
 Introduction to
 Machine Learning

The 6.390 Instructor Team
6.390-personal@mit.edu

Fall 2023!

https://introml.mit.edu

https://introml.mit.edu/

Logistical issues? Personal
concerns?
We’d love to help out at
6.390-personal@mit.edu

mailto:6.390-personal@mit.edu

and ~50 awesome LAs!

Course pedagogy:
A nominal week – mix of theory, concepts, and application to problems!

• Exercises: Released on Wed., due following Mon. 9AM
 Easy questions based on that week’s notes reading (and viewing optional recorded lecture)
• Recitation: Monday, with attendance check-in

 Assumes you have read and done exercises; start on homework
• Homework: Releases Monday morning; due Wednesday (9 days later) at 11PM

 Harder questions: concepts, mechanics, implementations

Exams:

• Midterm: Wed, 25 Oct at 7:30pm-9:30pm

• Final: scheduled by Registrar (posted in 3rd week). Alert – might be as late as Dec 22!

Office hours: lots! posted on website. Also use Piazza forum for help!

• Lab: Wednesday, with attendance check-in (starting today)
In-class empirical exploration of concepts
Work with partner on lab assignment
Check-off conversation with staff member

Grading and collaboration (details on web)
Our objective (and we hope yours) is for you to learn about machine learning

• take responsibility for your understanding
• we will help!

Collaboration: don't cheat!

• Understand everything you turn in

• Coding and detailed derivations must be done by you

• See collaboration policy/examples on course web site

Lateness: 20% penalty per day, applied linearly (so 1 hour late is -0.83%)

Extensions:

• 20 one-day extensions (move one assignment’s deadline forward by one day) will be
applied automatically at the end of the term in a way that is maximally helpful

• for medical or personal difficulties see S3 & contact us at 6.390-personal@mit.edu

Formula:
 exercises 5% + attendance 5% + homework 15% + labs 15% + midterm 25% + final 35%

Expected prerequisite background

Things we expect you to know (we use these constantly, but don’t
teach them explicitly):

Programming (e.g. as in 6.1010
[6.009]

 or 6.1210
[6.006]

)
• Intermediate Python, including classes
• Exposure to algorithms – ability to understand & discuss pseudo-code,

and implement in Python

Linear Algebra (e.g. as in 18.06, 18.C06, 18.03, or 18.700)
• Matrix manipulations: transpose, multiplication, inverse etc.
• Points and planes in high-dimensional space
• (Together with calculus): taking gradients, matrix calculus

Useful background

Things it helps to have prior exposure to, but we don’t expect (we
use these in 6.390, but will discuss as we go):

• numpy (Python package for matrix/linear algebra)
• pytorch (python package for modern ml models like deep neural networks)
• Basic discrete probability: random variables, independence, conditioning

Rest of Today
● Start our ML journey with an overview
● Form a group with those around you to complete the lab
● Ask questions by putting yourself in the help queue
● No worries if no introml.mit.edu access yet; great chance to know your

neighbor (ask them to put you in the queue)

 Heads-up for Next Week
● Attend your assigned section only starting Monday Sept. 11

● If you need to change your permanent section assignment, you will be

able to self-switch, starting 5pm today; details on introml homepage

What we're teaching: Machine Learning!
Given:

• a collection of examples (gene sequences, documents, tree sections)

• an encoding of those examples in a computer (as vectors)

Derive:
• a computational model (called a hypothesis) that describes relationships

within and among the examples that is expected to characterize well new
examples from that same population, to make good predictions or decisions

A model might:
• classify images of cells as to whether they're cancerous
• specify groupings (clusters) of documents that address similar topics
• steer a car appropriately given lidar images of the surroundings

Very roughly, ML can be categorized into

(the categorization can be refined, e.g. there are active learning, semi-supervised, selective, contrastive,
few-shot, inverse reinforcement learning…)

[Slides adapted from 6.790]

Supervised learning
Goal: predict to what
degree a drug candidate
binds to the intended
target protein (based on a
dataset of already
screened molecules
against the target)

[Slides adapted from 6.790]

Unsupervised learning dimensionality reduction, embedding

dependency
/causal
structure

[Mikolov et al., 2013]

 de-noising diffusion models over images

Over 3D protein structures, etc.

[Slides adapted from 6.790]

[Sachs et al 05]

Reinforcement learning
ChatGPT

[Slides adapted from 6.790]

Machine learning (ML): why & what

• What is ML? Roughly, a set of methods for making predictions
and decisions from data.

• Why study ML? To apply; to understand; to evaluate; to create!
• Notes: ML is a tool with pros & cons

• What do we have? Data! And Computation!
• What do we want? To make predictions on new data!
• How do we learn to make those decisions?

• The topic of this course!

What do we have?

(Training) data
• n training data points
• For data point

• Feature vector

• Label
• Training data

• There are many different problem classes in ML
• We will first focus on an instance of supervised learning known

as regression.

What do we want?
We want a “good” way to label new feature
vectors

• How to label? Learn a hypothesis
• We typically consider a class of

possible hypotheses
Input:

Feature vector
Output:

Label

how well our hypothesis labels new feature vectors depends largely
on how expressive the hypothesis class is

What do we want?

We may consider the class of linear
regressors:

• Hypotheses take the form:

• What we really want is to generalize to future data!
• What we don’t want:

• Model does not capture the input-output relationship (e.g.,
not enough data) —> Underfitting

• Model too specific to training data —> Overfitting

Hopefully predict well on future data
• How good is a regressor at one point?

• Quantify the error using a loss
function,

• Common choice: squared loss:

• Validation or Test error (n’ new points):

• Training error:

How good is a hypothesis?

g: guess,
a: actual

• Have data; have hypothesis class
• Want to choose (learn) a good

hypothesis (a set of parameters)

How do we learn?

learning
algorithm

What we want:

How to get it:
(Next week!)

