
Introduction to
Machine Learning

Spring 2023!

Lec-Rec 3:
Gradient Descent

Review: Linear Regression Solution

Linear Regression Cost Function

We are incredibly fortunate that:
● The cost function is Convex (“curves up”)

⇒ local minimum is a global minimum

● It can be efficiently computed
⇒ there is a closed-form solution to

Optimization is hard in general!

● Typical cost function

Stationary points are not
global (or even local)

minimma

Gradient Descent

First-order, iterative algorithm for finding a local minimum of a
differentiable function

● First-order: using only gradient information

● Iterative algorithm: iteratively update parameters

● Differentiable function: continuous optimization

Gradient Descent

Initialize (typically random)

Repeat:

Until convergence

Other stopping criteria: fixed # of iters or | | close to 0

Gradient Descent

Initialize (typically random)

Repeat:

Until convergence

Other stopping criteria: fixed # of iters or | | close to 0

is called a learning rate or
step size

Gradient Descent

Initialize (typically random)

Repeat:

Until convergence

Other stopping criteria: fixed # of iters or | | close to 0

Gradient Descent

Initialize (typically random)

Repeat:

Until convergence

Other stopping criteria: fixed # of iters or | | close to 0

Gradients point in the steepest
direction => negative gradient
takes a step opposite this
direction

Gradient Descent in 2D

𝜃!

∇!𝐽(𝜃(#))

𝜃"

Gradient Descent in 2D

𝜃!

𝜃"

-∇!𝐽(𝜃(#))

Gradient Descent in 2D

𝜃!

𝜃"

-∇!𝐽(𝜃(#))

Gradient Descent for Non-Convex Functions
Cost function does not need to be convex

But for non-convex functions we often get stuck in a local
minimum

Starting point matters
Starting point determines in which local minimum we end up

We can run gradient descent with different starting points and
take the best solution

How to computer gradient?

Computing gradient

Analytically (pencil/paper, Mathematica)

Finite differences

Automated differentiation

Computing gradient requires a limit

f (x) f (x+ h)

f (x)

f (x)

Computing gradient requires a limit

f (x)

f (x)

f (x)

f (x+ h)

Finite differences

In finite differencing we choose h and evaluate
numerically

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Software like Matlab computes h automatically
Finite differencing is useful to verify correctness of analytical
derivatives (yes, we often make mistakes in computing
derivatives)

Expensive for high dimensional functions (e.g., how many
function evaluation are required when working with d features?)

Automated differentiation

The chain rule:

Computational graph
● nodes are operations and edges are input relations
● forward or reverse accumulation

See
Autograd

Gradient Descent

How to set the learning rate?

It can treated as another hyperparameter

More advanced methods used
in practice (soon in NN LecRec)

Gradient Descent for Linear Regression

But closed form solution is more efficient!

Stochastic Gradient Descent

This sum requires running the model for the
entire dataset at each time step

Stochastic Gradient Descent: approximate the full gradient with
a a single sample

Stochastic Gradient Descent

With certain conditions on the learning rate, the model will get
“close” to the optimum “fast enough”.

Stochastic Gradient Descent

Batch gradient descent Stochastic gradient descent

Intuition: SGD is a noisy estimate of the full batch gradient

In many cases, SGD can help escape local minima and lead to
faster convergence.

SGD on Linear Regression

“residual”

If residual ≈ 0, the current model’s guess is good and the model
does not change much.

If residual ≠ 0, then we add to , weighted by the
residual and learning rate.

Mini-batch SGD

Batch GD SGDMini-batch SGD

Mini-batch SGD: randomly sample a mini-batch of size

