
6.390: Midterm Exam, Fall 2023

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 2 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 15

2 20

3 16

4 17

5 12

6 20

Total: 100
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ML Recipe

1. (15 points) In this question we will compare a basic learning algorithm vs. a learning algo-
rithm that includes cross validation. In both algorithms, you can assume that regularization is
available if needed or appropriate.

(a) Below is pseudo-code for a basic learning algorithm. Here γ might be any hyperparameter
of the learning algorithm (i.e., not necessarily related to a regularization loss term in an
objective function).

1. divide data D into Dtrain, Dval, Dtest

2. for each candidate value for hyperparameter γ
3. find lowest loss hypothesis h using Dtrain

4. compute loss using Dval

5. select γbest with smallest loss on Dval

6. find h using Dtrain +Dval and γbest
7. evaluate h on Dtest

i. Do you use regularization or no regularization in line 3? Explain your reasoning.

Solution: It is better to regularize, to help find a hypothesis h that will generalize
when used on Dval.

ii. Do you use regularization or no regularization in line 4? Explain your reasoning.

Solution: Now we do not regularize in line 4; instead we want to evaluate based
on the loss terms without regularization, in order to assess how well the h gener-
alizes to the validation data.
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(b) Next, we will examine a learning algorithm that includes cross-validation. Here is the
pseudocode. Again, γ may be any hyperparameter associated with the learning algorithm.

1. divide data D into Dtrain,Dtest

2. divide Dtrain into chunks D1, ..., Dk

3. for each candidate value for hyperparameter γ
4. for i = 1 to k

5. train hi on Dtrain - Di

6. compute validation loss Ei(hi) on Di

7. compute Eγ := ????

8. select γbest with smallest Eγ

9. find h using Dtrain and γbest
10. evaluate h on Dtest

i. Complete line 7 in the algorithm (i.e., give a formula for Eγ).

Solution: We calculate the average validation loss across our k splits:

Eγ =
1

k

k∑
i=1

Ei(hi) ,

which also has the advantage of giving us a general sense of typical validation loss
on any one split. However, any monotonically increasing function over the Ei(hi)
values (like the sum) would also be sufficient for our goal of picking the best γbest.

ii. Do you use regularization or no regularization in line 9? Explain your reasoning.

Solution: We include regularization. We know hyperparameter γbest is the best
for that hyperparameter, and want to use together with regularization to find a
final hypothesis h that uses all of the training data to generalize well to the test
data.

(c) What is the benefit, if any, of including cross validation in this learning algorithm?

Solution: Both approaches seek to find a “best” value for the hyperparameter γ under
consideration. However, any single split of the data is subject to substantial chance as
to what data is in each split. The cross-validation approach enable us to average across
multiple different splits of our data to reduce the variance of Eγ , and so find a good γ
based on this less noisy evaluation of how the resulting hypothesis h generalizes.

All of the answers here apply whether γ is a regularization hyperparameter like λ in
ridge regression, or if γ is some other hyperparameter of the learning algorithm.
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k-Means Redistricting

2. (20 points) Redistricting in the United States is the process of drawing boundaries of electoral
districts in response to census data that is collected every 10 years. The goal of redistricting
is to “accommodate shifts in population and provide equal representation to its citizens.” In
this problem, we approach redistricting using modified versions of k-means clustering.

(a) Chassamusetts is a small state with nine cities (all having equal populations) with spatial
coordinates x1 (horizontal coordinate) and x2 (vertical coordinate) as shown in the figure
below on the left. The cities need to be allocated into three districts. We initialize our
standard k-means clustering algorithm with three centroids (stars, as shown in the figure
on the right), and then allocate the cities into districts based on these initial cluster centers.
Distinct clusters (districts) are differentiated by shape: triangles, squares, or diamonds.

We perform one training update of our model using the standard k-means clustering
algorithm to first produce new cluster centroids and then new cluster assignments for the
nine cities. On the blank plot below, plot the new centroids and new cluster assignments
using the same shapes used in the plot on the right.

Solution:

• Triangle centroid at
[14/5, 7]T

• Diamond centroid at [8, 5]T

• Square centroid at [1, 2]T
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(b) We train our k-means clustering algorithm with three clusters to convergence, resulting in
the centroids and clusters shown in the figure below. Again, distinct clusters are differen-
tiated by shape (triangles, squares, or diamonds), and centroids for all clusters are shown
as stars.

Recall the k-means loss:

Lk-means =
k∑

j=1

n∑
i=1

1(y(i) = j)∥x(i) − µ(j)∥2

where µ(j) is the position of the centroid for cluster j. The cluster centroids are located
at [1, 2]T for squares, [2, 7]T for triangles, and [7, 6]T for diamonds. Calculate the k-means
loss for this clustering.

Solution:

Lk-means = L□ + L△ + L◦ = 20

L□ =

∥∥∥∥(01
)
−
(
1
2

)∥∥∥∥2 + ∥∥∥∥(03
)
−
(
1
2

)∥∥∥∥2 + ∥∥∥∥(32
)
−
(
1
2

)∥∥∥∥2 = 2 + 2 + 4 = 8

L△ =

∥∥∥∥(16
)
−
(
2
7

)∥∥∥∥2 + ∥∥∥∥(18
)
−
(
2
7

)∥∥∥∥2 + ∥∥∥∥(38
)
−
(
2
7

)∥∥∥∥2 + ∥∥∥∥(38
)
−
(
2
7

)∥∥∥∥2 = 4 · 2 = 8

L◦ =

∥∥∥∥(67
)
−
(
7
6

)∥∥∥∥2 + ∥∥∥∥(85
)
−
(
7
6

)∥∥∥∥2 = 2 + 2 = 4
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(c) We want districts to have (approximately) equal population, so we define a loss component
Lunequal that penalizes districts of unequal size:

Lunequal =
∑
j

(Nj −Ntarget)
2

where Nj is the number of cities in district j, and Ntarget is the target number of cities
per district (equal to the total number of cities, Ncities, divided by the number of districts,
Ndistricts).

The overall objective for our modified k-means clustering is

Lmod = Lk-means + λunequal · Lunequal

with weighting factor λunequal. In the figures below, we have the original k-means clustering
on the left, and on the right we have a proposed “redistricting” that balances these districts
based on this modified overall objective Lmod.

i. Calculate the Lunequal loss for the original k-means clustering on the left.

Solution: Lunequal = (3− 3)2 + (4− 3)2 + (2− 3)2 = 2
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ii. Calculate the total loss Lmod for the original k-means clustering on the left, assuming
λunequal = 0.1.

Solution:

Lmod = Lk-means + λunequal · Lunequal

= 20 + 0.1 · 2 = 20.2

iii. Calculate the Lmod loss for the proposed “redistricting”on the right.

Solution: The Lunequal loss on the right is zero. We can quickly recalculate the
Lk-means for the redistricting by just considering the change due to the one changed
point:

L
(re)
k-means = 20− 2 + 42 = 18 + 16 = 34

so Lmod = Lk-means + 0 = 34.

iv. For this particular set of cities, what range of values for λunequal do we need in order
to ensure that the desired population-balanced district assignments will result (i.e, so
that the cluster assignment stage from the left figure above to the right figure above
will occur)?

Solution: We need 20 + λunequal · 2 > 34, or λunequal > 7.
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(d) The cities of Chassamusetts belong to one of two parties, the Depublicans (p = D) in-
dicated with open circles or the Remocrats (p = R) indicated with filled circles, in the
diagram below on the left. On the right, we plot how these demographics are reflected
in the redistributed clusters found above (that considered both k-means distance and
population imbalance together), again with open or filled symbols to indicate party p.

A goal of redistricting is to provide equal representation to its citizens. Governor Merry
Gander proposes a new loss term in order to encourage the demographics at the district
level to reflect the demographics of the cities:

Lparty =
∑

p∈{R,D}

(
# majority p districts

Ndistricts
− # p cities

Ncities

)2

where Ndistricts = 3, # D cities = 3, # R cities = 6, Ncities = 9, and # majority p districts
are determined by the specifics of the clustering. A majority exists if more than 50% of
cities in a district are of a certain party.

i. Calculate the value of Lparty for the clustering shown above on the right.

Solution: Lparty = (03 − 3
9)

2 + (33 − 6
9)

2 = 2
9
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Combining the party affiliation consideration gives a new overall objective

Lcombined = Lk-means + λunequal · Lunequal + λparty · Lparty

where λparty is another weighting factor.

ii. Give the locations of the two cities such that if they swapped districts it would (just
after this swap) minimize the Lparty loss while incurring the smallest increase in the
Lk-means loss and would not change Lunequal.

Solution: If cities at locations [3, 6]T and [3, 8]T are swapped, Lparty loss goes to
zero. The Lunequal loss does not change, since all districts still have three cities
in them. Given the near/similar proximity of both points in the swap to their
cluster centers, this will incur the least increase in k-means loss. (Specifically, the
Lk-means changes slightly by increasing the squared distance from [7, 7]T to [3, 6]T

from 42 to 42 + 22 for [3, 8]T , giving a total k-mean loss increase of 4). This swap
results in the following districts:
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Descent-Ascent

3. (16 points) To minimize a differentiable function f : R3 → R, Dr. A. I. Ancient uses gradient
descent iterations,

x(t) = x(t−1) − η∇xf(x
(t−1)) (t = 1, 2, . . . ), x(0) =

00
0

 ,

where x(0) is the initial guess, and x(t) is hoped to be an improvement over x(t−1), in the sense
that f(x(t)) < f(x(t−1)). Dr. Ancient first uses η = 0.1, which (regretfully) results in

x(1) =

 2
−4
6

 = 2 ê, x(2) =

 1
−2
3

 = ê, x(3) =

00
0

 , where ê =

 1
−2
3

 .

(a) What is the value of x(7) in this instance of gradient descent?

Solution: the first three iterations demonstrate that we are oscillating between three
points. Since the step size is fixed, this trend will continue, and x(7) = x(1) = 2 ê =
[2,−4, 6]T .

NOTE: the conflict exam asked for x(8)

(b) What are the vectors ∇xf(a) for a = x(0), a = x(1), and a = x(2)?

Solution:

x(1) = −0.1∇xf(x
(0)) ⇒ ∇xf(x

(0)) = −20 ê = [−20, 40,−60]T

x(2) = x(1) − 0.1∇xf(x
(1)) ⇒ ∇xf(x

(1)) = −10(x(2) − x(1)) = 10 ê = [10,−20, 30]T

x(3) = x(2) − 0.1∇xf(x
(2)) ⇒ ∇xf(x

(2)) = 10 ê = [10,−20, 30]T

(c) Could it be true that f(x(t)) < f(x(t−1)) for all t = 1, 2, 3 in this original instance of
running gradient descent? Explain your reasoning.

Solution: no; given the oscillating behavior, we have already seen in part (a) that
x(7) ̸< x(1).
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(d) Disappointed with the results obtained with η = 0.1, Dr. Ancient decides to use η = 0.05,
with the same initial guess x̄(0) = x(0). Find vectors x̄(1) and x̄(2) for this new instance of
running gradient descent (where x̄(i) indicates these are for the new instance of running
gradient descent).

Solution:

x̄(1) = −0.05∇xf(x
(0)) = −0.05(−10x(1)) = ê = [1,−2, 3]T

x̄(2) = x̄(1) − 0.05∇xf(x̄
(1)) = x(2) − 0.05 · 10x(2) = 0.5 ê = [0.5,−1, 1.5]T

(e) Dr. Ancient engages Dr. M. A. Th to do a theoretical analysis of the minimization problem.
Dr. Th discovers that the function f : R3 → R is convex, and claims that f(x) achieves its
minimum at a point x = t ê, where t is a real scalar, and ê is as defined earlier. Hearing
this news, Dr. Ancient concentrates on minimizing the function g : R → R defined by
g(t) = f(t ê). Compute the gradient of g with respect to t at t = 0, t = 1, and t = 2.

Solution: since ∇tg(t) = êT∇xf(t ê),

∇tg(0) = êT (−20 ê) = −20 êT ê = −20 · 14 = −280,

∇tg(1) = êT (10 ê) = 10 êT ê = 140,

∇tg(2) = êT (10 ê) = 10 êT ê = 140.

(f) Assuming Dr. Th is right, give the range of values of t that could possibly give minimum
g(t) for function g as defined in (e).

Solution: since g is convex, its gradient is monotonically non-increasing. Hence
∇tg(t) ≥ ∇tg(1) = 140 for t ≥ 1, and ∇tg(t) ≤ ∇tg(0) = −280 for t ≤ 0. Therefore,
any argument of minimum of g must be in the interval 0 < t < 1.
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DeBugging with ML

4. (17 points) Dr. Dee Scent is hot on the trail of a new technique to eradicate mosquitoes
carrying the Zika virus. In preliminary exciting research, she has discovered that the Aedes
species of mosquitoes beat their wings at around 300 Hz, and this species carries the virus. You
are hired as an MIT graduate who can turn this new insight into a classifier that can identify
which mosquitoes are positive for Zika, and which are not.

(a) Dr. Dee Scent improves her apparatus, and in addition to measuring wing beat speed
(variable x1, in hundreds of Hz, with some shift or offset), she now also measures their
size (variable x2, in her custom standard units, again with some shift or offset), for five
different collections of mosquitoes. But the data are no longer so clear cut! Or are they?

For each of the five sample data plots below (where the symbol ‘+’ indicates a mosquito
with Zika, and ‘−’ one without), a logistic regression classifier h(x; θ, θ0) = σ(θTϕ(x)+ θ0)
is desired, where h(x; θ, θ0) > 0.5 indicates class ‘+’, or class ‘−’ otherwise, and ϕ is a
feature transformation. The classifier is trained with the data shown using an objective
function with negative log likelihood loss Lnll, and regularization with modest non-zero
positive λ: (

1

n

n∑
i=1

Lnll(σ(θ
Tϕ(x(i)) + θ0), y

(i))

)
+ λ∥θ∥2 .

For each of the data sets below, help Dr. Dee Scent by choosing the smallest dimension fea-
ture transformation that can be used for training by the classifier to achieve approximately
80% accuracy or better classification of the data. If none of the feature transformations
are able to achieve this, then say so. Explain your choice.

i. First dataset:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x2

Solution: ⃝ [x1] ⃝ [x2] ⃝ [x1, x2] ⃝ [x21] ⃝ [x22]

√
[x1, x2, x1x2, x21, x22] ⃝ None of these

The best choice is [x1, x2, x1x2, x21, x22] with decision boundaries around (x1 +
x2 − 3)2 > 0.25. More generally, this transformation can define an ellipse or
hyperbola for the classifier boundary. These can have slanted axes, so can mostly
cover the ‘−’ points, for good accuracy separation from the ‘+’ points. The other
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smaller dimension options do not achieve good accuracy classifiers. Single vertical,
horizontal, or slanted lines (with or without offsets) give poor separation. Squaring
the individual axes just stretches the (already all positive) axes, but doesn’t help
with separation.

ii. Second dataset:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x2

Solution: ⃝ [x1] ⃝ [x2] ⃝ [x1, x2] ⃝ [x21]
√

[x22]

⃝ [x1, x2, x1x2, x21, x22] ⃝ None of these

Squaring the x2 values will map the ‘−’ points in the bottom half into the upper
region with the other ‘−’ points, where a horizontal classifier boundary at x22 = 0.5
will work to divide most of these from the mapped ‘+’ points. Note that x21 alone
does not work, as we would also need an x1 term to establish classifier boundaries
like (x1 − 2)2 > 0.25.

iii. Third dataset:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x2
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Solution:
√

[x1] ⃝ [x2] ⃝ [x1, x2] ⃝ [x21] ⃝ [x22]

⃝ [x1, x2, x1x2, x21, x22] ⃝ None of these

A vertical classifier boundary at x1 = 2 is sufficient!

iv. Fourth dataset:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x2

Solution: ⃝ [x1] ⃝ [x2] ⃝ [x1, x2] ⃝ [x21] ⃝ [x22]

⃝ [x1, x2, x1x2, x21, x22]
√

None of these

Very hard for a linear classifier here. Again, all x21 and x22 will do is stretch things
out. Even if stretched differently along x1 and x2 (or defining an ellipse), we don’t
get something with good separation.

(b) After further improving her apparatus to measure in outdoor environments, Dr. Dee Scent
discovers that mosquito wing beat frequency depends slightly (but noticeably) on ambient
air pressure. She gives you these air pressure values as x3, in units of millibars (mb). They
all are largely within the range 1013± 100 mb. Assuming x1 and x2 are typically within
the range given in part (a) above, what is the best way to include these new x3 values as
a new feature in your model? Explain.

Solution: We should normalize to comparable ranges that we have for x1 and x2.

(c) Your success enables Dr. Dee Scent to establish 24 new mosquito research stations around
the world, each named with a letter from the Greek alphabet, i.e., Alpha, Beta, Gamma,
· · · , Omega. Mosquito species responses are found to be shifted at different stations. As
a test of your classifier, Dr. Dee Scent gives you data (including research station names)
from a random half of the stations, and asks you for predictions for data from the other
half. How should you encode the names of the research stations so you can do a good job
at the predictions? Explain.
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Solution: One-hot: we know that the shifts are different at each station (with no hint
toward any trends), so one-hot will enable us to account for step differences (offsets)
between stations in our training set, but without those propagating into the unknown
offsets of the test set.
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Regression

5. (12 points) We are given two different training datasets,

D1 = {(x(i)1 , y
(i)
1 )}4i=1, D2 = {(x(i)2 , y

(i)
2 )}4i=1.

The two datasets are plotted together in the figure below; D1 is plotted with squares while D2

is plotted with circles.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

0

0 x

y

D1

D2

(a) We have two hypotheses and want to match each hypothesis to the data that it models
best according to mean-squared error:

h1(x) = x+ 1,

h2(x) =
1

2
x+ 1.

Calculate mean squared error (MSE) of each hypothesis with respect to each dataset.
Based on your MSE calculations, indicate which hypothesis is the best fit for each dataset.

Solution:

NOTE: conflict switched h1 and h2:

MSE of h1 on D1:
1
4(0 + 1 + 1 + 0) = 2

4 = 0.5

MSE of h1 on D2:
1
4(1 + 1 + 16 + 16) = 34

4 = 8.5

MSE of h2 on D1:
1
4(0.25 + 4 + 0.25 + 4) = 8.5

4 = 2.125

MSE of h2 on D2:
1
4(0 + 1 + 1 + 0) = 2

4 = 0.5

h1 on D1; h2 on D2

(b) Comparing the two datasets, we notice that the labels are identical for four pairs of data
points (e.g, at (1, 2) and (2, 2)). We decide to see whether these datasets can be combined
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in order to perform a “joint” linear prediction. To do so, consider a new dataset D3:

D3 =

{([
x
(i)
1

x
(i)
2

]
, y

(i)
1

)}4

i=1

,

where x
(i)
1 correspond to the square (D1) data points, and x

(i)
2 correspond to the circle

(D2) data points in the figure. Now, our goal is to learn the ordinary least squares (OLS)
estimate of our parameters, including a θ0 constant offset term as appeared in h1 and h2:

θOLS = (X̃T X̃)−1X̃T Ỹ .

Identify correct matrices X̃, Ỹ such that θOLS above expresses the solution of the joint
regression problem.

Solution: X̃ =


1 2 1
2 4 1
3 6 1
4 8 1

 , Ỹ =


2
4
3
5


The third column in X̃ corresponds to the constant offset component of θOLS.

(c) Out of the vector identities listed below, identify which would imply that we will not be
able to compute the closed-form solution to the joint regression problem using θOLS as
defined above. Explain your reasoning for your choice(s).

Solution:

NOTE: conflict just switched the choices around.

[1, 2, 3, 4] = 1/2∗[2, 4, 6, 8]; the two features are co-linear and so X̃T X̃ is not invertible.
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Battleblocks

6. (20 points) Battleblocks is a strategy game where each player picks a position to play their
battleblock on a 3× 3 game board, which is hidden to the other player. One battleblock takes
up either a complete column or a complete row in the game board. The object of the game
is to “hit” all three squares occupied by your opponent’s hidden battleblock before they hit
yours. There are six possible locations for an opponent’s battleblock:

Players keep track of hits and misses also on a 3×3 board. For example, suppose an opponent’s
battleblock is in Position 1 shown above. At the start of the game, the player’s game board is
that on the left in the figure below: all zeros. If the player guesses A1 on their first turn, then
the player’s game state is updated to be the state in the middle with a +1 in the A1 position to
indicate the hit. If on the second turn, the player then targets A2, their game state is updated
to be the state on the right with a -1 at A2 to indicate the miss.

In this problem, we are going to use one-vs-all (OvA) multiclass classification which takes as
input the current game board and outputs a probability that the current game board is one of
the six positions.

(a) While our game board is a 3× 3 square, our classifier operates on feature vectors of shape
[xA1, xB1, . . . , xC3]

T . Write the game board for the Turn 2 (A1 - hit, A2 - miss) in this
form.

Solution: Intended solution (looking ahead to next parts):
x = [1, 0, 0,−1, 0, 0, 0, 0, 0]T .
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(b) Suppose that we are given a dataset D1 = {(x(i), y(i))}ni=1 where each feature vector x(i)

is a game board as specified in (a) and each label y(i) is +1 if the opponent’s battleblock
was in Position 1 and 0 otherwise. We use this dataset to learn a binary, linear logistic
classifier of the form h(x(i); θ, θ0) = σ(θTx+θ0) by minimizing the linear logistic regression
objective function,

Jlr(θ, θ0) =
1

n

n∑
i=1

Lnll(h(x; θ, θ0), y
(i)) + λ∥θ∥2,

using some small, positive value for λ. The resulting learned parameters of our hypothesis

h(1)(x(i); θ(1), θ
(1)
0 ) for identifying Position 1 are:

θ(1) = [2, 2, 2,−1,−1,−1,−1,−1,−1]T , θ
(1)
0 = −9.

Next, we want a linear logistic classifier that positively classifies Position 2 and negatively
classifies Positions 1 and 3-6. However, we do not want to run the optimization process
again for Position 2. Given what we know about this Position 1 classifier, give a combina-

tion of values θ(2) and θ
(2)
0 to define a binary, linear logistic classifier that labels Position 2

as +1 and 0 otherwise.

Solution: θ
(1)
0 = [−1,−1,−1, 2, 2, 2,−1,−1,−1]T , θ

(1)
0 = −9.

(c) Suppose we re-train the linear logistic classifier with different regularization that positively
classifies Position 1 to get the following:

θ̄(1) = [5, 5, 5, 0, 0, 0, 0, 0, 0]T , θ̄
(1)
0 = −5

Was this classifier trained with stronger or weaker regularization than the one given in
(b)? Will this model be more or less confident in its predictions? Explain your reasoning.

Solution: As ∥θ(1)∥2 < ∥θ̄(1)∥2, we can conclude that this new classifier used weaker
regularization; it will be more confident in its predictions.
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(d) Now, we will combine the OvA classifiers defined by the set of learned parameters {θ(i), θ(i)0 }6i=1

into a multiclass hypothesis defined by parameters θ∗, θ∗0 which takes as input a game board
and outputs the probabilities that the gameboard should map to each of the six positions:

h(x; θ∗, θ∗0) = softmax(θ∗Tx+ θ∗0)

What are the dimensions of θ∗ and θ∗0? What are the dimensions of the output?

Solution: θ∗ is a 9 × 6 matrix and θ∗0 is a 6 × 1 vector. Thus, the output is also a
6× 1 vector.

(e) We obtain a new dataset by playing multiple games with Commander Consistent and
train a model on the possible final positions, where all training is done with the same λ

regularization parameter. We arrive at new {θ(i), θ(i)0 }6i=1 for our six binary linear logistic
classifiers. The θ(i) values for each classifier are plotted below; unfortunately, the corre-

sponding θ
(i)
0 values are missing. From the available parameter values, can you determine

what Commander Consistent’s most frequent placement of his battleblock is? If so, state
what that placement is, and explain your reasoning. If not possible, explain why not.

Solution: Commander Consistent seems to prefer placing their battleblock in Position
4, according to the θ parameter values of Classifier 4 having relatively large magnitude
in comparison to the other five classifiers. This does not depend on the corresponding
θ0 parameters. Since the same regularization was done in all cases, the NLL term in the
overall Jlr objective will be relatively more important compared to the regularization
term as the number of training examples increases. So the larger θ coefficients (for the
same λ) corresponds to where more training examples n are present, telling us what
position/strategy Commander Consistent uses more often. (Another way to say this,
is that the linear logistic classifier model becomes more confident with more training
samples, corresponding to larger θ coefficients.)
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