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Recall

« Linear hypothesis class:
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See lecl/recl for discussion of the offset.
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Spotted in lab:
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assumen =landy =1

then 6* = 1

oz

most of the time, behaves nicely

if the data is (a

;1) = (0.002,1)

6* = 500

S

0

if the data is (z,y) = (—0.0002,1)

0*

5,000
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more generally, d > 1

0= (X'X) XY

most of the time, behaves nicely

but run into trouble when (X' X) is singular
(X' X) has zero the determinant of
eigenvalue(s) A (X TX) is zero

<~

(X' X) is not full rank

)

X is not full column rank
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if X is not full column rank, then X ' X is singular

----------------------------------------------------------------------------------------------------------------------------------------------------------

S— — — —

Ax and Ay are linear combinations of columns of A.

..........................................................................................................................................................

https:/ / github.com /kenjihiranabe / The-Art-of-Linear-Algebra
https:/ /www.3bluelbrown.com/topics/linear-algebra
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X is not full column rank when:

e a.d =1and X € R™! is simply an all-zero vector, or
e b. n<d, or

e c. columns (features) in X are linearly dependent.

all three cases have similar visual interpretations
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(a). d =1and X € R™*! is simply an all-zero vector
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infinitely many optimal 6
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(b). n<d

https:/ /shenshen.mit.edu/demos/ridge/n

(2,3),y =4

(331,5132)

infinitely many optimal 60
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https://shenshen.mit.edu/demos/ridge/n%3Cd_MSE.html

(c). columns (features) in X are linearly dependent.

(wl,iﬁg) — (6, 9),y = 9

(w17$2) =~ (47 6)vy =38

(xlawZ) — (273)7y =7

infinitely many optimal 6
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https://shenshen.mit.edu/demos/ridge/colinear_MSE.html
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infinitely many optimal 6*
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Quick Summary:

When X is not full column rank

o J(0) has a "flat" bottom, like a half pipe

e This < formula is not well-defined

« Infinitely many optimal hyperplanes

1)

A4

formula isn't wrong, data is trouble-making

Typically, X is full column rank

« J(0) "curves up" everywhere
0= (X"X) ' X'Y

« 0* gives the unique optimal hyperplane

X" X becoming more invertible

19



when X' X is almost singular, technically

0* = (XTX)_1 X 'Y does exist

6* does give the unique optimal hyperplane

but 6* tends to be very sensitive to the small changes in the data
6* tends to have huge magnitude

0* tends to overfit
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when X' X is almost singular

lots of hypotheses (lots of 6s) fit the training data reasonably well

prefer § with small magnitude (less sensitive prediction when z changes slightly)
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Regularization

technique to combat overfitting

at a high-level, it's to sacrifice some training performance, in the hope that
testing behaves better

many ways to regularize (e.g. implicit regularization, drop-out)

we will look at a particularly simple regularization today, the so-called

ridge or [2-regularization
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Ridge Regression

« Add a square penalty on the magnitude of the parameters

Jriage (0) = =(X0 —Y)" (X0 —Y) + A||0|]? (> 0)

A is a so-called "hyperparameter” (we've already seen a hyperparameter in lab 1)

Setting Vg Jyiqge (0) = 0 we get 0%, = (X' X + nAl) TxTy

ridge

9*

ridge

always exists, and is always the unique optimal parameters.

e (see ex/lab/hw for discussion about the offset.)
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case (c) training data set again

(xlawZ) — (679)7y =9

(CE1,£B2) 4 (éa 6)7y =8

($1,CI32) — (273)7y =7
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https://shenshen.mit.edu/demos/ridge/ridge.html

Comments on \

« one that's chosen by users, before we even see the data
« controls the tradeoff between MSE and theta magnitude

o implicitly controls the "richness" of the hypothesis class
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[z, y) ..

Dtrain %

(2™, y™)

<

» hypothesis class
» loss function
o hyperparameter

Regression
Algorithm

h hypothesis
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Validation

<@ fixed

hypothesis class
loss function
hyperparameter

Regression

Algorithm
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Cross-validation

<@ fixed

hypothesis class
loss function
hyperparameter

Regression

Algorithm
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Cross-validation

..,...1'_‘.;1..-}{yp0thesis class

loss function
hyperp Jrameter

Regression

Algorlthm
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Cross-validation

w ﬁxed

Wﬁypothesis class

loss function
hyperparameter

Regression

Algorithm

averaging=>

cross-validation error
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Comments on cross-validation

good idea to shuffle data first

a way to "reuse” data

cross-validation is more "reliable" than validation (less sensitive to chance)

it's not to evaluate a hypothesis (testing error is)

rather, it's to evaluate learning algorithm (e.g. hypothesis class choice,

hyperparameter choice)

« Can have an outer loop for picking good hyperparameter or hypothesis class
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Summary

e Closed-form formula for OLS is not well-defined when X* X is singular, and we have
infinitely many optimal 6*.

« Even in scenarios where X7 X is just ill-conditioned, we get sensitivity issues, many
almost-as-good solutions, while the absolutely best 8* is overfitting to the data.

« We need to indicate our preference somehow, and also fight overfitting.

« Regularization helps battle overfitting -- by constructing a new optimization problem that

implicitly prefers small-magnitude 6.

o Least-squares regularization leads to the ridge-regression formulation. (Good news: we

can still solve it analytically!)
o ) trades off training MSE and regularization strength, it's a hyperparameter.

« Validation/cross-validation are a way to choose (regularization) hyperparameters.
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We'd love to hear
your thoughts.

Thanks!
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