPHY Oregon State University, U.S.A.

• S = set of possible states

• S = set of possible states

- S = set of possible states
- \mathcal{X} = set of possible inputs

- S = set of possible states
- \mathcal{X} = set of possible inputs

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state

plant, fallow

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state

plant, fallow

Example

 $s_0 = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

plant, fallow

$$s_0 = \text{rich}$$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

Example

 $s_0 = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

Example

 $s_0 = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) =$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} o \mathcal{Y}: ext{output}$ function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- Y : set of possible outputs
- $g: \mathcal{S} \to \mathcal{Y}$: output function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R reward function

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R
 reward function
 e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R
 reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \longrightarrow \mathbb{R}$ reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- R: $\mathcal{X} \to \mathbb{R}$ reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - •e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. # bushels in harvest

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- T
 transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- ullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- ullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

start state rich poor
$$0.1$$
 0.9 poor

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

start state rich poor
$$0.1$$
 0.9 0.01 0.99

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

start state rich poor
$$0.1$$
 0.9 0.01 0.99

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- T
 transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{X} \times \mathcal{S} \to \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possible states
- A = set of possible actions
- $s_0 \in \mathcal{S}$: initial state
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- S = set of possiblestates
- A = set of possibleactions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

• S = set of possiblestates

- A = set of possibleactions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

• S = set of possiblestates

- A = set of possibleactions
- ullet $T: \mathcal{S} imes \mathcal{A} imes \mathcal{S}
 ightarrow \mathbb{R}$: transition model
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

• Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state
- Question 1: what's the "value" of a policy?

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state
- Question 1: what's the "value" of a policy?
- Question 2: what's the best policy?

• Suppose a random variable *R* has *m* possible values:

$$r_1,\ldots,r_m$$

- Suppose a random variable R has m possible values: r_1, \ldots, r_m
 - Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.

Suppose a random variable R has m possible values:

```
r_1,\ldots,r_m
```

- Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
- Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?

- Suppose a random variable R has m possible values:
 - r_1,\ldots,r_m
 - Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
 - Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i

Suppose a random variable R has m possible values:

$$r_1,\ldots,r_m$$

- Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
- Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i
 - So we always have $\sum_{i=1}^{m} p_i = 1$

Suppose a random variable R has m possible values:

$$r_1,\ldots,r_m$$

- Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
- Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i
 - So we always have $\sum_{i=1}^{m} p_i = 1$
 - Example continued: $p_1 = 3.4*10^{-9}$

- Suppose a random variable R has m possible values:
 - r_1,\ldots,r_m
 - Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
 - Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i
 - So we always have $\sum_{i=1}^{m} p_i = 1$
 - Example continued: $p_1 = 3.4*10^{-9}$
- Then the *expectation* of R is $\mathbb{E}[R] = \sum_{i=1}^{m} p_i r_i$

Expectation

- Suppose a random variable R has m possible values:
 - r_1,\ldots,r_m
 - Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
 - Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i
 - So we always have $\sum_{i=1}^{m} p_i = 1$
 - Example continued: $p_1 = 3.4*10^{-9}$
- Then the *expectation* of R is $\mathbb{E}[R] = \sum_{i=1}^{m} p_i r_i$
 - Example: $\mathbb{E}[R] = 3.4*10^{-9} \times 40*10^{6} + (1 3.4*10^{-9}) \times -2$

Expectation

- Suppose a random variable R has m possible values:
 - r_1,\ldots,r_m
 - Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
 - Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i
 - So we always have $\sum_{i=1}^{m} p_i = 1$
 - Example continued: $p_1 = 3.4*10^{-9}$
- Then the *expectation* of R is $\mathbb{E}[R] = \sum_{i=1}^{m} p_i r_i$
 - Example: $\mathbb{E}[R] = 3.4*10^{-9} \times 40*10^{6} + (1 3.4*10^{-9}) \times -2$ = -1.86 USD

What's the value of a policy?

O.1

O.9

O.9

Fallow:

plant:

poor soil

O.9

O.1

O.9

O.9

Fallow:

poor soil

R(rich,plant)=100

R(poor,plant)=10

R(rich,fallow)=0

R(rich,fallow)=0

R(poor,fallow)=0

R(poor,fallow)=0

What's the value of a policy?

O.1

O.9

O.9

Fallow:

poor soil

O.9

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=100
R(rich,fallow)=0

R(poor,fallow)=0

I'm renting a field for h growing seasons. Then it will be destroyed to make a strip mall.

h: horizon (e.g. how many growing seasons left)

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

What's the value of a policy?

O.1

O.1

Plant:

poor soil

O.2

O.3

R(rich,plant)=100
R(poor,plant)=10

- h: horizon (e.g. how many growing seasons left)
 R(rich,fallow)=0
 R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0$$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) =$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) =$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) = 100$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) =$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{1}(s) = R(s, \pi(s))$$

 $V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$
$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 00; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 00; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 00; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 00; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 00; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) =$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) +$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich})$$

$$+ T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich})}{+ T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})}$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = \frac{R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich})}{+ T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})}$$

$$= \frac{100}{100} + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})}{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})} V_{\pi_{A}}^{1}(\text{rich}) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})}{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})} V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + \frac{(0.1)(100) + (0.9)(10)}{T(100)} V_{\pi_{A}}^{1}(\text{poor})$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})}{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})} V_{\pi_{A}}^{1}(\text{rich}) + \frac{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})}{T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})} V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + \frac{(0.1)(100) + (0.9)(10)}{T(100)} V_{\pi_{A}}^{1}(\text{poor})$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) \frac{V_{\pi_{A}}^{1}(\text{rich})}{V_{\pi_{A}}^{1}(\text{rich})} + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) \frac{V_{\pi_{A}}^{1}(\text{rich})}{V_{\pi_{A}}^{1}(\text{rich})} + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- Th(a), value (e.g. now maily growing seasons left) in the second set of the second second
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich}) V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor}) V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

$$= 119$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

$$= 119$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119$$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins?

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins?

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- $v_{\pi}(s)$. Value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 102; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

 $V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$

Who wins?

h=1

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B$

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B$ h=3

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1}^{\kappa_A} \pi_B; \pi_A <_{h=3}^{\kappa_B} \pi_B; h=2$

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

- Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B;$ Neither policy wins for h=2
 - 9 I.e. at least as good at all states and strictly better for at least one state

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B;$ Neither policy wins for h=2

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A>_{h=1}\pi_B;\pi_A<_{h=3}\pi_B$ value of delayed gratification

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi_{h}(s)) + \sum_{s'} T(s, \pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$
Who wins? $\pi_{A} >_{h=1} \pi_{B}; \pi_{A} <_{h=3} \pi_{B}$ value of delayed gratification

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s(\pi_{h}(s)) + \sum_{s'} T(s(\pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s'))$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$
Who wins? $\pi_{A} >_{h=1} \pi_{B}; \pi_{A} <_{h=3} \pi_{B}$ value of delayed gratification

 $V_{\pi_A}^3(\text{rich}) = 138; V_{\pi_A}^3(\text{poor}) = 48; V_{\pi_B}^3(\text{rich}) = 192; V_{\pi_B}^3(\text{poor}) = 108$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B$ value of delayed gratification

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi_{h}(s)) + \sum_{s'} T(s, \pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$
Who wins? $\pi_{A} >_{h=1} \pi_{B}; \pi_{A} <_{h=3} \pi_{B}$ value of delayed gratification

What if I don't stop farming?

Good news! No strip mall, and I get to keep the farm forever

Problem: 1,000 bushels today > 1,000 bushels in ten years

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

poor soil

O.9

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=100
R(rich,fallow)=0

Problem: 1,000 bushels today > 1,000 bushels in ten years

R(poor,fallow)=0

• A solution: discount factor $\gamma:0<\gamma<1$

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: **discount factor** $\gamma : 0 < \gamma < 1$
 - Value of 1 bushel after t time steps: γ^t bushels

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever?

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? ${\cal V}$

What if I don't stop farming?

O.1

O.9

O.9

Fallow:

O.9

O.1

R(rich,plant)=100
R(poor,plant)=10
R(poor,fallow)=0
R(poor,fallow)=0
R(poor,fallow)=0

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots$

What if I don't stop farming?

O.1

Plant:

poor soil

rich soil

Open Soil

poor soil

poor soil

R(rich,plant)=100

R(poor,plant)=10

R(rich,fallow)=0

R(poor,fallow)=0

0.1

- A solution: discount factor $\gamma:0<\gamma<1$
- Value of 1 bushel after t time steps: γ^t bushels
- Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$

value for all future

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$

value for all future

value on first time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$

value for all future

value value on after first first time time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V = 1/(1 - \gamma)$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V = 1 + \gamma + \gamma^2 + \dots = 1 + \gamma(1 + \gamma + \gamma^2 + \dots) = 1 + \gamma V$ $V = 1/(1 - \gamma)$ E.g. $\gamma = 0.99$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g. } \gamma=0.99 \Rightarrow V=1/0.01$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$ policy value

for all future

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V = 1 + \gamma + \gamma^2 + \dots = 1 + \gamma(1 + \gamma + \gamma^2 + \dots) = 1 + \gamma V$ $V = 1/(1 - \gamma)$ E.g. $\gamma = 0.99 \Rightarrow V = 1/0.01 = 100$ bushels
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$ policy value policy value on for all future first time step

for all future

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V = 1 + \gamma + \gamma^2 + \dots = 1 + \gamma(1 + \gamma + \gamma^2 + \dots) = 1 + \gamma V$ $V=1/(1-\gamma)$ E.g. $\gamma=0.99\Rightarrow V=1/0.01=100$ bushels
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$

policy value policy value on first time step (expected) policy value (expected) policy value after first time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$

policy value policy value on first time step (expected) policy value after first time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V = 1 + \gamma + \gamma^2 + \dots = 1 + \gamma(1 + \gamma + \gamma^2 + \dots) = 1 + \gamma V$ $V=1/(1-\gamma)$ E.g. $\gamma=0.99\Rightarrow V=1/0.01=100$ bushels
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$ policy value policy value on first time step (expected) policy value after first time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns