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Outline
Recap: ordinary linear regression and the closed-form solution

The "trouble" with the closed-form solution

mathematically, visually, practically

Regularization, ridge regression, and hyperparameters 

Cross-validation
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Recall

parameters

Squared loss function: L h x , y =( ( (i)) (i)) (θ x −T (i) y )(i) 2

= xθT

features

h x; θ( )

Linear hypothesis class:

labelloss guess (prediction)

See lec1/rec1 for discussion of the offset.
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Recall

θ =∗ X X X Y( ⊤ )−1 ⊤

X =

x1
(1)

⋮
x1
(n)

…

⋱
…

xd
(1)

⋮
xd
(n)

Y =

y(1)

⋮
y(n)

θ =

θ1

⋮
θd

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

Let

Then

∈ Rn×d ∈ Rn×1 ∈ Rd×1

∈ R1×1

X X ∈⊤ Rd×d X Y ∈⊤ Rd×1

By matrix calculus and optimization
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θ =∗ X X X Y( ⊤ )
−1 ⊤Spotted in lab:
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J(θ) = (3θ − 6)21d-feature training data 

(x, y) = (3, 6)

X = x = [3]

Y = y = [6]

θ =∗ X X X Y( ⊤ )
−1 ⊤

θ =∗ (xx) (xy)−1 = =
xx
xy =

x
y =3

6 2
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J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)
3
1

[ 2 2 2]
1-d feature
training data set

X =
2
3
4

θ =∗ X X X Y( ⊤ )
−1 ⊤p1 2 5

p2 3 6
p3 4 7

x y

= =
X X⊤
X Y⊤ ≈29

56 1.93θ =∗ ([ 2 3 4 ] ) [ 2 3 4 ]
2
3
4

−1
5
6
7

Y =
5
6
7
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https://shenshen.mit.edu/demos/ridge/robust-ols.html
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https://shenshen.mit.edu/demos/ridge/sensitive-ols.html
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d = 1 assume  and 
 

n = 1 y = 1

if the data is (x, 1) = (0.002, 1)

then θ =∗
x
1

θ   =∗ 500

if the data is (x, y) = (−0.0002, 1)

θ   =∗ −5, 000

most of the time, behaves nicely
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 is singularX X( ⊤ )

 is not full column rankX

 has zero
eigenvalue(s)
X X( ⊤ )  is not full rankX X( ⊤ )the determinant of 

 is zeroX X( ⊤ )⇔ ⇔

⇔

⇔

θ =∗ X X X Y( ⊤ )
−1 ⊤

d ≥ 1more generally,

most of the time, behaves nicely

but run into trouble when
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https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra
https://www.3blue1brown.com/topics/linear-algebra

if  is not full column rank, then  is singularX X X⊤
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a.  and  is simply an all-zero vector, ord = 1 X ∈ Rn×1

b. < , orn d

c. columns (features) in  are linearly dependent.X

 X is not full column rank when:

all three cases have similar visual interpretations 
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(a).  and  is simply an all-zero vectord = 1 X ∈ Rn×1

infinitely many optimal θ
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(b). <n d

infinitely many optimal θ

https://shenshen.mit.edu/demos/ridge/n

 (x ,x ) =1 2 (2, 3), y = 4
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https://shenshen.mit.edu/demos/ridge/colinear_MSE.html

(c). columns (features) in  are linearly dependent.X

infinitely many optimal θ

 (x ,x ) =1 2 (2, 3), y = 7

 (x ,x ) =1 2 (4, 6), y = 8

 (x ,x ) =1 2 (6, 9), y = 9
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infinitely many optimal θ∗

temperature x1 pop
ulat

ion
 x 2

en
er

gy
 u

se
d

y

temperature ( °F) x1 tem
pera

ture 
(°C

) x
2

en
er

gy
 u

se
d

ydata

MSE

 is not well-definedθ =∗ X X X Y( ⊤ )−1 ⊤
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Quick Summary:

This 👉 formula is not well-defined

Typically,  is full column rankX

🥺 🥰

θ =∗ X X X Y( ⊤ )−1 ⊤

 "curves up" everywhereJ(θ)

When  is not full column rankX

 has a "flat" bottom, like a half pipeJ(θ)

Infinitely many optimal hyperplanes  gives the unique optimal hyperplane θ∗

 becoming more invertibleX X⊤formula isn't wrong, data is trouble-making
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 does existθ =∗ X X X Y( ⊤ )
−1 ⊤

 does give the unique optimal hyperplaneθ∗

but

 tends to have huge magnitudeθ∗

 tends to be very sensitive to the small changes in the dataθ∗

 tends to overfitθ∗

when   is almost singular, technicallyX X⊤

🥺
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🥰🥺

lots of hypotheses (lots of s) fit the training data reasonably wellθ

prefer  with small magnitude (less sensitive prediction when  changes slightly)θ x

when   is almost singularX X⊤
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Regularization

technique to combat overfitting

at a high-level, it's to sacrifice some training performance, in the hope that

testing behaves better

many ways to regularize (e.g. implicit regularization, drop-out)

we will look at a particularly simple regularization today, the so-called

ridge or -regularizationl2
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Add a square penalty on the magnitude of the parameters

J (θ) =ridge  (Xθ −
n
1 Y ) (Xθ −⊤ Y ) + λ∥θ∥2

 is a so-called "hyperparameter" (we've already seen a hyperparameter in lab 1)λ

Setting  we get ∇ J (θ) =θ ridge  0 θ =ridge
∗ X X + nλI X Y( ⊤ )−1 ⊤

  always exists, and is always the unique optimal parameters.θridge
∗

(see ex/lab/hw for discussion about the offset.)

Ridge Regression
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https://shenshen.mit.edu/demos/ridge/ridge.html
 (x ,x ) =1 2 (2, 3), y = 7

 (x ,x ) =1 2 (4, 6), y = 8

 (x ,x ) =1 2 (6, 9), y = 9

case (c) training data set again
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Comments on  λ

one that's chosen by users, before we even see the data

controls the tradeoff between MSE and theta magnitude

implicitly controls the "richness" of the hypothesis class
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h→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →
x , y ,… , x , y{( (1) (1)) ( (n) (n))}

hypothesis

🧠

hypothesis class
loss function
hyperparameter

Regression
Algorithm
💻
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x , y ,… , x , y{( (1) (1)) ( (n) (n))}

Validation

h→Dtrain →

🧠 fixed

hypothesis class
loss function
hyperparameter

Regression
Algorithm
💻
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x , y ,… , x , y{( (1) (1)) ( (n) (n))}

Cross-validation

h→Dtrain →

🧠 fixed

hypothesis class
loss function
hyperparameter

Regression
Algorithm
💻
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chunk-1 validation error



h→Dtrain →

🧠 fixed

hypothesis class
loss function
hyperparameter

Regression
Algorithm
💻
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chunk-1 validation error

chunk-2 validation error

Cross-validation



h→Dtrain →

🧠 fixed

hypothesis class
loss function
hyperparameter

Regression
Algorithm
💻

32

chunk-1 validation error

chunk-2 validation error

Cross-validation

...

chunk-  validation errork

⎩ ⎨ ⎧averaging=> 
cross-validation error



Comments on cross-validation

good idea to shuffle data first

a way to "reuse" data

cross-validation is more "reliable" than validation (less sensitive to chance)

it's not to evaluate a hypothesis (testing error is)

rather, it's to evaluate learning algorithm (e.g. hypothesis class choice,

hyperparameter choice)

Can have an outer loop for picking good hyperparameter or hypothesis class
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Summary

Closed-form formula for OLS is not well-defined when  is singular, and we have
infinitely many optimal .

Even in scenarios where  is just ill-conditioned, we get sensitivity issues, many
almost-as-good solutions, while the absolutely best  is overfitting to the data.

We need to indicate our preference somehow, and also fight overfitting.

Regularization helps battle overfitting -- by constructing a new optimization problem that
implicitly prefers small-magnitude 

Least-squares regularization leads to the ridge-regression formulation. (Good news: we
can still solve it analytically!)

 trades off training MSE and regularization strength, it's a hyperparameter.

Validation/cross-validation are a way to choose (regularization) hyperparameters.

X XT

θ∗

X XT

θ∗

θ.

λ
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https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?
embedded=true

Thanks!
We'd love to hear

your .thoughts
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