Introduction to Machine Learning

Feature Representations

Review: Linear => Logistic Regression

Data
$$D = \{x^{(i)}, y^{(i)}\}_{i=1}^n, x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \mathbb{R}$$

Hypothesis $h(x;\theta) = \theta^{\top}x + \theta_0$

Cost
$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - (\theta^{\top} x^{(i)} + \theta_0))^2$$

Optimization Analytic solution

Review: Linear => Logistic Regression

Data
$$D = \{x^{(i)}, y^{(i)}\}_{i=1}^n, x^{(i)} \in \mathbb{R}^d, y^{(i)} \in \{-1, 1\}$$

Hypothesis $h(x) = \operatorname{sign}(\theta^{\top}x + \theta_0)$

$$\begin{array}{ll} \mathsf{Cost} & J(\theta) = - & \frac{1}{n} \sum_{i=1}^{n} \mathbbm{1} \left\{ y^{(i)} = +1 \right\} \log \sigma(\theta^{\top} x^{(i)} + \theta_0) + \\ & \mathbbm{1} \left\{ y^{(i)} = -1 \right\} \log(1 - \sigma(\theta^{\top} x^{(i)} + \theta_0)) \end{array}$$

Optimization Gradient Descent

Linear Classifiers

Linear Classifiers?

$$y = +1$$
 if not healthy, -1 if healthy

Non-Linear Classifiers

Idea: approximate a smooth function with a k-th order Taylor polynomial

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	
1	$[1, x_1]$	
2	$[1,x_1,x_1^2]$	
3	$[1, x_1, x_1^2, x_1^3]$	

Idea: approximate a smooth function with a k-th order Taylor polynomial

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	[1]
1	$[1, x_1]$	$[1, x_1, \ldots, x_d]$
2	$[1, x_1, x_1^2]$	$[1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2]$
3	$[1, x_1, x_1^2, x_1^3]$	$[1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2, \\ x_1^3, x_1^2 x_2, x_1 x_2 x_3, \dots, x_d^3]$

blood

pressure

- This decision boundary has 0 training error!
- But unlikely to generalize well ⇒ high estimation error (i.e., overfitting)

Radial basis functions

• New idea: use "distance" from training points (or a subset thereof) to define features.

$$\phi(x) = \left[f(x, x^{(1)}), f(x, x^{(2)}), \dots, f(x, x^{(n)}) \right]$$
$$f(x, y) = e^{-\beta ||x - y||^2}$$

• For what value of x is f(x, y) maximized?

Radial basis functions: HW5 Q5

$$\phi(x) = \left[f(x, x^{(1)}), f(x, x^{(2)}), \dots, f(x, x^{(n)})\right] \qquad \beta = \{0.001, 0.01, 0.1, 1, 10, 100, 1000\}$$

$$f(x, y) = e^{-\beta ||x-y||^2}$$

-1.5

1.0

-1.5 -

0.0

0.2

0.4

0.6

0.8

1.0

-1.5

0.0

0.2

0.4

Scalar Features:

- Min-max normalization

$$x_{\mathsf{norm}} = \frac{x - \min(X)}{\max(X) - \min(X)}$$

- Standardization

$$x_{\mathsf{std}} = \frac{x - \mathsf{mean}(x)}{\mathsf{std}(X)}$$

Scalar Features:

- Min-max normalization

$$x_{\mathsf{norm}} = \frac{x - \min(X)}{\max(X) - \min(X)}$$

- Standardization

$$x_{std} = \frac{x - mean(x)}{std(X)}$$
 Important fo
regularized
regression!

Ordinal Features:

- Ordered values, but differences between values are not meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree	
1	2	3	4	5	

Ordinal Features:

- Ordered values, but differences between values are not meaningful

Strongly disagree	Disagree	Neutral	Agree	Strongly agree	
1	2	3	4	5	

- Thermometer code

Strongly disagree	Disagree	sagree Neutral Ag		Strongly agree	
1,0,0,0,0	1,1,0,0,0	1,1,1,0,0	1,1,1,1,0	1,1,1,1,1	

Discrete (Categorical) Features:

- School ∈ {MIT, Harvard, Caltech, ...}
- Job ∈ {nurse, admin, pharmacist, doctor, social worker}

Discrete (Categorical) Features:

"One-hot"

Encoding

- School ∈ {MIT, Harvard, Caltech, ...}
- Job ∈ {nurse, admin, pharmacist, doctor, social worker}

$$\phi_i \quad \phi_{i+1} \quad \phi_{i+2} \quad \phi_{i+3} \quad \phi_{i+4}$$

nurse 1 0 0 0 0

- admin 0 1 0 0 (
- pharmacist 0 0 1 0 0
 - doctor 0 0 0 1
- social worker 0 0 0 0 1

medicines	"One-hot" encoding?					
pain		ϕ_i	ϕ_{i+1}	ϕ_{i+2}	ϕ_{i+3}	
beta blockers, pain	pain pain & beta blockers beta blockers no medications	1 0	0 1	0	0 0	
beta blockers		0	0 0	1 0	0 1	
none						

How to come up with good features?

- Performanc on validation set
- Domain expertise
- Experience

Choosing good features is super important in real world machine learning!