https:/ /introml.mit.edu/

Intro to Machine Learning

Lecture 3: Gradient Descent Methods

Shen Shen
Sept 13, 2024

(some slides adapted from Tamara Broderick)

https://introml.mit.edu/
https://tamarabroderick.com/

o Lecture pages have centralized resources

o Lecture recordings might be used for edX or beyond; pick a seat outside the

camera/mic zone if you do not wish to participate.

 Next Friday Sept 20, lecture will still be held at 12pm in 45-230, and live-streamed;

But, it's a student holiday, attendance ultra not expected but always appreciated @

https://introml.mit.edu/fall24/lectures/lec02

Outline

 Recap, motivation for gradient descent methods

 Gradient descent algorithm (GD)

= The gradient vector
= GD algorithm

= Gradient decent properties
o convex functions, local vs global min
« Stochastic gradient descent (SGD)

= SGD algorithm and setup
= GD vs SGD comparison

Outline

Recap, motivation for gradient descent methods

Recall

o A general ML approach
= Collect data

= Choose hypothesis class, hyperparameter, loss function

= Train (optimize for) "good" hypothesis by minimizing loss.

o Limitations of a closed-form solution for objective minimizer

= Don't always have closed-form solutions. (Recall, half-pipe cases.)
= Ridge came to the rescue, but we don't always have such "savior".

= Even when closed-form solutions exist, can be expensive to compute (recall, lab2, Q2.8)

« Want a more general, efficient way! (=> GD methods today)

Outline

Gradient descent algorithm (GD)

The gradient vector

Gradient

For f : R™ — R, its gradient V f : — IR is defined at the point p = (z1,...,z,,) in

m-dimensional space as the vector

Vi) =

1. Generalizes 1-dimensional derivatives.

2. By construction, always has the same dimensionality as the function input.

(Aside: sometimes, the gradient doesn't exist, or doesn't behave nicely, as we'll see later in this course. For

today, we have well-defined, nice, gradients.)

Vip) =

£ RN A
,\\.‘\“" & () . OO0 ())) "’0‘"- (778
e

The gradient of the function f{x,y) = —(coszx + coszy)2

another example

f@y,2) =a" +y’ +2
a gradient can be the (symbolic) function

2

Vi(z,y,z2) = |3y
1
or,

we can also evaluate the gradient function at a point
and get (numerical) gradient vectors

6
V£(3,2,1) = |12
1

exactly like how derivative can be both a function and
a number.

The gradient of the function f{x,y) = —(coszx + coszy)2

|

d

dz

3. the gradient points in the direction of the
(steepest) increase in the function value.
d

- cos(z) = —sin(5) ~ 0.9589

=5

1.001

0.75t

0.50t

0.25¢

0.00t

—-0.251

—-0.501

-0.75¢

—-1.001

cos(z) = —sin(—4) ~ —0.7568

x=—4

Outline

Gradient descent algorithm (GD)

GD algorithm

initial guess

hyperparameters of parameters precision

1 Gradient-Descent (O, 1. f, V@f,')
2 TInitialize 00 =@

init
3 Initialize t = 0
¢ repeat
5 t =t +1
6 Ol = 0lt-1) _ pvg f(O¢—1)

7 until f(@<t>)—f(@(*—1>)(<e
8 Return W)

Gradient-Descent (O, n, f, Ve f,€)
Tnitialize ©0 =@

1
2 init
3 Tnitialize t = 0
¢ repeat yz S—

// /// —— \\
6 @(t) — @(t—l) _ nv@f(@(t—l)) 1\)
until [f(®Y)-7f (@(H))‘ <€ 7;5\
8 Return o0 < vo,

N

Gradient-Descent (O, n, f, Ve f,€)
Tnitialize ©0 =@

1

2 init

3 Initialize t = 0 —
‘ repeat =
5 t =t + 1 (=N
6 0 = @t~1) _ pyg f(OF D) LA
until |£(0) /(O] < P
8 Return @O < —>0,

N

1
2
3
4
5
6

N

Gradient-Descent (O, n, f, Ve f,€)

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

0l = lt-1 _ nvg f(OF 1)
until |f(0Y)— f(@(t_l))‘ <e
Return @)

init

1 Gradient-Descent (Ouit,n, f, Vo f, €)

SN O & W DN

N

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

0l = olt-1) _ yvg f(OF 1)
until |f(0Y)— f(@(t_l))‘ <e
Return @)

init

1 Gradient-Descent (Ouit,n, f, Vo f, €)
Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

0l = -1 _ pvg f(O¢—1)
until |f(0Y)— f(@(t_l))‘ <e
8 Return W)

init

SN O & W DN

N

1 Gradient-Descent (Ouit,n, f, Vo f, €)
Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

0l = -1 _ pvg f(O¢—1)
until |f(0Y)— f(@(t_l))‘ <e
8 Return W)

init

SN O & W PN

N

1
2
3
4
5
6

N

Gradient-Descent (O, n, f, Ve f,€)
Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

Ol = Q-1 _ pvg f(OF—1)
until |f(0Y)— f((—)(t_l))‘ <e
Return @)

init

1 Gradient-Descent (Ouwit,n, f, Vo f, €)

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

ol = ot~ _pyg f(eLt-1)
until |[f(©®)— f((—-)(t_l))‘ <e
Return o)

o NN O O == WL DN

Q: if this condition is satisfied, what does it imply?

A: the gradient at the current parameter is almost zero.

1 Gradient-Descent (Ouwit,n, f, Vo f, €)

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

ol = ot~ _pyg f(eLt-1)
until |[f(©®)— f(@<t—1>)(<e
Return o)

o NN O O == WL DN

Other possible stopping criteria for line 7:

« Parameter norm change between iteration
o — 0t]| <
» Gradient norm close to zero |Vo f (0W)]| <€

e Max number of iterations T

Outline

Gradient descent algorithm (GD)

Gradient decent properties

convex functions, local vs global min

When minimizing a function, we'd hope to get to a global minimizer

—

At a global minimizer the gradient vector is the zero vector

AR

When minimizing a function, we'd hope to get to a global minimizer

the gradient vector is the zero vector
At a global minimizer <=

the function is a convex function

A function f is convex

if any line segment connecting two points of the graph of f lies above or on the graph.

e (f is concave if — f is convex.)

e (one can say a lot about optimization convergence for convex functions.)

https:/ / shenshen.mit.edu/demos/convex.html

https://shenshen.mit.edu/demos/convex.html

Some examples

Convex functions

= 95 3 28 2 5 1 05 0

f = min(Ja], 10)

Gradient Descent Performance

o Assumptions:

= f is sufficiently "smooth"

= f has at least one global minimum
= Run the algorithm long enough

= 7 is sufficiently small

= f1is convex
e Conclusion:

= Gradient descent will return a parameter value within € of a global minimum (for

any chosen € > 0)

Gradient Descent Performance

f is sufficiently "smooth"

if violated, may not have gradient,

can't run gradient descent

Gradient Descent Performance

f has at least one global minimum

if violated:

may not terminate /no
minimum to converge to

Plot of f(x) = 2x - 3

— f(x) =2x-3

=23 -10.0 -7.5 =50 =25 0.0 2.5 5.0 7.5

Gradient Descent Performance

if violated:

see demo on next slide,
Run the algorithm long enough also lab / recitation/hw

n is sufficiently small

https:/ /shenshen.mit.edu/demos/gd.html

https://shenshen.mit.edu/demos/gd.html

Gradient descent performance

if violated, may get stuck at a
saddle point

f is convex

400

200

-200

-400

Outline

Stochastic gradient descent (SGD)

SGD algorithm and setup
GD vs SGD comparison

Gradient of an ML objective

In general,

« An ML objective function is a finite sum

1=1

 The gradient of an ML objective :

VI©) = V(Y £(0) = 5 > FAO)

7

+ For instance,

o the MSE of a linear hypothesis:
5%
n -
1=1
e and its gradient w.r.t. 6:

2 3 (gTwu) ~ yu)) ()
n 1=1

(gradient of the sum) = (sum of the gradient)

Concrete example

Three data points: Fit a line (without offset) to the dataset, MSE:
2,5),(3,6), (4,7 1
12,5), (5,6, (4.7) f(6) = 3 [(20 —5)° + (30 — 6)° + (40 — 7)°]

. 1 1 1 1 0 1 2
0 1 2 3 4 5 Slope (6)

vor = 2 G 0 o) i)

First data

point's "pull”

Stochastic gradient descent

Stochastic:

Gradient-Descent (Ouit,n, f, Vo f, €)
ITnitialize 00 =@

Gradient-Descent (Ounit,n, f, Vo f, €)
Initialize ©0 =@

init init

Initialize t = 0 Initialize t = 0
repeat repeat
£t = t + 1 t=t + 1

randomly select 1 from {1,..,n}

0l =t _py,ref-1Y)
01 =8t~ —n(t)Ve fi(©"Y)

until |f(©6®)— f(@“—l))(<e

Return g® until [£(©©)- f(O)| <e

Return g

for a randomly picked data point ¢

Stochastic gradient descent performance

o Assumptions:

= fis sufficiently "smooth"

= f has at least one global minimum

= Run the algorithm long enough

= 7 is sufficiently small and satisfies additional ""scheduling' condition

« f is convex Yoo n(t) =o00and Y 70, n(t)* < 0o
 Conclusion:

» Stochastic gradient descent will return a parameter value within € of a global

minimum with probability 1 (for any chosen € > 0)

Compared with GD, SGD

is more "random"

may get us out of a local min

n is more efficient

Summary

« Most ML methods can be formulated as optimization problems.

« We won't always be able to solve optimization problems analytically (in closed-form).

« We won’t always be able to solve (for a global optimum) efficiently.

« We can still use numerical algorithms to good effect. Lots of sophisticated ones available.

o Introduce the idea of gradient descent in 1D: only two directions! But magnitude of step

is important.
o In higher dimensions the direction is very important as well as magnitude.

« GD, under appropriate conditions (most notably, when objective function is convex), can

guarantee convergence to a global minimum.

« SGD: approximated GD, more efficient, more random, and less guarantees.

We'd love to hear
your thoughts.

Thanks!

https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?usp=sf_link

