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Interactive Slides and Lecture Recording
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Welcome to 6.390!


https://www.youtube-nocookie.com/embed/VhqtQdAGb7Q?si=sfKLandZIKl9jS2n

Outline

e Course Overview
= Team, logistics, and topics overview

 Supervised learning, terminologies

e Ordinary least square regression

» Formulation

» Closed-form solutions
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Class meetings assignments
Week # Monday Tuesday Wednesday Thursday Friday
N-1 9am: Exercise N | 9am: Homework
released N released
11am-12:30pm: | Recitation N
Lecture N
N 9am: Exercise N
e Hours:
Lab N Lec: 1.5 hr
Rec + Lab: 3 hr
N+1 11:59pm: Notes + exercise: 2 hr
Homework N

due

Homework: 6-7 hr




Grading and collaboration

« Our objective (and we hope yours) is for you to learn about machine learning

= take responsibility for your understanding

= we are here to help!

e Grades formula: exercises 5% + homework 20% + labs 15% + midterm 30% + final 30%
o Lateness: 20% penalty per day, applied linearly (so 1 hour late is -0.83%)

e Extensions:

= 20 one-day extensions (extend one assignment's deadline by one full day), will be

applied automatically at the end of the term in a way that is maximally helpful



Grading and collaboration

e Midterm 1: Wednesday, October 8, 730pm-9pm
« Midterm 2: Wednesday, Nov 12, 730pm-9pm

» Final: scheduled by Registrar (posted in 3rd week). /I. — might be as late as Dec 19!

Detailed exam logistics will be posted 3 weeks before the exam date.

o Collaboration:

= Understand everything you turn in
= Coding and detailed derivations must be done by you

= See collaboration policy /examples on course web site



How to get help

o Office hours: lots! (Starting Wed Sept 10)

o Schedule details on OHs page (includes instructors' OHs)
« See Calendar page for holiday/schedule shift

e Make use of Piazza and Pset-partners!

o Logistic, personal issues, reach out to 6.390-personal@mit.edu (looping in SA3 and/or

DAS)



What we're teaching: Machine Learning

Given:

» a collection of examples (gene sequences, documents, ...)
« an encoding of those examples in a computer (as vectors)

Derive:

« a computational model that describes relationships within and among the
examples that is expected to characterize well new examples from that same
population, to make good predictions or decisions

A model might:

» classify images of cells as to whether they're cancerous
« specify groupings (clusters) of documents that address similar topics
« steer a car appropriately given lidar images of the surroundings



traditionally

supervised
learning

reinforcement
learning

unsupervised
learning
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nowadays

« behavior cloning

o self-supervised
e contrastive learning (DALLE)

RLHF (ChatGPT etc.)

N

supervised
learning

unsupervised

learning ..~ o
P S

oo\

reinforcement
learning

e inverse reinforcement learning
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Learning to Walk

Massachusetts Institute of

Technology, 2004 m

Toddler demo, Russ Tedrake thesis, 2004
(Uses vanilla policy gradient (actor-critic)



https://s3.amazonaws.com/media-p.slid.es/videos/1146306/TkgXlQ2O/toddler.mp4

1 Falpplex < 15T

L]

DARPA Robotics Competition Optimization + first-principle physics
2015



https://s3.amazonaws.com/media-p.slid.es/videos/1350152/isFL4k6b/lilly_excerpt.mp4

https:/ / www.physicalintelligence.company / blog / pi0



https://www.physicalintelligence.company/blog/pi0

In 6.390:

supervised

. unsupervised
learning

learning

reinforcement
learning

15



IntrotoML T

. . ([ ]
Topics in order:
e Regularization supervised\\
« Gradient Descent
o Linear Classification \

-
-
~~ -
St ccccae==—"

-
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N.

« Non-parametric Models e g

gl
e Markov Decision Processes reinforcement
« Reinforcement Learning
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Many other ways to dissect

Model class: Modeling choices:

e linear models « Supervised:
e linear model on non-linear features
o fully connected feed-forward nets

convolutional nets . .
 Unsupervised/self-supervised
transformers

Q-table « Reinforcement/sequential
Optimization:

= regression
= classification

e tree, k-nearest neighbor, k-means
Learning process: e analytical solutions
 gradient descent
 back propagation
e value iteration, Q-learning
 non-parametric methods

e training/validation/testing
e overfitting /underfitting

e regularization

e hyper parameters

17



Outline

e Course Overview
» Supervised learning, terminologies

e Ordinary least square regression

» Formulation

s Closed-form solutions
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We first focus on an instance of supervised learning known as regression.

example: city daily energy consumption prediction

Features Label
City Temperature |Energy used
(°C) (GWh)
Chicago |25 51
New York |28 57
Boston 31 63
San Diego |35 71

energy
used y

temperature x

toy data, for illustration only:
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n=4d=1

Training data:
energy
used y °
® Dirain { (w(l) ) y(l)) ) ) (w(n), y(n)) }
o T —
°
feature vector label
temperature xq i
o e e} - (1)
i z\V s e R
n=4,d=2 energy . Ll?(l)
used y E :L'(l) _ 2 c Rd
o .
(1)
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pure 1z,
&e{(\?e{a
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Training data:

energy
used y
Dtraln { (w(l) ) y(l)) ?
° TR
) @ 0 =
e £ on 2, ] )
(w(l) (1)) w(zl)
Y x(l) — c R?
C (1) :
x (1)
31) e [ Zg "
Lo




Dtrain %

{(w(l),y(l)) e (w(n),y(n))}

What do we want from the regression algortim?

Regression

Algorithm

£ i

YR

hypothesis

A good way to label new features, i.e. a good hypothesis.

Suppose our friend's algorithm proposes h(z) = 10

e Is this a hypothesis?

e Is this a "good" hypothesis? Or, what would be a "good" hypothesis?

« What can affect if and how we can find a "good" hypothesis?
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e [LOss

 Training error

energy
used y

9

° & @) _ 4@

o g h(zW) —y

@ : : :
h(z) = 10 Nz V2 NV .

temperature x

£ (1 (=) .4
e.g. squared loss £ (h (z29) ,y) = (A (z®) — y¥))?

gtrain (h) — % Z?:l L (h (w(Z)) ’y(Z))

e.g. with squared loss, the training error is the mean-squared-error (MSE)

e Test error

gtest( )_ 12

n+n'
1=n—+1

( ( (i)),y(i))

n' unseen data points, i.e. test data
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Hypothesis class H : set of h we ask the algorithm to search over

energy
used y

temperature x

{constant functions}

less expressive

h3 (LIZ) =30
hz (ZL‘) =20
hl (ZL‘) =10

h(z) = 0z + 6y
energy
used y

temperature x

{linear functions},

more expressive

1. technically, affine functions. ppl tend to be flexible about this terminology in ML.
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[z, y) ..

Dtrain %

, (x(n), y(n))}

<

« hypothesis class
e loss function

Regression
Algorithm

h hypothesis
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Quick summary

Supervised learning

Regression

Training data, test data

Features, label

Loss function, training error, test error

Hypothesis, hypothesis class
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Outline

e Course Overview
« Supervised learning, terminologies

 Ordinary least square regression

« Formulation

s Closed-form solutions
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Linear least square regression

e Linear hypothesis class:

L1
L2
h(z;0) =6, 6 - 6, ] :
| T4
= eTw
e oo,
parameters features

 Squared loss function:

£ (h (D), y®) = 6Tz — y0)?

energy
used y

for now, ignoring the offset
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e MSE training error:

Features Label
City Temperature | Population |Energy Used
Chicago 90 7.2 45
New York 20 9.5 32
Boston 35 8.4 99
San Diego 18 4.3 39

J(01702) —

(01 -90 + 6, - 7.2 — 45)?

>~ =

+(61 - 20 + 6, - 9.5 — 32)?
+(6; - 35 + 6, - 8.4 — 99)*

+(6; - 18 + 6, - 4.3 — 39)?]

« J denotes training error, sometimes the more explicitly J(0; data)

« want a more compact way to write this out

1

J(Hla 92) — Z

((ef + €5+ €3+ €])]
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Let

wgl) x&l) y(l) 0,
X — e R4 y—=| | eR¥! 0 — c Rix1
wgn) mén) y(n) Oa
Then J(0) = %(XH -Y)' (X0-Y) er
e.g.
Features Label
Cit Temperature | Population |Energy Used
y P P 24 90 7.2 45
Chicago 90 7.2 45 X — 20 9.5 v 39 0 {91]
New York |20 95 32 35 8.4 99 02
18 4.3 39
Boston 35 8.4 99
San Diego |18 4.3 39




90 7.2 45

Features Label
20 9.5 32
City Temperature | Population |Energy Used X = 35 8.4 Y= 99
Chicago 90 7.2 45 18 4.3 39
New York 20 9.5 32
Boston 35 8.4 99
San Diego 18 4.3 39
deviation 900; + 7.26, — 45 e1
. 12001 +9.50; — 32| _ |eé2
Xe Y o 3501 —|— 8402 - 99 63
186, + 4.305 — 39 €4

summing deviation squared

€1

el +e5+e;+e; :[61,62,63,64} =2 =(X0-Y) (X6-Y)

training A7res GMSH):

€3
€4

JO) =(X0-Y) (X6-Y)

31



Outline

e Course Overview
e Supervised learning, terminologies

 Ordinary least square regression

» Formulation

= Closed-form solutions
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Objective function (training error)
JO) =1(X0-Y) (X0-Y)
goal: find 6 to minimize J(0)

« Q: What kind of function is J(6)? b . N

e A: Quadratic function

« Q: What does J(6) look like? 6,
o A: Typically, looks like a "bowl"

e Q: How to find the minimizer?

[1d case walk-through on board]
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For f : R™ — R, its gradient V f : R™ — R™ is defined at the point p = (1, ..., z,,) as:

Vip) =

| 2L (p)

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved.
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3. The gradient can be symbolic or numerical.

example:  f(z,y,2) = 22 +yd + 2

its symbolic gradient:

evaluating the symbolic gradient at a point gives a numerical gradient:

6
Vf£(3,2,1) =Vf(x,y,2) = [12]

($’y’z):(3’271) 1

just like a derivative can be a function or a number.
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4. The gradient points in the direction of the (steepest) increase in the function value.

= —sin(5) ~ 0.9589

d
o COS

()

r=—4

= —sin(—4) ~ —0.7568
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o/
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}‘-A'&"; O D 0 0 ”'4’!?
NRRRX KA

30 —80

The gradient of the function f{x,y) = —(coszx + coszy)2

&
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5. The gradient at the function minimizer is necessarily zero

&

The gradient of the function f{x,y) = —(cos?x + cosy)?
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e Typically, J(0) = 2(X6 —Y)" (X6 —Y) "curves up"

 The minimizer of J(0) necessarily has a gradient zero

- . J(6
dJ /96, - ‘ﬂ( )

Vo] = ; - 2 (XTx6 — XTY) h M
i 8]/80d

« Set the gradient VoJ £ 0

— = (X"X) ' XY b1
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Beauty of

o= (X'X) " XY

« When 60* is well defined, it's indeed guaranteed to be the
unique minimizer of J(6)

 Closed-form solution, does not feel like "training"

 The very rare case where we get such general, clean,

solution with theoretical guarantee.
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How to deal with 6,? 1. "center" the data

100

Features Label 80 T
City Temperature | Population |Energy Used *0 g‘
Chicago |90 7.2 45 ot
New York |20 9.5 32 i
Boston 35 8.4 100
San Diego |18 4.3 39

U centering

Features Label X
City Temperature |Population |Energy Used :8
Chicago 49.25 0.15 -9.00 |
New York  [-20.75 2.15 -22.00 e o,
Boston -5.75 1.05 46.00
San Diego  [-22.75 -3.05 -15.00

all column-wise ¥ =0
when data is centered, the optimal offset is guaranteed to be 0



How to deal with 6,?

2. Append a "fake" feature of 1

h($;9,90)29T£B+00: [ 01 92

04 |

— o7

+ 6

Laug

energy
used y

temperature x,

Another way to handle offsets is to trick our model:
treat the bias as just another feature, always equal to 1.
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« Terminologies:

= supervised learning
= training data, testing data,

» features, label,

Summary

= loss function, training error, testing error,

= hypothesis, hypothesis class

= parameters

e Ordinary least squares problem:

= linear hypothesis class, squared loss

e = gcalar form, matrix-vector form

» closed-form solution

JO) =2(X0-Y)"(X0-Y)

1

= (X'X) XY
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Looking ahead:
0= (X'X) XY

« When 60* is well defined, it's the unique minimizer of J(0)

Now:

« When is 6* not well defined?
« What can cause this "not well defined"?

« What happens if we are just "close to not well-defined", aka "ill-conditioned"?

we'll discuss all these next week.
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We'd love to hear
your thoughts.

Thanks!
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https://forms.gle/Wx47AdKeNAUe4wyr9

