
CHAPTER 12

Reinforcement learning

So far, all the learning problems we have looked at have been supervised, that is, for each
training input x(i), we are told which value y(i) should be the output. Reinforcement learning
differs from previous learning problems in several important ways:

• The learner interacts explicitly with an environment, rather than implicitly (as in su-
pervised learning) through an available training data set of (x(i),y(i)) pairs drawn
from the environment.

• The learner has some choice over what new information it seeks to gain from the
environment.

• The learner updates models incrementally as additional information about the envi- Online learning is a vari-
ant of supervised learn-
ing in which new data
pairs become avail-
able over time and the
model is updated, e.g.,
by retraining over the
entire larger data set, or
by weight update using
just the new data.

ronment becomes available.

In a reinforcement learning problem, the interaction with the environment takes a par-
ticular form:

Learner

Environment

rewardstate action

• Learner observes input state s(i)

• Learner generates output action a(i)

• Learner observes reward r(i)

• Learner observes input state s(i+1)

• Learner generates output action a(i+1)

• Learner observes reward r(i+1)

• . . .
Similar to MDPs, the learner is supposed to find a policy, mapping a state s to action a,

that maximizes expected reward over time.

97

MIT 6.390 Fall 2024 98

12.1 Reinforcement learning algorithms overview

A reinforcement learning (RL) algorithm is a kind of a policy that depends on the whole history
of states, actions, and rewards and selects the next action to take. There are several different
ways to measure the quality of an RL algorithm, including:

• Ignoring the r(i) values that it gets while learning, but considering how many inter-
actions with the environment are required for it to learn a policy π : S → A that is
nearly optimal.

• Maximizing the expected sum of discounted rewards while it is learning.

Most of the focus is on the first criterion (which is called “sample efficiency”), because the
second one is very difficult. The first criterion is reasonable when the learning can take
place somewhere safe (imagine a robot learning, inside the robot factory, where it can’t
hurt itself too badly) or in a simulated environment.

Approaches to reinforcement learning differ significantly according to what kind of
hypothesis or model is being learned. Roughly speaking, RL methods can be categorized
into model-free methods and model-based methods. The main distinction is that model-
based methods explicitly learn the transition and reward models to assist the end-goal
of learning a policy; model-free methods do not. We will start our discussion with the
model-free methods, and introduce two of the arguably most popular types of algorithms,
Q-learning (Section 12.2.1) and policy gradient (Section 12.2.4). We then describe model-
based methods (Section 12.3). Finally, we briefly consider “bandit” problems (Section 12.4),
which differ from our MDP learning context by having probabilistic rewards.

12.2 Model-free methods

Model-free methods are methods that do not explicitly learn transition and rewards mod-
els. Depending on what is explicitly being learned, model-free methods are sometimes
further categorized into value-based methods (where the goal is to learn/estimate a value
function) and policy-based methods (where the goal is to directly learn an optimal pol-
icy). It’s important to note that such categorization is approximate and the boundaries are
blurry. In fact, current RL research tends to combine the learning of value functions, poli-
cies, and transition and reward models all into a complex learning algorithm, in an attempt
to combine the strengths of each approach.

12.2.1 Q-learning

Q-learning is a frequently used class of RL algorithms that concentrates on learning (es-
timating) the state-action value function, i.e., the Q function. Specifically, recall the MDP

value-iteration update: The thing that most stu-
dents seem to get con-
fused about is when we
do value iteration and
when we do Q learning.
Value iteration assumes
you know T and R and
just need to compute Q.
In Q learning, we don’t
know or even directly
estimate T and R: we
estimate Q directly from
experience!

Q(s,a) = R(s,a) + γ
∑

s′
T(s,a, s ′)max

a′
Q(s ′,a ′) (12.1)

The Q-learning algorithm below adapts this value-iteration idea to the RL scenario, where
we do not know the transition function T or reward function R, and instead rely on samples
to perform the updates.

Last Updated: 11/19/24 21:04:40

MIT 6.390 Fall 2024 99

Q-LEARNING(S,A,γ,α, s0, max-iter)

1 i = 0
2 for s ∈ S,a ∈ A :

3 Qold(s,a) = 0
4 s = s0

5 while i < max-iter:
6 a = select_action(s,Qold(s,a))
7 r, s ′ = execute(a)
8 Qnew(s,a) = (1 − α)Qold(s,a) + α(r+ γmaxa′ Qold(s

′,a ′))
9 s = s ′

10 i = (i+ 1)
11 Qold = Qnew

12 return Qnew

With the pseudo-code provided for Q-learning, there are a few key things to note. First,
we must determine which state to initialize the learning from. In the context of a game,
this initial state may be well defined. In the context of a robot navigating an environment,
one may consider sampling the initial state at random. In any case, the initial state is neces-
sary to determine the trajectory the agent will experience as it navigates the environment.
Second, different contexts will influence how we want to choose when to stop iterating
through the while loop. Again, in some games there may be a clear terminating state based
on the rules of how it is played. On the other hand, a robot may be allowed to explore an
environment ad infinitum. In such a case, one may consider either setting a fixed number of
transitions (as done explictly in the pseudo-code) to take; or we may want to stop iterating
in the example once the values in the Q-table are not changing, after the algorithm has been
running for a while. Finally, a single trajectory through the environment may not be suffi-
cient to adequately explore all state-action pairs. In these instances, it becomes necessary to
run through a number of iterations of the Q-learning algorithm, potentially with different
choices of initial state s0. Of course, we would then want to modify Q-learning such that This notion of running

a number of instances
of Q-learning is often
referred to as experienc-
ing multiple episodes.

the Q table is not reset with each call.
Now, let’s dig in to what is happening in Q-learning. Here, α ∈ (0, 1] represents the

“learning rate,” which needs to decay for convergence purposes, but in practice is often
set to a constant. It’s also worth mentioning that Q-learning assumes a discrete state and
action space where states and actions take on discrete values like 1, 2, 3, . . . etc. In contrast,
a continuous state space would allow the state to take values from, say, a continuous range
of numbers; for example, the state could be any real number in the interval [1, 3]. Similarly,
a continuous action space would allow the action to be drawn from, e.g., a continuous
range of numbers. There are now many extensions developed based on Q-learning that
can handle continuous state and action spaces (we’ll look at one soon), and therefore the
algorithm above is also sometimes referred to more specifically as tabular Q-learning.

In the Q-learning update rule

Q[s,a]← (1 − α)Q[s,a] + α(r+ γmax
a′

Q[s ′,a ′]) (12.2)

the term r + γmaxa′ Q[s ′,a ′] is often referred to as the (one-step look-ahead) target. The
update can be viewed as a combination of two different iterative processes that we have
already seen: the combination of an old estimate with the target using a running average
with a learning rate α, and the dynamic-programming update of a Q value from value
iteration.

Eq. 12.2 can also be equivalently rewritten as

Q[s,a]← Q[s,a] + α

(
(r+ γmax

a′
Q[s ′,a ′]) −Q[s,a]

)
, (12.3)

Last Updated: 11/19/24 21:04:40

MIT 6.390 Fall 2024 100

which allows us to interpret Q-learning in yet another way: we make an update (or correc-
tion) based on the temporal difference between the target and the current estimated value
Q[s,a].

The Q-learning algorithm above includes a procedure called select_action, that, given the
current state s and current Q function, has to decide which action to take. If the Q value is
estimated very accurately and the agent is behaving in the world, then generally we would
want to choose the apparently optimal action arg maxa∈A Q(s,a). But, during learning, the
Q value estimates won’t be very good and exploration is important. However, exploring
completely at random is also usually not the best strategy while learning, because it is
good to focus your attention on the parts of the state space that are likely to be visited
when executing a good policy (not a bad or random one).

A typical action-selection strategy that attempts to address this exploration versus ex-
ploitation dilemma is the so-called ϵ-greedy strategy:

• with probability 1 − ϵ, choose arg maxa∈A Q(s,a);

• with probability ϵ, choose the action a ∈ A uniformly at random.

where the ϵ probability of choosing a random action helps the agent to explore and try out
actions that might not seem so desirable at the moment.

Q-learning has the surprising property that it is guaranteed to converge to the actual
optimal Q function under fairly weak conditions! Any exploration strategy is okay as
long as it tries every action infinitely often on an infinite run (so that it doesn’t converge
prematurely to a bad action choice).

Q-learning can be very inefficient. Imagine a robot that has a choice between moving to
the left and getting a reward of 1, then returning to its initial state, or moving to the right
and walking down a 10-step hallway in order to get a reward of 1000, then returning to its
initial state.

robot 1 2 3 4 5 6 7 8 9 10

+1000+1

-1

The first time the robot moves to the right and goes down the hallway, it will update
the Q value just for state 9 on the hallway and action “right” to have a high value, but it
won’t yet understand that moving to the right in the earlier steps was a good choice. The
next time it moves down the hallway it updates the value of the state before the last one,
and so on. After 10 trips down the hallway, it now can see that it is better to move to the
right than to the left.

More concretely, consider the vector of Q values Q(i = 0, . . . , 9; right), representing the
Q values for moving right at each of the positions i = 0, . . . , 9. Position index 0 is the
starting position of the robot as pictured above.

Then, for α = 1 and γ = 0.9, Eq. 12.3 becomes

Q(i, right) = R(i, right) + 0.9 ·max
a

Q(i+ 1,a). (12.4)

Starting with Q values of 0,

Q(0)(i = 0, . . . , 9; right) =
[
0 0 0 0 0 0 0 0 0 0

]
. (12.5)

Since the only nonzero reward from moving right is R(9, right) = 1000, after our robot We are violating our
usual notational con-
ventions here, and writ-
ing Q(i) to mean the
Q value function that
results after the robot
runs all the way to
the end of the hallway,
when executing the pol-
icy that always moves
to the right.

makes it down the hallway once, our new Q vector is

Q(1)(i = 0, . . . , 9; right) =
[
0 0 0 0 0 0 0 0 0 1000

]
. (12.6)

Last Updated: 11/19/24 21:04:40

MIT 6.390 Fall 2024 101

After making its way down the hallway again, Q(8, right) = 0 + 0.9 · Q(9, right) = 900
updates:

Q(2)(i = 0, . . . , 9; right) =
[
0 0 0 0 0 0 0 0 900 1000

]
. (12.7)

Similarly,

Q(3)(i = 0, . . . , 9; right) =
[
0 0 0 0 0 0 0 810 900 1000

]
(12.8)

Q(4)(i = 0, . . . , 9; right) =
[
0 0 0 0 0 0 729 810 900 1000

]
(12.9)

... (12.10)

Q(10)(i = 0, . . . , 9; right) =
[
387.4 420.5 478.3 531.4 590.5 656.1 729 810 900 1000

]
,

(12.11)

and the robot finally sees the value of moving right from position 0. Here, we can see the
exploration/exploita-
tion dilemma in action:
from the perspective of
s0 = 0, it will seem that
getting the immediate
reward of 1 is a better
strategy without explor-
ing the long hallway.

Study Question: Determine the Q value functions that will result from updates due
to the robot always executing the “move left” policy.

12.2.2 Function approximation: Deep Q learning

In our Q-learning algorithm above, we essentially keep track of each Q value in a table,
indexed by s and a. What do we do if S and/or A are large (or continuous)?

We can use a function approximator like a neural network to store Q values. For exam-
ple, we could design a neural network that takes in inputs s and a, and outputs Q(s,a).
We can treat this as a regression problem, optimizing this loss: This is the so-called

squared Bellman error;
as the name suggests,
it’s closely related to the
Bellman equation we
saw in MDPs in Chap-
ter 11. Roughly speak-
ing, this error measures
how much the Bellman
equality is violated.

(
Q(s,a) − (r+ γmax

a′
Q(s ′,a ′))

)2

, (12.12)

where Q(s,a) is now the output of the neural network.
There are several different architectural choices for using a neural network to approxi-

mate Q values:

• One network for each action a, that takes s as input and produces Q(s,a) as output;

• One single network that takes s as input and produces a vector Q(s, ·), consisting of
the Q values for each action; or

• One single network that takes s,a concatenated into a vector (if a is discrete, we
would probably use a one-hot encoding, unless it had some useful internal structure)
and produces Q(s,a) as output.

For continuous action
spaces, it is popular
to use a class of meth-
ods called actor-critic
methods, which com-
bine policy and value-
function learning. We
won’t get into them in
detail here, though.

The first two choices are only suitable for discrete (and not too big) action sets. The last
choice can be applied for continuous actions, but then it is difficult to find arg maxa∈A Q(s,a).

There are not many theoretical guarantees about Q-learning with function approxima-
tion and, indeed, it can sometimes be fairly unstable (learning to perform well for a while,
and then getting suddenly worse, for example). But neural network Q-learning has also
had some significant successes.

One form of instability that we do know how to guard against is catastrophic forgetting.
In standard supervised learning, we expect that the training x values were drawn inde-
pendently from some distribution. But when a learning agent, such as a robot, is moving And, in fact, we rou-

tinely shuffle their order
in the data file, anyway.

through an environment, the sequence of states it encounters will be temporally correlated.
For example, the robot might spend 12 hours in a dark environment and then 12 in a light

Last Updated: 11/19/24 21:04:40

MIT 6.390 Fall 2024 102

one. This can mean that while it is in the dark, the neural-network weight-updates will
make the Q function “forget” the value function for when it’s light.

One way to handle this is to use experience replay, where we save our (s,a, s ′, r) expe-
riences in a replay buffer. Whenever we take a step in the world, we add the (s,a, s ′, r) to
the replay buffer and use it to do a Q-learning update. Then we also randomly select some
number of tuples from the replay buffer, and do Q-learning updates based on them, as well.
In general it may help to keep a sliding window of just the 1000 most recent experiences in
the replay buffer. (A larger buffer will be necessary for situations when the optimal policy
might visit a large part of the state space, but we like to keep the buffer size small for mem-
ory reasons and also so that we don’t focus on parts of the state space that are irrelevant for
the optimal policy.) The idea is that it will help us propagate reward values through our
state space more efficiently if we do these updates. We can see it as doing something like
value iteration, but using samples of experience rather than a known model.

12.2.3 Fitted Q-learning

An alternative strategy for learning the Q function that is somewhat more robust than the
standard Q-learning algorithm is a method called fitted Q.

FITTED-Q-LEARNING(A, s0,γ,α, ϵ,m)

1 s = s0 // (e.g., s0 can be drawn randomly from S)
2 D = { }

3 initialize neural-network representation of Q
4 while True:
5 Dnew = experience from executing ϵ-greedy policy based on Q for m steps
6 D = D ∪Dnew represented as (s,a, s ′, r) tuples
7 Dsupervised = {(x(i),y(i))} where x(i) = (s,a) and y(i) = r+ γmaxa′∈A Q(s ′,a ′)
8 for each tuple (s,a, s ′, r)(i) ∈ D

9 re-initialize neural-network representation of Q
10 Q = SUPERVISED-NN-REGRESSION(Dsupervised)

Here, we alternate between using the policy induced by the current Q function to gather
a batch of data Dnew, adding it to our overall data set D, and then using supervised neural-
network training to learn a representation of the Q value function on the whole data set.
This method does not mix the dynamic-programming phase (computing new Q values
based on old ones) with the function approximation phase (supervised training of the neu-
ral network) and avoids catastrophic forgetting. The regression training in line 9 typically
uses squared error as a loss function and would be trained until the fit is good (possibly
measured on held-out data).

12.2.4 Policy gradient

A different model-free strategy is to search directly for a good policy. The strategy here is
to define a functional form f(s; θ) = a for the policy, where θ represents the parameters we
learn from experience. We choose f to be differentiable, and often define f(s,a; θ) = Pr(a|s), This means the chance

of choosing an action
depends on which state
the agent is in. Sup-
pose, e.g., a robot is
trying to get to a goal
and can go left or right.
An unconditional policy
can say: I go left 99% of
the time; a conditional
policy can consider the
robot’s state, and say: if
I’m to the right of the
goal, I go left 99% of
the time.

a conditional probability distribution over our possible actions.
Now, we can train the policy parameters using gradient descent:

• When θ has relatively low dimension, we can compute a numeric estimate of the gra-
dient by running the policy multiple times for different values of θ, and computing
the resulting rewards.

Last Updated: 11/19/24 21:04:40

MIT 6.390 Fall 2024 103

• When θ has higher dimensions (e.g., it represents the set of parameters in a com-
plicated neural network), there are more clever algorithms, e.g., one called REIN-
FORCE, but they can often be difficult to get to work reliably.

Policy search is a good choice when the policy has a simple known form, but the MDP

would be much more complicated to estimate.

12.3 Model-based RL

The conceptually simplest approach to RL is to model R and T from the data we have gotten
so far, and then use those models, together with an algorithm for solving MDPs (such as
value iteration) to find a policy that is near-optimal given the current models.

Assume that we have had some set of interactions with the environment, which can be
characterized as a set of tuples of the form (s(t),a(t), s(t+1), r(t)).

Because the transition function T(s,a, s ′) specifies probabilities, multiple observations
of (s,a, s ′) may be needed to model the transition function. One approach to this task of
building a model T̂(s,a, s ′) for the true T(s,a, s ′) is to estimate it using a simple counting
strategy,

T̂(s,a, s ′) =
#(s,a, s ′) + 1
#(s,a) + |S|

. (12.13)

Here, #(s,a, s ′) represents the number of times in our data set we have the situation where
s(t) = s,a(t) = a, s(t+1) = s ′ and #(s,a) represents the number of times in our data set we
have the situation where s(t) = s,a(t) = a.

Study Question: Prove to yourself that #(s,a) =
∑

s′ #(s,a, s ′).

Adding 1 and |S| to the numerator and denominator, respectively, are a form of smooth-
ing called the Laplace correction. It ensures that we never estimate that a probability is 0,
and keeps us from dividing by 0. As the amount of data we gather increases, the influence Conceptually, this is

also similar to having
“initialized” our esti-
mate for the transition
function with uniform
random probabilities,
before having made any
observations.

of this correction fades away.
In contrast, the reward function R(s,a) (as we have specified it in this text) is a deter-

ministic function, such that knowing the reward r for a given (s,a) is sufficient to fully
determine the function at that point. In other words, our model R̂ can simply be a record
of observed rewards, such that R̂(s,a) = r = R(s,a).

Given empirical models T̂ and R̂ for the transition and reward functions, we can now
solve the MDP (S,A, T̂ , R̂) to find an optimal policy using value iteration, or use a search
algorithm to find an action to take for a particular state.

This approach is effective for problems with small state and action spaces, where it is
not too hard to get enough experience to model T and R well; but it is difficult to generalize
this method to handle continuous (or very large discrete) state spaces, and is a topic of
current research.

12.4 Bandit problems

Bandit problems differ from our reinforcement learning setting as described above in two
ways: the reward function is probabilistic, and the key decision is usually framed as whether
or not to continue exploring (to improve the model) versus exploiting (take actions to max-
imize expected rewards based on the current model).

A basic bandit problem is given by

• A set of actions A;

Last Updated: 11/19/24 21:04:40

MIT 6.390 Fall 2024 104

• A set of reward values R; and

• A probabilistic reward function Rp : A × R → R, i.e., Rp is a function that takes an
action and a reward and returns the probability of getting that reward conditioned
on that action being taken, Rp(a, r) = Pr(reward = r | action = a). This is analogous
to how the transition function T is defined. Each time the agent takes an action, a
new value is drawn from this distribution.

The most typical bandit problem has R = {0, 1} and |A| = k. This is called a k-armed
bandit problem, where the decision is which “arm” (action a) to select, and the reward is Why? Because in En-

glish slang, “one-armed
bandit” is a name for
a slot machine (an old-
style gambling machine
where you put a coin
into a slot and then pull
its arm to see if you get
a payoff) because it has
one arm and takes your
money! What we have
here is a similar sort
of machine, but with k
arms.

either getting a payoff (1) or not (0). There is a lot of mathematical literature on optimal
strategies for k-armed bandit problems under various assumptions. The important ques-
tion is usually one of exploration versus exploitation. Imagine that you have tried each action
10 times, and now you have estimates R̂p(a, r) for the probabilities Rp(a, r) for reward r

given action a. Which arm should you pick next? You could

exploit your knowledge, and for future trials choose the arm with the highest value of
expected reward; or

explore further, by trying some or all actions more times, hoping to get better estimates
of the Rp(a, r) values.

The theory ultimately tells us that, the longer our horizon h (or, similarly, closer to 1 our
discount factor), the more time we should spend exploring, so that we don’t converge
prematurely on a bad choice of action.

Study Question: Why is it that “bad” luck during exploration is more dangerous
than “good” luck? Imagine that there is an action that generates reward value 1 with
probability 0.9, but the first three times you try it, it generates value 0. How might
that cause difficulty? Why is this more dangerous than the situation when an action
that generates reward value 1 with probability 0.1 actually generates reward 1 on the
first three tries?

Bandit problems are reinforcement learning problems (and are very different from batch
supervised learning) in that: There is a setting of su-

pervised learning, called
active learning, where in-
stead of being given a
training set, the learner
gets to select a value of
x and the environment
gives back a label y;
the problem of picking
good x values to query
is interesting, but the
problem of deriving a
hypothesis from (x,y)
pairs is the same as the
supervised problem we
have been studying.

• The agent gets to influence what data it obtains (selecting a gives it another sample
from R(a, r)), and

• The agent is penalized for mistakes it makes while it is learning (if it is trying to
maximize the expected reward

∑
r r · Pr(Rp(a, r) = r) it gets while behaving).

In a contextual bandit problem, you have multiple possible states, drawn from some set
S, and a separate bandit problem associated with each one.

Bandit problems are an essential subset of reinforcement learning. It’s important to be
aware of the issues, but we will not study solutions to them in this class.

Last Updated: 11/19/24 21:04:40

