

## **6.390** Intro to Machine Learning

Lecture 1: Intro and Linear Regression

Shen Shen

Sept 4, 2025

11am, Room 10-250

Interactive Slides and Lecture Recording

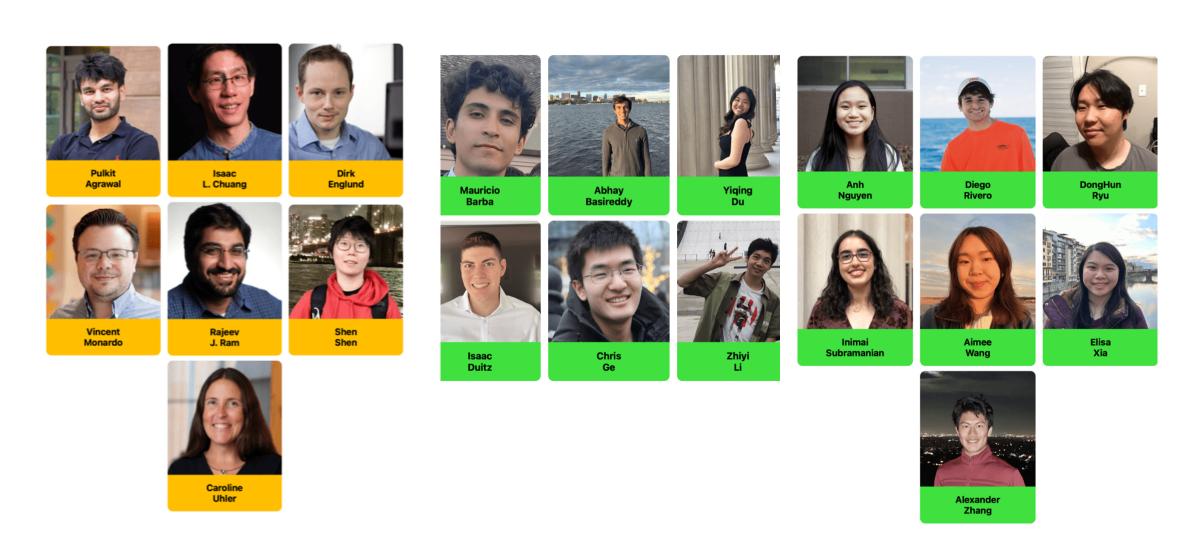
#### Welcome to 6.390!

https://www.youtube-nocookie.com/embed/VhqtQdAGb7Q?si=sfKLandZIK19jS2r

## Outline

- Course Overview
  - Team, logistics, and topics overview
- Supervised learning, terminologies
- Ordinary least square regression
  - Formulation
  - Closed-form solutions

#### Team



~50 awesome LAs

## Class meetings

## assignments

| Week # | Monday | Tuesday             | Wednesday                            | Thursday                                   | Friday                      |  |
|--------|--------|---------------------|--------------------------------------|--------------------------------------------|-----------------------------|--|
| N-1    |        |                     |                                      | 9am: Exercise N released                   | 9am: Homework<br>N released |  |
|        |        |                     |                                      | 11am-12:30pm:<br>Lecture N                 | Recitation N                |  |
| N      |        | 9am: Exercise N due |                                      | Hours:                                     |                             |  |
|        |        | Lab N               |                                      | Lec: 1.5 hr<br>Rec + Lab: 3 hr             |                             |  |
| N+1    |        |                     | 11:59pm:<br>Homework <i>N</i><br>due | Notes + exercise: 2 hr<br>Homework: 6-7 hr |                             |  |

## Grading and collaboration

- Our objective (and we hope yours) is for you to learn about machine learning
  - take responsibility for your understanding
  - we are here to help!
- Grades formula: exercises 5% + homework 20% + labs 15% + midterm 30% + final 30%
- Lateness: 20% penalty per day, applied linearly (so 1 hour late is -0.83%)
- Extensions:
  - 20 one-day extensions (extend one assignment's deadline by one full day), will be applied *automatically at the end of the term* in a way that is maximally helpful

## Grading and collaboration

- Midterm 1: Wednesday, October 8, 730pm-9pm
- Midterm 2: Wednesday, Nov 12, 730pm-9pm
- Final: scheduled by Registrar (posted in 3rd week). 🔔 might be as late as Dec 19!

Detailed exam logistics will be posted 3 weeks before the exam date.

- Collaboration:
  - Understand everything you turn in
  - Coding and detailed derivations must be done by you
  - See collaboration policy/examples on course web site

## How to get help

- Office hours: lots! (Starting Wed Sept 10)
- Schedule details on OHs page (includes instructors' OHs)
- See Calendar page for holiday/schedule shift
- Make use of Piazza and Pset-partners!
- Logistic, personal issues, reach out to 6.390-personal@mit.edu (looping in  $S^3$  and/or DAS)

## What we're teaching: Machine Learning

#### Given:

- a collection of examples (gene sequences, documents, ...)
- an encoding of those examples in a computer (as vectors)

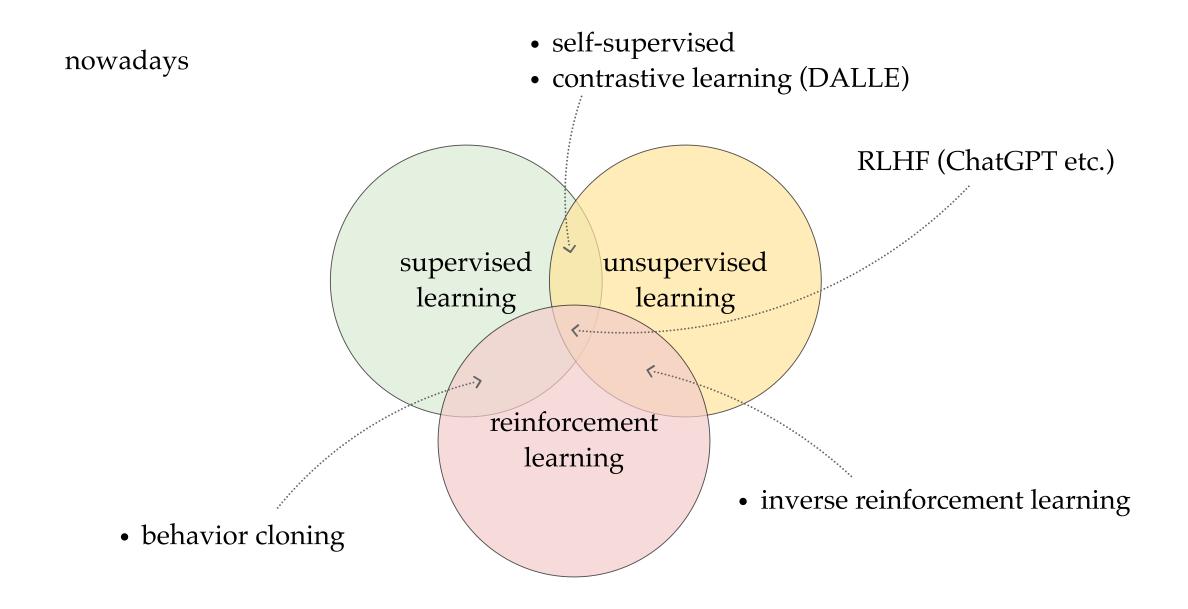
#### Derive:

• a computational model that describes relationships within and among the examples that is expected to characterize well new examples from that same population, to make good predictions or decisions

#### A model might:

- classify images of cells as to whether they're cancerous
- specify groupings (clusters) of documents that address similar topics
- steer a car appropriately given lidar images of the surroundings

traditionally supervised unsupervised learning learning reinforcement learning



# Learning to Walk

Massachusetts Institute of Technology, 2004

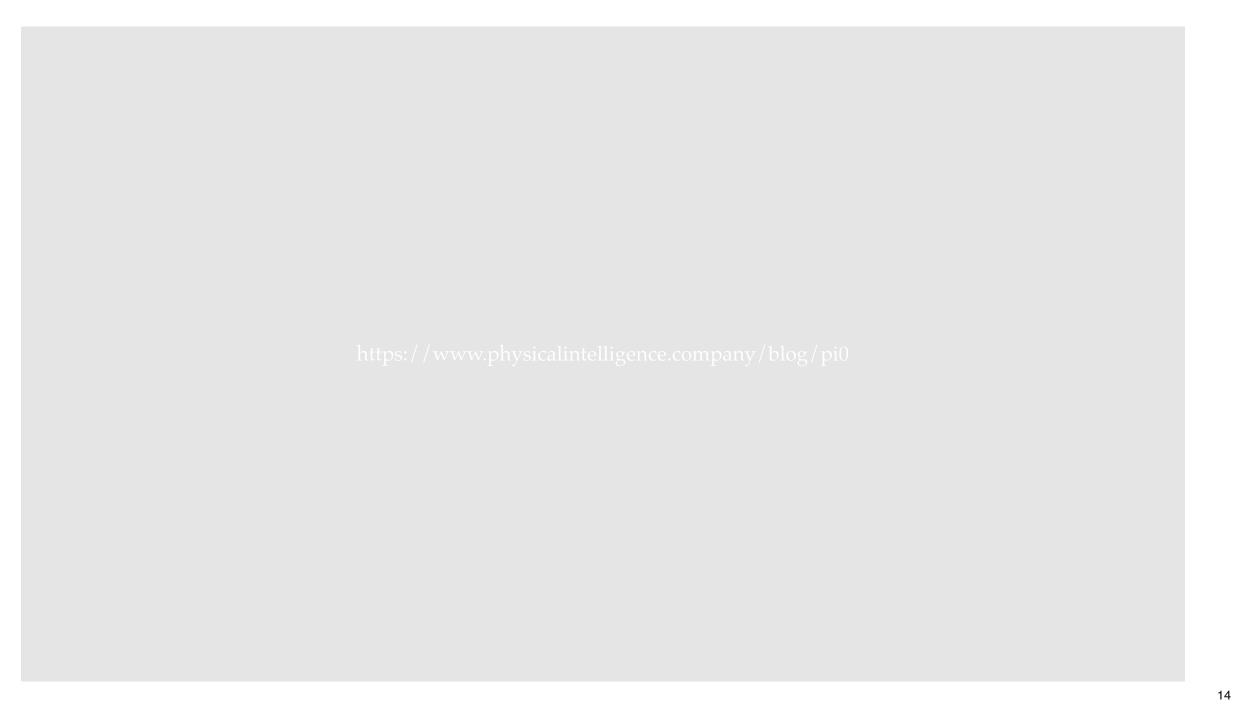


Toddler demo, Russ Tedrake thesis, 2004 (Uses vanilla policy gradient (actor-critic))

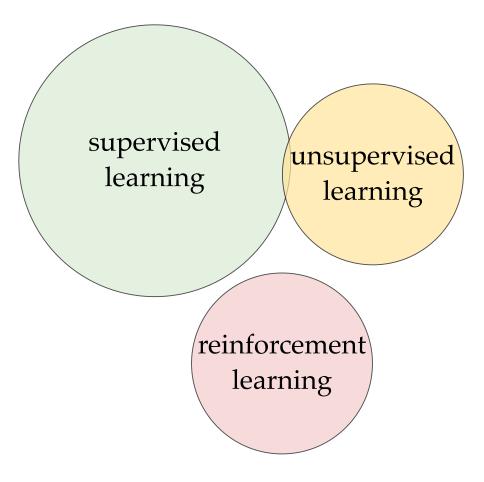


DARPA Robotics Competition 2015

Optimization + first-principle physics



#### In 6.390:



#### Topics in order:

- Intro to ML
- Regularization
- Gradient Descent
- Linear Classification
- Features, Neural Networks I
- Neural Networks II (Backprop)
- Convolutional Neural Networks
- Representation Learning
- Transformers
- Non-parametric Models
- Markov Decision Processes
- Reinforcement Learning

supervised

unsupervised

reinforcement

#### Many other ways to dissect

#### Model class:

- linear models
- linear model on non-linear features
- fully connected feed-forward nets
- convolutional nets
- transformers
- Q-table
- tree, k-nearest neighbor, k-means

#### Learning process:

- training/validation/testing
- overfitting/underfitting
- regularization
- hyper parameters

#### Modeling choices:

- Supervised:
  - regression
  - classification
- Unsupervised/self-supervised
- Reinforcement/sequential

#### Optimization:

- analytical solutions
- gradient descent
- back propagation
- value iteration, Q-learning
- non-parametric methods

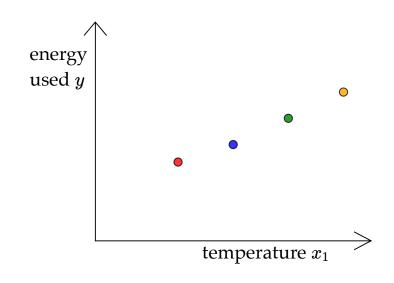
## Outline

- Course Overview
- Supervised learning, terminologies
- Ordinary least square regression
  - Formulation
  - Closed-form solutions

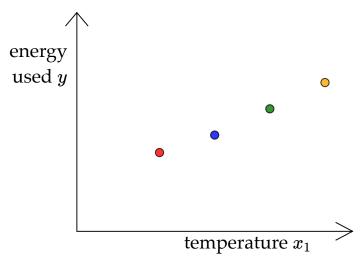
We first focus on an instance of *supervised learning* known as *regression*.

#### example: city daily energy consumption prediction

|           | Features         | Label             |
|-----------|------------------|-------------------|
| City      | Temperature (°C) | Energy used (GWh) |
| Chicago   | 25               | 51                |
| New York  | 28               | 57                |
| Boston    | 31               | 63                |
| San Diego | 35               | 71                |



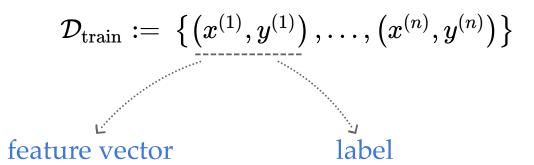
$$n=4, d=1$$



$$n=4, d=2$$
 energy used  $y$ 

$$population_{x_2}$$

#### Training data:



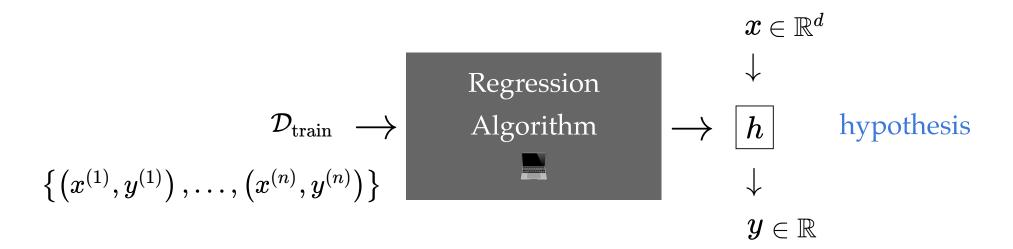
$$x^{(1)} = egin{bmatrix} x_1^{(1)} \ x_2^{(1)} \ dots \ x_d^{(1)} \end{bmatrix} \in \mathbb{R}^d$$

$$n=4, d=2$$
 energy used  $y$   $population_{x_2}$   $(x^{(1)}, y^{(1)})$   $=\left(\begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix}, y^{(1)}
ight)$ 

#### Training data:

$$\mathcal{D}_{ ext{train}} := \left\{ ig(x^{(1)}, y^{(1)}ig), \dots, ig(x^{(n)}, y^{(n)}ig) 
ight\}$$
 feature vector  $egin{array}{c} ig(x_1^{(1)}ig] & y^{(1)} \in \mathbb{R} \end{array}$ 

$$x^{(1)} = egin{bmatrix} x_1^{(1)} \ x_2^{(1)} \ dots \ x_d^{(1)} \end{bmatrix} \in \mathbb{R}^d$$

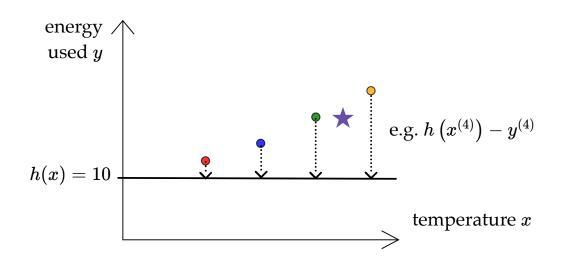


What do we want from the regression algortim?

A good way to label *new* features, i.e. a *good* hypothesis.

Suppose our friend's algorithm proposes h(x) = 10

- Is this a hypothesis?
- Is this a "good" hypothesis? Or, what would be a "good" hypothesis?
- What can affect if and how we can find a "good" hypothesis?



• Loss

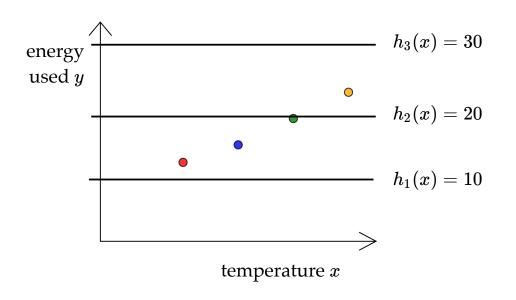
- $\mathcal{L}\left(h\left(x^{(i)}
  ight),y^{(i)}
  ight)$  e.g. squared loss  $\mathcal{L}\left(h\left(x^{(i)}
  ight),y^{(i)}
  ight)=(h\left(x^{(i)}
  ight)-y^{(i)})^2$
- Training error  $\mathcal{E}_{ ext{train}}\left(h
  ight) = rac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(h\left(x^{(i)}
  ight), y^{(i)}
  ight)$

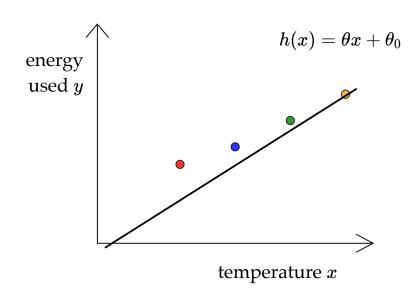
e.g. with squared loss, the training error is the mean-squared-error (MSE)

• Test error  $\mathcal{E}_{ ext{test}}\left(h
ight) = rac{1}{n'} \sum_{i=n+1}^{n+n'} \mathcal{L}\left(h\left(x^{(i)}
ight), y^{(i)}
ight)$ 

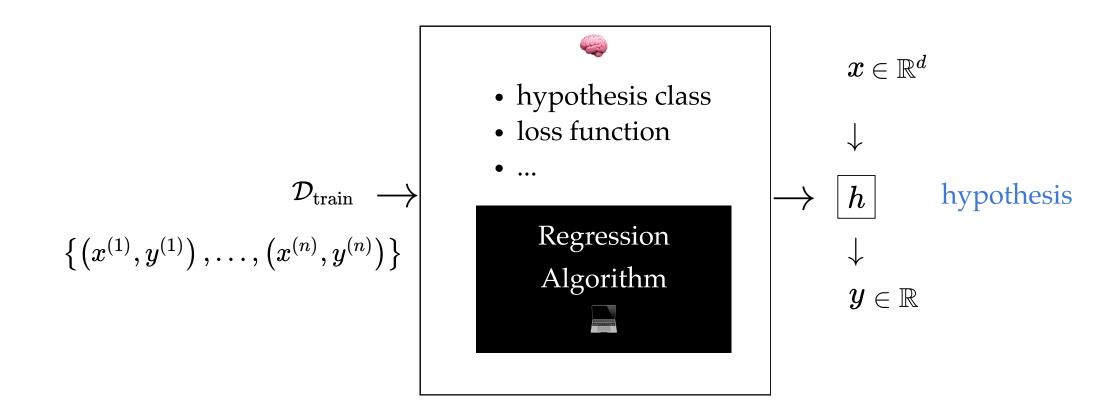
n' unseen data points, i.e. test data

#### Hypothesis class $\mathcal{H}$ : set of h we ask the algorithm to search over





<sup>1.</sup> technically, affine functions. ppl tend to be flexible about this terminology in ML.



#### Quick summary

- Supervised learning
- Regression
- Training data, test data
- Features, label
- Loss function, training error, test error
- Hypothesis, hypothesis class

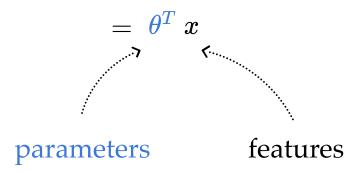
## Outline

- Course Overview
- Supervised learning, terminologies
- Ordinary least square regression
  - Formulation
  - Closed-form solutions

#### Linear least square regression

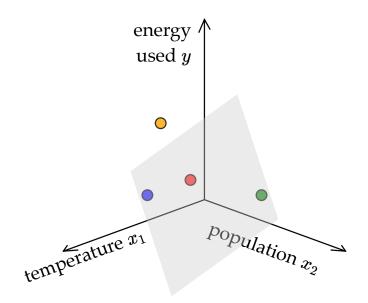
• Linear hypothesis class:

$$h\left(x; heta
ight) = \left[egin{array}{cccc} heta_1 & heta_2 & \cdots & heta_d \end{array}
ight] \left[egin{array}{cccc} x_1 \ x_2 \ dots \ x_d \end{array}
ight]$$



• Squared loss function:

$$\mathcal{L}\left(h\left(x^{(i)}
ight),y^{(i)}
ight)=( heta^Tx-y^{(i)})^2$$



#### • MSE training error:

|           | Features    |            | Label              |
|-----------|-------------|------------|--------------------|
| City      | Temperature | Population | <b>Energy Used</b> |
| Chicago   | 90          | 7.2        | 45                 |
| New York  | 20          | 9.5        | 32                 |
| Boston    | 35          | 8.4        | 99                 |
| San Diego | 18          | 4.3        | 39                 |

$$J(\theta_1, \theta_2) = \frac{1}{4} [(\theta_1 \cdot 90 + \theta_2 \cdot 7.2 - 45)^2$$

$$+ (\theta_1 \cdot 20 + \theta_2 \cdot 9.5 - 32)^2$$

$$+ (\theta_1 \cdot 35 + \theta_2 \cdot 8.4 - 99)^2$$

$$+ (\theta_1 \cdot 18 + \theta_2 \cdot 4.3 - 39)^2]$$

- J denotes training error, sometimes the more explicitly  $J(\theta; \mathrm{data})$
- want a more compact way to write this out

$$J( heta_1, heta_2) = rac{1}{4}[(oldsymbol{e}_1^2 + e_2^2 + e_3^2 + e_4^2)]$$

Let

$$X = egin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \ drapprox & \ddots & drapprox \ x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \in \mathbb{R}^{n imes d} \qquad \qquad Y = egin{bmatrix} y^{(1)} \ drapprox \ y^{(n)} \end{bmatrix} \in \mathbb{R}^{n imes 1} \qquad \qquad heta = egin{bmatrix} heta_1 \ drapprox \ heta_d \end{bmatrix} \in \mathbb{R}^{d imes 1}$$

Then

$$J( heta) \; = rac{1}{n} (X heta - Y)^ op (X heta - Y)^ op \in \mathbb{R}^{1 imes 1}$$

e.g.

|           | Features    | Label      |                    |
|-----------|-------------|------------|--------------------|
| City      | Temperature | Population | <b>Energy Used</b> |
| Chicago   | 90          | 7.2        | 45                 |
| New York  | 20          | 9.5        | 32                 |
| Boston    | 35          | 8.4        | 99                 |
| San Diego | 18          | 4.3        | 39                 |

$$X = egin{bmatrix} 90 & 7.2 \ 20 & 9.5 \ 35 & 8.4 \ 18 & 4.3 \end{bmatrix} \hspace{1cm} Y = egin{bmatrix} 45 \ 32 \ 99 \ 39 \end{bmatrix} \hspace{1cm} heta = egin{bmatrix} heta_1 \ heta_2 \end{bmatrix}$$

|           | Features    | Label      |                    |
|-----------|-------------|------------|--------------------|
| City      | Temperature | Population | <b>Energy Used</b> |
| Chicago   | 90          | 7.2        | 45                 |
| New York  | 20          | 9.5        | 32                 |
| Boston    | 35          | 8.4        | 99                 |
| San Diego | 18          | 4.3        | 39                 |

$$X\theta - Y = \begin{bmatrix} 90\theta_1 + 7.2\theta_2 - 45 \\ 20\theta_1 + 9.5\theta_2 - 32 \\ 35\theta_1 + 8.4\theta_2 - 99 \\ 18\theta_1 + 4.3\theta_2 - 39 \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix}$$

summing deviation squared 
$$e_1^2+e_2^2+e_3^2+e_4^2 = \begin{bmatrix} e_1,e_2,e_3,e_4 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix} = (X\theta-Y)^\top (X\theta-Y)$$

training arres (MSE): 
$$J(\theta) = \frac{1}{n}(X\theta - Y)^{\top}(X\theta - Y)$$

## Outline

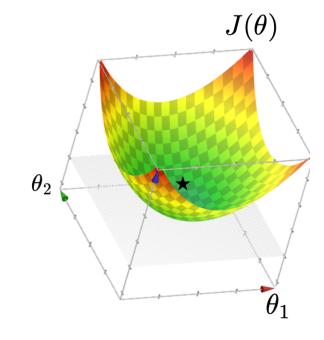
- Course Overview
- Supervised learning, terminologies
- Ordinary least square regression
  - Formulation
  - Closed-form solutions

#### Objective function (training error)

$$J( heta) \ = rac{1}{n} (X heta - Y)^ op (X heta - Y)$$

goal: find  $\theta$  to minimize  $J(\theta)$ 

- Q: What kind of function is  $J(\theta)$ ?
- A: Quadratic function
- Q: What does  $J(\theta)$  look like?
- A: *Typically*, looks like a "bowl"
- Q: How to find the minimizer?



[1d case walk-through on board]

For  $f:\mathbb{R}^m \to \mathbb{R}$ , its *gradient*  $\nabla f:\mathbb{R}^m \to \mathbb{R}^m$  is defined at the point  $p=(x_1,\ldots,x_m)$  as:

$$abla f(p) = \left[ egin{array}{c} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_m}(p) \end{array} 
ight]$$

- 1. The gradient generalizes the concept of a derivative to multiple dimensions.
- 2. By construction, the gradient's dimensionality always matches the function input.

3. The gradient can be symbolic or numerical.

example: 
$$f(x, y, z) = x^2 + y^3 + z$$

$$abla f(p) = \left[egin{array}{c} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_m}(p) \end{array}
ight]$$

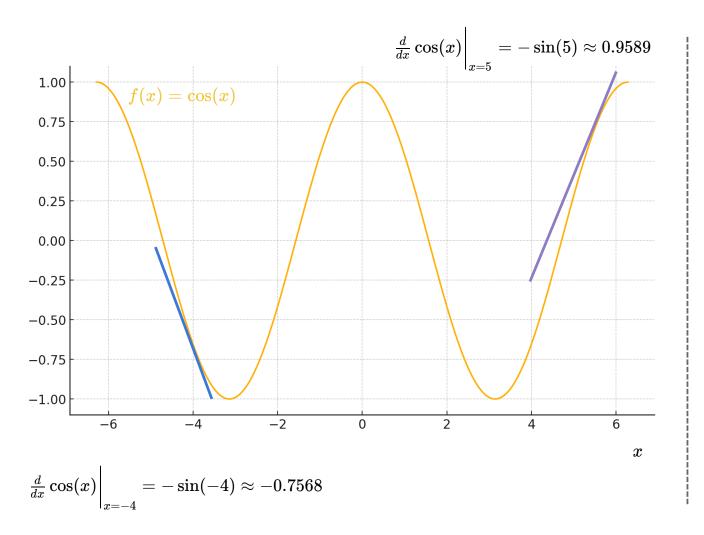
its *symbolic* gradient:

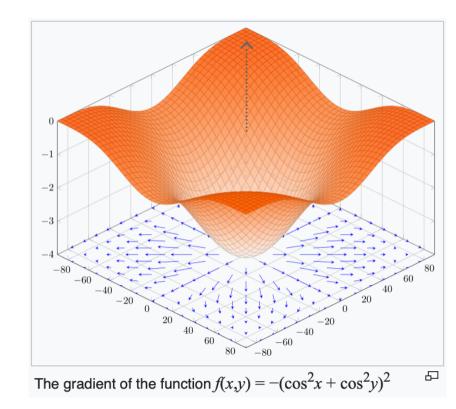
$$abla f(x,y,z) = egin{bmatrix} 2x \ 3y^2 \ 1 \end{bmatrix}$$

evaluating the symbolic gradient at a point gives a numerical gradient:

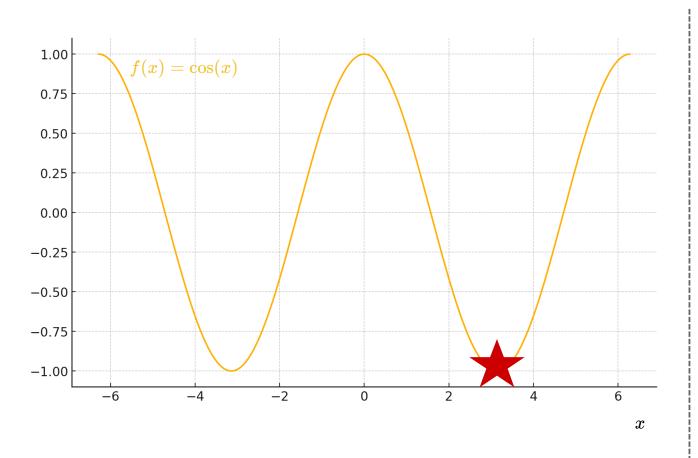
$$\left. 
abla f(3,2,1) = 
abla f(x,y,z) 
ight|_{(x,y,z)=(3,2,1)} = egin{bmatrix} 6 \ 12 \ 1 \end{bmatrix}$$

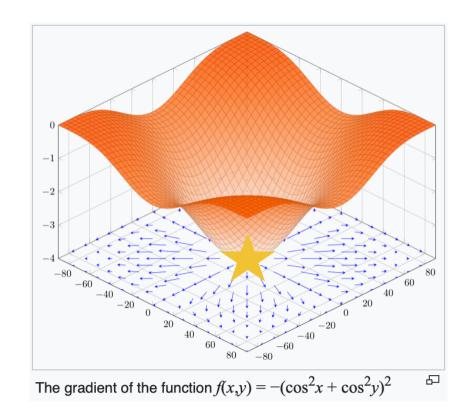
#### 4. The gradient points in the direction of the (steepest) *increase* in the function value.





#### 5. The gradient at the function minimizer is *necessarily* zero



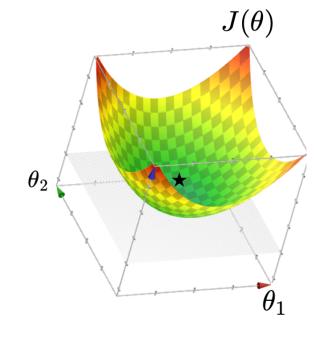


- Typically,  $J(\theta) = \frac{1}{n}(X\theta Y)^{\top}(X\theta Y)$  "curves up"
- The minimizer of  $J(\theta)$  necessarily has a gradient zero

$$abla_{ heta}J = \left[egin{array}{c} \partial J/\partial heta_1 \ dots \ \partial J/\partial heta_d \end{array}
ight] = rac{2}{n}\left(X^TX heta - X^TY
ight)$$



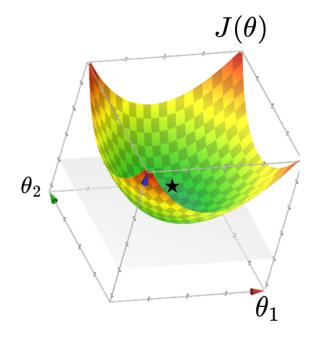
$$\Longrightarrow \qquad \qquad heta^* = \left( X^ op X 
ight)^{-1} X^ op Y$$



#### Beauty of

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

- When  $\theta^*$  is well defined, it's indeed guaranteed to be the unique minimizer of  $J(\theta)$
- Closed-form solution, does not feel like "training"
- The very rare case where we get such general, clean, solution with theoretical guarantee.



#### How to deal with $\theta_0$ ?

#### 1. "center" the data

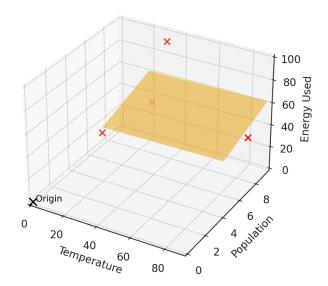
|           | Features    | Label      |                    |
|-----------|-------------|------------|--------------------|
| City      | Temperature | Population | <b>Energy Used</b> |
| Chicago   | 90          | 7.2        | 45                 |
| New York  | 20          | 9.5        | 32                 |
| Boston    | 35          | 8.4        | 100                |
| San Diego | 18          | 4.3        | 39                 |

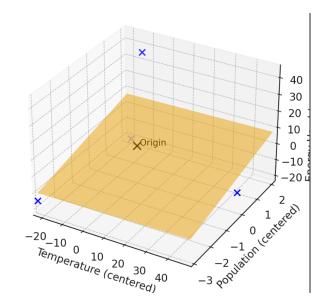


## centering

|           | Features    |  |            | Label              |
|-----------|-------------|--|------------|--------------------|
| City      | Temperature |  | Population | <b>Energy Used</b> |
| Chicago   | 49.25       |  | -0.15      | -9.00              |
| New York  | -20.75      |  | 2.15       | -22.00             |
| Boston    | -5.75       |  | 1.05       | 46.00              |
| San Diego | -22.75      |  | -3.05      | -15.00             |







when data is centered, the optimal offset is guaranteed to be 0

How to deal with  $\theta_0$ ?

2. Append a "fake" feature of 1

$$h\left(x; heta, heta_0
ight)= heta^Tx+ heta_0=\left[egin{array}{ccc} heta_1 & heta_2 & \cdots & heta_d \end{array}
ight]\left[egin{array}{c} x_1 \ x_2 \ dots \ x_d \end{array}
ight]+ heta_0$$
 temperature  $x_1$ 

Another way to handle offsets is to trick our model: treat the bias as just another feature, always equal to 1.

## Summary

- Terminologies:
  - supervised learning
  - training data, testing data,
  - features, label,
  - loss function, training error, testing error,
  - hypothesis, hypothesis class
  - parameters
- Ordinary least squares problem:
  - linear hypothesis class, squared loss
- scalar form, matrix-vector form
  - closed-form solution

$$J( heta) \ = rac{1}{n} (X heta - Y)^ op (X heta - Y)$$

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

#### Looking ahead:

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

• When  $\theta^*$  is well defined, it's the unique minimizer of  $J(\theta)$ 

#### Now:

- When is  $\theta^*$  not well defined?
- What can cause this "not well defined"?
- What happens if we are just "close to not well-defined", aka "ill-conditioned"?

we'll discuss all these next week.

We'd love to hear

your thoughts.
Thanks!