
https://introml.mit.edu/

Intro to Machine Learning
Lecture 6: Neural Networks

Shen Shen
Oct 4, 2024

1

https://introml.mit.edu/

Outline

Recap, the leap from simple linear models

(Feedforward) Neural Networks Structure

Design choices

Forward pass

Backward pass

Back-propagation

2

Recap:

3

leveraging nonlinear transformations ϕ x ;x =([1 2]) 1; ∣x − x ∣[1 2]transform via

👆

importantly, linear in , non-linear in ϕ x

4

5

 Pointed out key ideas (enabling neural networks):

 Nonlinear feature transformation

"Composing" simple transformations

Backpropagation

} expressiveness

efficient training

6

σ =1 σ(5x +1 −5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

Two epiphanies:

nonlinear transformation empowers linear tools
"composing" simple nonlinearities amplifies such effect

some appropriate
weighted sum

7

Outline

Recap, the leap from simple linear models

(Feedforward) Neural Networks Structure

Design choices

Forward pass

Backward pass

Back-propagation

👋 heads-up, in this section, for simplicity:
all neural network diagrams focus on a single data point

8

A neuron:

: what the algorithm learnsw

A neuron:

: -dimensional inputx d

a = f(z)…

x1

x2

xd

x = Σ

w1

wd

…

w2

9

f(⋅)
= w xT
z

: post-activation outputa

: activation functionf

: weights (i.e. parameters)w

: pre-activation outputz

: what we engineers choosef

= f(w x)T

: scalarz

: scalara

Choose activation f(z) = z

learnable parameters (weights)

e.g. linear regressor represented as a computation graph

…

x1

x2

xd

w1

wd

= z

10

= w xT…
x =

w2

Σ f(⋅)z g

Choose activation f(z) = σ(z)

learnable parameters (weights)

e.g. linear logistic classifier represented as a computation graph

…

x1

x2

xd

w1

wd

= σ(z)= w xT…

w2

Σ f(⋅)

11

z gx =

…

x1

x2

xd

a1Σ f(⋅)z1

…

Σ f(⋅)z2 a2

12

amΣ f(⋅)zm

A layer:

learnable weights

A layer:

(# of neurons) = (layer's output dimension).

typically, all neurons in one layer use the same

activation (if not, uglier algebra).f

typically fully connected, where all are

connected to all meaning each influences

every eventually.

xi

z ,j xi

aj

typically, no "cross-wiring", meaning e.g.

won't affect (the final layer may be an

exception if softmax is used.)

z1

a .2

Σ f(⋅)

…

layer

linear combo activations

A (fully-connected, feed-forward) neural network:

…

x1

x2

xd

input

13

…
…

layer

Σ f(⋅)

Σ f(⋅)

Σ f(⋅)

Σ f(⋅)Σ f(⋅)

Σ f(⋅)

neuron

learnable
weights

We choose:

activation in each layerf

of layers
of neurons in each layer

hidden output

Outline

Recap, the leap from simple linear models

(Feedforward) Neural Networks Structure

Design choices

 Forward pass

Backward pass

Back-propagation

14

σ =1 σ(5x +1 −5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

some appropriate
weighted sum

recall this example

15

x1

x2

1

Σ f(⋅)

Σ f(⋅)

16

Σ f(⋅)

 f(⋅) = σ(⋅)

 identity functionf(⋅)

it can be represented as

Activation function choicesf

 used to be the most popular

firing rate of a neuron
elegant gradient

σ

σ (z) =′ σ(z) ⋅ (1 − σ(z))

a = f(z)…

x1

x2

xd

x = Σ

w1

wd

…

w2

17

f(⋅)
= w xT
z = f(w x)T

https://shenshen.mit.edu/demos/2layers.html

18

https://shenshen.mit.edu/demos/2layers.html

default choice in hidden layers
very simple function form, so is the
gradient.

ReLU(z) = { 0
z

 if z < 0
 otherwise

= max(0, z)

nowadays

drawback: if strongly in negative region, a single
ReLU can be "dead" (no gradient).
Luckily, typically we have lots of units, so not
everyone is dead.

:=
∂z

∂ReLU(z) { 0,
1,

 if z < 0
 if otherwise

19

compositions of ReLU(s) can be quite expressive

in fact, asymptotically, can approximate any function!

(image credit:)Phillip Isola
20

https://web.mit.edu/phillipi/

x1

x2

(image credit: Tamara Broderick)

or give arbitrary decision boundaries!

+ =

21

(image credit: Tamara Broderick)

+ =

22

neurons, activation, and loss depend on the high-level goal.

typically straightforward.

Multi-class setup: if predict one and only one class out of possibilities, then

last layer: neurons, softmax activation, cross-entropy loss

K

K

other multi-class settings, see discussion in lab.

output layer design choices

e.g., say classesK = 5

input x hidden
layer(s)

…

output
layer

23

Width: # of neurons in layers

Depth: # of layers

More expressive if increasing either the

width or depth.

The usual pitfall of overfitting (though in NN-land, it's also an active research topic.)

24

(The demo won't embed in PDF. But the direct link below works.)

https://playground.tensorflow.org/

25

https://playground.tensorflow.org/

Outline

Recap, the leap from simple linear models

(Feedforward) Neural Networks Structure

 Design choices

Forward pass

Backward pass

Back-propagation

26

…

x1

x2

xd

x =(i) L(g, y)

L(g, y)

Evaluate the loss L = (g − y)2

Repeat for each data point, average the sum of individual lossesn

e.g. forward-pass of a linear regressor

y(i)

f(⋅)

= z

g

27

w1

wd

= w xT…

w2

Σ z

L(g, y)

n

…

…

…

L(g, y)

L(g, y)

Evaluate the loss L = −[y log g + 1 − y log 1 − g]() ()

Repeat for each data point, average the sum of individual lossesn

…

x1

x2

xd

x =(i) f(⋅)

= σ(z)

g

28

w1

wd

= w xT…

w2

Σ z

L(g, y)

n

e.g. forward-pass of a linear logistic classifier

…

y(i)

…

…

L(g , y)(n) (n)

L(g, y)x(1) W 1 f 1

L(g , y)(1) (1)

y(1)

29

linear combination

…

nonlinear activation

W 2 WLf 2 fL

g(1)

f ;W2 (2)f (x ;W)1 (i) 1f … ;…WL (L)

Forward pass:
evaluate, given the current parameters,

the model output = g(i)

the loss incurred on the current data L(g , y)(i) (i)

the training error J = L(g , y)
n
1 ∑i=1

n (i) (i)

n

…

…

…

loss function

Outline

Recap, the leap from simple linear models

(Feedforward) Neural Networks Structure

Design choices

Forward pass

Backward pass

Back-propagation

30

L(g , y)(n) (n)

L(g, y)

Randomly pick a data point (x , y)(i) (i)

Evaluate the gradient ∇ L(g , y)W 2
(i) (i)

Update the weights W ←2 W −2 η∇ L(g , y)W 2
(i) (i)

x(i) W 1 f 1

L(g , y)(i) (i)

31

y(i)

…W 2 WLf 2 fL
g(i)

n

…

…

…

Backward pass:
Run SGD to update the parameters, e.g. to update W 2

∇ L(g , y)W 2
(i) (i)

W 2x W 1 f 1

L(g, y)

…

32

y

WLf 2 fL

g

∇ L(g, y)W 2

Backward pass:
Run SGD to update the parameters, e.g. to update W 2

Evaluate the gradient ∇ L(g , y)W 2
(i) (i)

Update the weights W ←2 W −2 η∇ L(g , y)W 2
(i) (i)

W 2x W 1 f 1

L(g, y)
y

g

How do we get these gradient though?

33

∇ L(g, y)W 1

Backward pass:
Run SGD to update the parameters, e.g. to update W 1

Evaluate the gradient

Update the weights

∇ L(g , y)W 1
(i) (i)

W ←1 W −1 η∇ L(g , y)W 1
(i) (i)

… WLf 2 fL

Outline

Recap, the leap from simple linear models

(Feedforward) Neural Networks Structure

Design choices

Forward pass

Backward pass

Back-propagation

34

L(g, y)

L(g, y)

…

x1

x2

xd

x =(i) g

35

= w xT
Σ

L(g, y)

n

e.g. backward-pass of a linear regressor

…

y(i)

…

…

Randomly pick a data point (x , y)(i) (i)

Evaluate the gradient ∇ L(g , y)w
(i) (i)

Update the weights w ← w − η∇ L(g , y)w
(i) (i)

w

w1

wd

…

w2

w1

wd

…

w2

=
∇ L(g , y)w

(i) (i)

…

x1

x2

xd

x = Σ

L(g, y)

e.g. backward-pass of a linear regressor

y

w1

wd

…

w2

36

y ∈ R

x ∈ Rd

w ∈ Rd

=
∂w

∂L(g, y)∇ L(g, y)w = x ⋅ 2(g − y)

∂w
∂g

=
∂w

∂[(g − y)]2
=

∂w
∂[(w x− y)]T 2

∇ L(g, y)w

∂g
∂L

w =
∇ L(g, y)w

g

= w xT

…

x1

x2

xd

x = ReLU

= ReLU(z)

g

= w xT
Σ

37

z

L(g, y)

e.g. backward-pass of a non-linear regressor

y

w1

wd

…

w2

y ∈ R

x ∈ Rd

w ∈ Rd

=
∂w

∂L(g, y)∇ L(g, y)w = x ⋅ ⋅
∂z

∂[(ReLU(z))]
2(g − y)

∂z
∂g

∂w
∂z

=
∂w

∂[(g − y)]2

∇ L(g, y)w

∂g
∂L

w =
∇ L(g, y)w

W 2x W 1 f 1

L(g, y)

…

38

y

WLf 2 fL

g

Now, back propagation: reuse of computation

ZLA2Z2A1Z1

∂W 2

∂L(g, y)

∂g
∂L(g, y)

∂ZL

∂g
…

∂A2
∂Z3

∂Z3
∂A4

∂AL−1

∂ZL

∂Z2
∂A2

∂W 2

∂Z2

∂Z2
∂L(g, y)

∂W 2

∂L(g, y)
how to find ?

∂W 2

∂Z2

∂W 1

∂L(g, y)

W 2x W 1 f 1

L(g, y)

…

39

y

WLf 2 fL

gZLA2Z2A1Z1

∂g
∂L(g, y)

∂ZL

∂g
…

∂A2
∂Z3

∂Z3
∂A4

∂AL−1

∂ZL

∂Z2
∂A2

∂Z2
∂L(g, y)

back propagation: reuse of computation

∂W 2

∂L(g, y)
how to find ?

∂W 1

∂L(g, y)

∂A1
∂Z2

∂Z1
∂A1

∂W 1

∂Z1

W 2x W 1 f 1

40

L(g, y)

…

y

WLf 2 fL

gZLA2Z2A1Z1

∂g
∂L(g, y)

∂ZL

∂g
…

∂A2
∂Z3

∂Z3
∂A4

∂AL−1

∂ZL

∂Z2
∂A2

∂Z2
∂L(g, y)

back propagation: reuse of computation

how to find
∂W 1

∂L(g, y)?

Summary
We saw that introducing non-linear transformations of the inputs can substantially

increase the power of linear tools. But it’s kind of difficult/tedious to select a good

transformation by hand.

Multi-layer neural networks are a way to automatically find good transformations for us!

Standard NNs have layers that alternate between parametrized linear transformations

and fixed non-linear transforms (but many other designs are possible.)

Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu.

Typical output transformations for classification are as we've seen: sigmoid, or softmax.

There’s a systematic way to compute gradients via back-propagation, in order to update

parameters.

41

https://forms.gle/kMAu9HkyHoi1ysoGA

Thanks!
We'd love to hear

your .thoughts

42

https://forms.gle/kMAu9HkyHoi1ysoGA
https://forms.gle/kMAu9HkyHoi1ysoGA

