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Outline

Recap, neural networks mechanism

Neural networks are representation learners

Auto-encoder:

 Bottleneck

Reconstruction

Unsupervised learning

(Some recent representation learning ideas)
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linear combination

…

nonlinear activation

W 2 WLf 2 fL

g(1)
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Forward pass: evaluate, given the current parameters,

the model output  =  g(i)

the loss incurred on the current data L(g , y )(i) (i)

the training error J = L(g , y )
n
1 ∑i=1

n (i) (i)

n

…

…

…

loss function

Recap:



compositions of ReLU(s) can be quite expressive

in fact, asymptotically, can approximate any function!

(image credit: )Phillip Isola
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σ =1 σ(5x +1 −5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

some weighted sum

Recap:
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L(g , y )(n) (n)

L(g, y)

Randomly pick a data point (x , y )(i) (i)

Evaluate the gradient  ∇ L(g , y )W 2
(i) (i)

Update the weights  W ←2 W −2 η∇ L(g , y )W 2
(i) (i)

x(i) W 1 f 1

L(g , y )(i) (i)
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y(i)

…W 2 WLf 2 fL
g(i)

n

…

…

…

Backward pass: run SGD to update the parameters, e.g. to update W 2

∇ L(g , y )W 2
(i) (i)

Recap:



W 2x W 1 f 1

L(g, y)

…
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Recap:

back propagation: reuse of computation
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back propagation: reuse of computation

Recap:
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Two different ways to visualize a function
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Two different ways to visualize a function
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Representation transformations for a variety of neural net operations
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and stack of neural net operations

)
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wiring graph equation mapping 1D mapping 2D
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Training data
x

z1

a1

z2

g

z =1  linear (x)

a =1  ReLU(z )1

g = softmax(z )2

z =2  linear (a )1

x ∈ R2
maps from

complex data
space to simple

embedding space
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Neural networks are representation learners 

 Deep nets transform datapoints, layer by layer

 Each layer gives a different representation (aka embeddings)

of the data
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🧠

humans also learn representations
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"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327
brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees.”
— Max Wertheimer, 1923
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Good representations are:

Compact (minimal)

Explanatory (roughly sufficient)

[See “Representation Learning”, Bengio 2013, for more commentary]
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[Bartlett, 1932]
[Intraub & Richardson, 1989]
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[https://www.behance.net/gallery/35437979/Velocipedia]
23



Outline

Recap, neural networks mechanism

Neural networks are representation learners

Auto-encoder:

 Bottleneck

Reconstruction

Unsupervised learning

(Some recent representation learning ideas)

24



 

Compact (minimal)

Explanatory (roughly sufficient)

Disentangled (independent factors)

Interpretable

Make subsequent problem solving easy

[See “Representation Learning”, Bengio 2013, for more commentary]

Auto-encoders try
to achieve these {

⎩⎨
⎧

these may just
emerge as well

Good representations are:
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compact representation/embedding

Auto-encoder
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Auto-encoder

"What I cannot create, I do not understand." Feynman
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Auto-encoder

encoder decoder

bottleneck

Auto-encoder

x =x~ NN(x;W )

∣∣x−
W
min ∣∣x~ 2

28



input 
x ∈ Rd

output 
∈x~ Rd

…

bottleneck
typically, has lower dimension than d
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Auto-encoder

Training Data

x{ (i)}
i=1

n

loss/objective

L(F (x),x) = ∥F (x) − x∥2

hypothesis class
A model

f

F = g ∘ h : R →d R →m Rd

h

g

m < d
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 f : X → Y

Supervised Learning
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"Good"
Representation

Unsupervised Learning

Training Data
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Word2Vec
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https://www.tensorflow.org/text/tutorials/word2vec

Word2Vec
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X = Vector(“Paris”) – vector(“France”) + vector(“Italy”)  vector("Rome")≈

“Meaning is use” — Wittgenstein
36



Often, what we will be “tested” on is not what we were trained on.
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Final-layer adaptation: freeze , train a new final layer to new target dataf
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Finetuning: initialize  as , then continue training for  as well, on new target dataf ’ f f ′
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Feature reconstruction (unsupervised learning)

Features Reconstructed
Features
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Label prediction (supervised learning)

Features

Label
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Partial
features

Other partial
features
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Masked Auto-encoder

[He, Chen, Xie, et al. 2021]
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Masked Auto-encoder

[Devlin, Chang, Lee, et al. 2019]
47



[Zhang, Isola, Efros, ECCV 2016]
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predict color from gray-scale

[Zhang, Isola, Efros, ECCV 2016]
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Self-supervised learning

Common trick: 

Convert “unsupervised” problem into

“supervised” setup

Do so by cooking up “labels” (prediction

targets) from the raw data itself — called

pretext task
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[Slide Credit: Yann LeCun]
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The allegory of the cave
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[Slide credit: Andrew Owens]
[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]
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[Slide credit: Andrew Owens]
[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]

What did the model learn?
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[Slide credit: Andrew Owens]
[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]
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Contrastive learning 
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Contrastive learning 
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[Chen, Kornblith, Norouzi, Hinton, ICML 2020]
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[https://arxiv.org/pdf/2204.06125.pdf]

DallE
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Summary
We looked at the mechanics of neural net last time. Today we see deep nets learn

representations, just like our brains do.

This is useful because representations transfer — they act as prior knowledge that enables

quick learning on new tasks.

Representations can also be learned without labels, e.g. as we do in unsupervised, or self-

supervised learning. This is great since labels are expensive and limiting.

Without labels there are many ways to learn representations. We saw today:

representations as compressed codes, auto-encoder with bottleneck

(representations that are shared across sensory modalities)

(representations that are predictive of their context)
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https://forms.gle/36SX9pqCTWpp323N8

Thanks!
We'd love to hear

your .thoughts
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