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Next Friday Sept 20, lecture will still be held at 12pm in 45-230, and live-streamed;
But, it's a student holiday, attendance ultra not expected but always appreciated 😉

https://introml.mit.edu/fall24/lectures/lec02

Lecture pages have centralized resources

Lecture recordings might be used for edX or beyond; pick a seat outside the
camera/mic zone if you do not wish to participate.

https://introml.mit.edu/fall24/lectures/lec02
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Limitations of a closed-form solution for objective minimizer

Don't always have closed-form solutions. (Recall, half-pipe cases.)

Ridge came to the rescue, but we don't always have such "savior".

Even when closed-form solutions exist, can be expensive to compute (recall, lab2, Q2.8)

Want a more general, efficient way! (=> GD methods today)

Recall

A general ML approach

Collect data
Choose hypothesis class, hyperparameter, loss function
Train (optimize for) "good" hypothesis by minimizing loss. 
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For , its gradient   is defined at the point  in 
-dimensional space as the vector
f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

m

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

1. Generalizes 1-dimensional derivatives.
2. By construction, always has the same dimensionality as the function input.

(Aside: sometimes, the gradient doesn't exist, or doesn't behave nicely, as we'll see later in this course. For
today, we have well-defined, nice, gradients.)

Gradient 



∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f f(x, y, z) = x +2 y +3 z

another example

∇f(x, y, z) =
2x
3y2

1

a gradient can be the (symbolic) function

∇f(3, 2, 1) =
6
12
1

one cute example:

exactly like how derivative can be both a function and
a number.

or,
we can also evaluate the gradient function at a point
and get (numerical) gradient vectors



∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

3. the gradient points in the direction of the
(steepest) increase in the function value.

 

cos(x) =
dx
d

x=−4
−sin(−4) ≈ −0.7568

 

cos(x) =
dx
d

x=5
−sin(5) ≈ 0.9589
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hyperparameters
initial guess
of parameters

learning rate, 
aka, step size precision
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Q: if this condition is satisfied, what does it imply?

A: the gradient at the current parameter is almost zero.
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Other possible stopping criteria for line 7:

Parameter norm change between iteration
Θ −Θ <(t) (t−1) ϵ

Gradient norm close to zero ∇ f Θ <Θ ( (t)) ϵ

Max number of iterations T

1
2
3
4
5
6
7
8
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When minimizing a function, we'd hope to get to a global minimizer
 

At a global minimizer the gradient vector is the zero vector

⇒

⇍



When minimizing a function, we'd hope to get to a global minimizer
 

At a global minimizer
the gradient vector is the zero vector

⇐
the function is a convex function
{

A function  is convex f

if any line segment connecting two points of the graph of  lies above or on the graph.f

(  is concave if  is convex.)f −f

(one can say a lot about optimization convergence for convex functions.)



https://shenshen.mit.edu/demos/convex.html

https://shenshen.mit.edu/demos/convex.html


Some examples

Convex functions

Non-convex functions
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Assumptions:

 is sufficiently "smooth" 

 has at least one global minimum

Run the algorithm long enough

 is sufficiently small

 is convex

Conclusion:

Gradient descent will return a parameter value within  of a global minimum (for

any chosen  )

f

f

η

f

ϵ~

>ϵ~ 0

Gradient Descent Performance



if violated, may not have gradient,
can't run gradient descent
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Assumptions:

 is sufficiently "smooth" 

 has at least one global minimum

Run the algorithm long enough

 is sufficiently small

 is convex

Conclusion:

Gradient descent will return a parameter value within  of a global minimum (for

any chosen  

f

f

η

f

ϵ~

>ϵ~ 0

if violated:
may not terminate/no
minimum to converge to

Gradient Descent Performance



if violated:
see demo on next slide,
also lab/recitation/hw

Assumptions:

 is sufficiently "smooth" 

 has at least one global minimum

Run the algorithm long enough

 is sufficiently small

 is convex

Conclusion:

Gradient descent will return a parameter value within  of a global minimum (for

any chosen  )

f

f

η

f

ϵ~

>ϵ~ 0

Gradient Descent Performance



https://shenshen.mit.edu/demos/gd.html

https://shenshen.mit.edu/demos/gd.html


Assumptions:

 is sufficiently "smooth" 

 has at least one global minimum

Run the algorithm sufficiently "long"

 is sufficiently small

 is convex

Conclusion:

Gradient descent will return a parameter value within  of a global minimum (for

any chosen  )

f

f

η

f

ϵ~

>ϵ~ 0

if violated, may get stuck at a
saddle point

or a local minimum

Gradient descent performance

 is convexf
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Gradient of an ML objective

An ML objective function is a finite sum the MSE of a linear hypothesis:

The gradient of an ML objective :

∇f(Θ) = ∇( f (Θ))
n

1

i=1

∑
n

i θ x − y x
n

2

i=1

∑
n

( ⊤ (i) (i)) (i)= ∇f (Θ)
n

1

i=1

∑
n

i

and its gradient w.r.t. :θ

In general,  For instance,

θ x − y
n

1

i=1

∑
n

( ⊤ (i) (i))2f(Θ) = f (Θ)
n

1

i=1

∑
n

i

(gradient of the sum) = (sum of the gradient) 

👆



Concrete example

Three data points:
{(2,5), (3,6), (4,7)}

Fit a line (without offset) to the dataset, MSE: 

f(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)
3
1

[ 2 2 2]

∇ f =θ [2(2θ −
3
2

5) + 3(3θ − 6) + 4(4θ − 7)]

First data
point's "pull"

Second data
point 's "pull"

Third data
point's "pull"



Stochastic gradient descent

∇f(Θ) = ∇f (Θ)
n

1

i=1

∑
n

i ≈ ∇f (Θ)i

for a randomly picked data point i



Assumptions:

 is sufficiently "smooth" 

 has at least one global minimum

Run the algorithm long enough

 is sufficiently small and satisfies additional "scheduling" condition

 is convex

Conclusion:

Stochastic gradient descent will return a parameter value within  of a global

minimum with probability 1 (for any chosen  )

f

f

η

f

ϵ~

>ϵ~ 0

Stochastic gradient descent performance

 and η(t) =∑t=1
∞ ∞ η(t) <∑t=1

∞ 2 ∞



is more "random"

is more efficient 

may get us out of a local min

Compared with GD, SGD 

∇f(Θ) = ∇f (Θ)
n

1

i=1

∑
n

i ≈ ∇f (Θ)i



Summary

Most ML methods can be formulated as optimization problems.

We won’t always be able to solve optimization problems analytically (in closed-form).

We won’t always be able to solve (for a global optimum) efficiently.

We can still use numerical algorithms to good effect.  Lots of sophisticated ones available.

Introduce the idea of gradient descent in 1D: only two directions!  But magnitude of step
is important.

In higher dimensions the direction is very important as well as magnitude.

GD, under appropriate conditions (most notably, when objective function is convex), can
guarantee convergence to a global minimum.

SGD: approximated GD, more efficient, more random, and less guarantees.



https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?
embedded=true

Thanks!
We'd love to hear

your .thoughts

https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?usp=sf_link

