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https://www.youtube-nocookie.com/embed/VhqtQdAGb7Q?si=sfKLandZIKl9jS2n

Welcome to 6.390!
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Team

~50 awesome LAs
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Class meetings  assignments

Hours:
Lec: 1.5 hr
Rec + Lab: 3 hr
Notes + exercise: 2 hr
Homework: 6-7 hr
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Grading and collaboration

Our objective (and we hope yours) is for you to learn about machine learning

take responsibility for your understanding

we are here to help!

Grades formula: exercises 5% + homework 20% + labs 15% + midterm 30% + final 30%

Lateness: 20% penalty per day, applied linearly (so 1 hour late is -0.83%)

Extensions:

20 one-day extensions (extend one assignment's deadline by one full day), will be

applied automatically at the end of the term in a way that is maximally helpful
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Grading and collaboration

Midterm 1: Wednesday, October 8, 730pm-9pm

Midterm 2: Wednesday, Nov 12, 730pm-9pm

Final: scheduled by Registrar (posted in 3rd week). ⚠  – might be as late as Dec 19!

Detailed exam logistics will be posted 3 weeks before the exam date.

Collaboration: 

Understand everything you turn in

Coding and detailed derivations must be done by you

See collaboration policy/examples on course web site
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How to get help

Office hours: lots!  (Starting Wed Sept 10)

Schedule details on OHs page (includes instructors' OHs)

See Calendar page for holiday/schedule shift

Make use of Piazza and Pset-partners!

Logistic, personal issues, reach out to 6.390-personal@mit.edu (looping in S^3 and/or

DAS)
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What we're teaching: Machine Learning

Given:

a collection of examples (gene sequences, documents, …)
an encoding of those examples in a computer (as vectors)

Derive:

a computational model that describes relationships within and among the
examples that is expected to characterize well new examples from that same
population, to make good predictions or decisions

A model might:

classify images of cells as to whether they're cancerous
specify groupings (clusters) of documents that address similar topics
steer a car appropriately given lidar images of the surroundings
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traditionally

supervised
learning

unsupervised
learning

reinforcement
learning
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nowadays

supervised
learning

unsupervised
learning

reinforcement
learning

self-supervised
contrastive learning (DALLE)

behavior cloning

RLHF (ChatGPT etc.)

inverse reinforcement learning
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Toddler demo, Russ Tedrake thesis, 2004
(Uses vanilla policy gradient (actor-critic))
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https://s3.amazonaws.com/media-p.slid.es/videos/1146306/TkgXlQ2O/toddler.mp4


Optimization + first-principle physicsDARPA Robotics Competition
2015
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https://s3.amazonaws.com/media-p.slid.es/videos/1350152/isFL4k6b/lilly_excerpt.mp4


https://www.physicalintelligence.company/blog/pi0
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https://www.physicalintelligence.company/blog/pi0


In 6.390:

supervised
learning

reinforcement
learning

unsupervised
learning
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Intro to ML

Regularization

Gradient Descent

Linear Classification

Features, Neural Networks I

Neural Networks II (Backprop)

Convolutional Neural Networks

Representation Learning

Transformers

Non-parametric Models

Markov Decision Processes

Reinforcement Learning

Topics in order:

supervised

unsupervised

reinforcement
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Model class:

linear models
linear model on non-linear features
fully connected feed-forward nets
convolutional nets
transformers
Q-table
tree, k-nearest neighbor, k-means Optimization:

analytical solutions
gradient descent
back propagation
value iteration, Q-learning
non-parametric methods

Learning process:

training/validation/testing
overfitting/underfitting
regularization
hyper parameters

Modeling choices:

Supervised:
regression
classification

Unsupervised/self-supervised
Reinforcement/sequential

Many other ways to dissect

[These lists are neither exhaustive nor exclusive.]
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We first focus on an instance of supervised learning known as regression.

example: city daily energy consumption prediction

Features Label
City Temperature

(°C)
Energy used
(GWh)

Chicago 25 51
New York 28 57
Boston 31 63
San Diego 35 71

temperature x1

energy
used y

toy data, for illustration only
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temperature x1
population x2

energy
used y

Training data:

x =(1)   ∈

x1
(1)

x2
(1)

⋮

xd
(1)

Rd

labelfeature vector

y ∈(1) R

D :=train x , y ,… , x , y{( (1) (1)) ( (n) (n))}

n = 4, d = 1

n = 4, d = 2

temperature x1

energy
used y
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temperature x1
population x2

energy
used y

Training data:

x =(1)   ∈

x1
(1)

x2
(1)

⋮

xd
(1)

Rd

labelfeature vector

y ∈(1) R

D :=train x , y ,… , x , y{( (1) (1)) ( (n) (n))}

n = 4, d = 2

(x , y )(1) (1)

= , y
x1
(1)

x2
(1)

(1)
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h

Regression
Algorithm
💻

→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →
x , y ,… , x , y{( (1) (1)) ( (n) (n))}

What do we want from the regression algortim?
A good way to label new features, i.e. a good hypothesis.

Suppose our friend's algorithm proposes h(x) = 10

hypothesis

Is this a hypothesis?
Is this a "good" hypothesis? Or, what would be a "good" hypothesis?
What can affect if and how we can find a "good" hypothesis?
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Loss L h x , y( ( (i)) (i))

temperature x

h(x) = 10

e.g. h x −( (4)) y(4)

energy
used y

E (h) =train  L h x , y
n
1 ∑i=1

n ( ( (i)) (i))Training error 

e.g. with squared loss, the training error is the mean-squared-error (MSE)

e.g. squared loss L h x , y =( ( (i)) (i)) (h x −( (i)) y )(i) 2

E (h) =test  L h x , y
n′
1 ∑i=n+1

n+n′ ( ( (i)) (i))Test error

 unseen data points, i.e.n′ test data
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set of  we ask the algorithm to search overhHypothesis class H :

temperature x

energy
used y

h (x) =1 10

h (x) =2 20

h (x) =3 30

constant functions{ } ⊂

less expressive more expressive

linear functions{ }1

temperature x

energy
used y

h(x) = θx+ θ0

24

1. technically, affine functions. ppl tend to be flexible about this terminology in ML.



h→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →
x , y ,… , x , y{( (1) (1)) ( (n) (n))}

hypothesis

🧠

hypothesis class
loss function
...

 
Regression
Algorithm
💻
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Supervised learning

Regression

Training data, test data

Features, label

Loss function, training error, test error

Hypothesis, hypothesis class

Quick summary
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Linear hypothesis class:

h x; θ( )   = [ θ1 θ2 ⋯ θd ]

x1
x2

⋮
xd

parameters

Linear least square regression

Squared loss function:

L h x , y =( ( (i)) (i)) (θ x−T y )(i) 2

temperature x1
population x2

energy
used y

for now, ignoring the offset

= xθT

features

28



MSE training error:

Features Label

City Temperature Population Energy Used

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 99

San Diego 18 4.3 39

J(θ , θ ) =1 2 [(θ ⋅
4
1

1 90 + θ ⋅2 7.2 − 45)2

+(θ ⋅1 18 + θ ⋅2 4.3 − 39) ]2

+(θ ⋅1 20 + θ ⋅2 9.5 − 32)2

+(θ ⋅1 35 + θ ⋅2 8.4 − 99)2

 denotes training error, sometimes the more explicitly 

want a more compact way to write this out

J J(θ; data)

J(θ , θ ) =1 2 [(e +
4
1

1
2 e +2

2 e +3
2 e )]4

2
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Features Label

City Temperature Population Energy Used

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 99

San Diego 18 4.3 39

X =

90
20
35
18

7.2
9.5
8.4
4.3

Y =

45
32
99
39

θ = [θ1
θ2

]

X =

x1
(1)

⋮
x1
(n)

…

⋱
…

xd
(1)

⋮
x
d

(n)

Y =

y(1)

⋮
y(n)

θ =

θ1

⋮
θd

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

Let

Then

∈ Rn×d ∈ Rn×1
∈ Rd×1

∈ R1×1

e.g.
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= (Xθ − Y ) (Xθ −⊤ Y )

Features Label

City Temperature Population Energy Used

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 99

San Diego 18 4.3 39

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

X =

90
20
35
18

7.2
9.5
8.4
4.3

Y =

45
32
99
39

deviation

θ = [θ1
θ2

]

training error (MSE):

Xθ − Y

summing deviation squared

=

90θ + 7.2θ − 451 2

20θ + 9.5θ − 321 2

35θ + 8.4θ − 991 2

18θ + 4.3θ − 391 2

=

e1
e2
e3
e4

e +1
2 e +2

2 e +3
2 e4

2 = [e , e , e , e1 2 3 4]

e1
e2
e3
e4

want to show:
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Q: What kind of function is ? J(θ)

A: Quadratic function

Q: What does  look like?J(θ)

A: Typically, looks like a "bowl"

Q: How to find the minimizer?

Objective function (training error)

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

[1d case walk-through on board]

goal: find  to minimize θ J(θ)
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For , its gradient   is defined at the point  as: f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved.

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.
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∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

3. The gradient can be symbolic or numerical.

f(x, y, z) = x +2 y +3 zexample:

its symbolic gradient:

just like a derivative can be a function or a number.

evaluating the symbolic gradient at a point gives a numerical gradient:

∇f(x, y, z) =
2x
3y2

1

∇f(3, 2, 1) = ∇f(x, y, z) =
(x,y,z)=(3,2,1)

6
12
1
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4. The gradient points in the direction of the (steepest) increase in the function value.

 

cos(x) =
dx
d

x=−4
−sin(−4) ≈ −0.7568

 

cos(x) =
dx
d

x=5
−sin(5) ≈ 0.9589

f(x) = cos(x)

x
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5. The gradient at the function minimizer is necessarily zero

f(x) = cos(x)

x

37



Typically,  "curves up"J(θ) = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

The minimizer of  necessarily has a gradient zeroJ(θ)

Set the gradient ∇ Jθ = set  0

∇ J =θ

∂J/∂θ1

⋮
∂J/∂θd

⇒ θ =∗ X X X Y( ⊤ )−1 ⊤

= X Xθ −X Y
n
2 ( T T )
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When  is well defined, it's indeed guaranteed to be the

unique minimizer of   )

Closed-form solution, does not feel like "training"

The very rare case where we get such general, clean,

solution with theoretical guarantee.

θ∗

J(θ

θ =∗ X X X Y( ⊤ )
−1 ⊤

Beauty of

39



How to deal with ?θ0

Features Label

City Temperature Population Energy Used

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 100

San Diego 18 4.3 39

1. "center" the data

when data is centered, the optimal offset is guaranteed to be 0

centering⇓
Features Label

City Temperature Population Energy Used

Chicago 49.25 -0.15 -9.00

New York -20.75 2.15 -22.00

Boston -5.75 1.05 46.00

San Diego -22.75 -3.05 -15.00

all column-wise Σ = 0
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temperature x1

energy
used y

2. Append a "fake" feature of  1

h x; θ, θ =( 0) θ x+T θ0   = [ θ1 θ2 ⋯ θd ] +

x1
x2

⋮
xd

θ0

  = [ θ1 θ2 ⋯ θd θ0 ]

x1
x2

⋮
xd
1

 = θ xaug
T

aug

Another way to handle offsets is to trick our model:
treat the bias as just another feature, always equal to 1.

How to deal with ?θ0
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Summary
Terminologies:

supervised learning
training data, testing data,
features, label,
loss function, training error, testing error,
hypothesis, hypothesis class
parameters

Ordinary least squares problem:

linear hypothesis class, squared loss

scalar form, matrix-vector form
closed-form solution

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

θ =∗ X X X Y( ⊤ )−1 ⊤
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When is  not well defined? 

What can cause this "not well defined"?

What happens if we are just "close to not well-defined", aka "ill-conditioned"?

Now:

θ∗

When  is well defined, it's the unique minimizer of )θ∗ J(θ

θ =∗ X X X Y( ⊤ )
−1 ⊤

we'll discuss all these next week.

Looking ahead:
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https://forms.gle/Wx47AdKeNAUe4wyr9

Thanks!
We'd love to hear

your thoughts.
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