

6.390 Intro to Machine Learning

Lecture 2: Regularization and Cross-validation

Shen Shen

Sept 11, 2025

11am, Room 10-250

Interactive Slides and Lecture Recording

1

Outline

- Recap: ordinary linear regression and the closed-form solution
- The "trouble" with the closed-form solution
 - mathematically, visually, practically
- Regularization, ridge regression, and hyperparameters
- Cross-validation

Recall

• Linear hypothesis class:

See lec1/rec1 for discussion of the offset.

Recall

Let

$$X = egin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \ drapprox & \ddots & drapprox \ x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \in \mathbb{R}^{n imes d} \hspace{0.5cm} Y = egin{bmatrix} y^{(1)} \ drapprox \ y^{(n)} \end{bmatrix} \in \mathbb{R}^{n imes 1} \hspace{0.5cm} heta = egin{bmatrix} heta_1 \ drapprox \ heta_d \end{bmatrix} \in \mathbb{R}^{d imes 1}$$

Then

$$|J(heta)| = rac{1}{n}(X heta - Y)^ op (X heta - Y)| \in \mathbb{R}^{1 imes 1}$$

By matrix calculus and optimization

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

$$X^ op X \in \mathbb{R}^{d imes d}$$
 $X^ op Y \in \mathbb{R}^{d imes 1}$

Spotted in lab:

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

1d-feature training data

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

$$X = x = [3]$$

$$Y = y = [6]$$

$$J(heta)=(3 heta-6)^2$$

$$heta^* = (xx)^{-1}(xy) = rac{xy}{xx} = rac{y}{x} = rac{6}{3} = 2$$

1-d feature training data set

	\boldsymbol{x}	y	
p1	2	5	

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

$$X = egin{bmatrix} 2 \ 3 \ 4 \end{bmatrix}$$

$$Y = egin{bmatrix} 5 \ 6 \ 7 \end{bmatrix}$$

$$J(heta) = rac{1}{3} \left[(2 heta - 5)^2 + (3 heta - 6)^2 + (4 heta - 7)^2
ight]$$

$$heta^* = ig([\, 2\ 3\ 4\,] egin{bmatrix} 2 \ 3 \ 4 \end{bmatrix}ig)^{-1} \ \ [\, 2\ 3\ 4\,] egin{bmatrix} 5 \ 6 \ 7 \end{bmatrix} = rac{X^ op Y}{X^ op X} = rac{56}{29} pprox 1.93$$

Outline

- Recap: ordinary linear regression and the closed-form solution
- The "trouble" with the closed-form solution
 - mathematically, visually, practically
- Regularization, ridge regression, and hyperparameters
- Cross-validation

$$d = 1$$

assume n = 1 and y = 1

then
$$\theta^* = \frac{1}{x}$$

most of the time, behaves nicely

more generally, $d \ge 1$

$$heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

most of the time, behaves nicely

but run into trouble when $(X^{T}X)$ is singular

 \downarrow

 $(X^{\top}X)$ has zero eigenvalue(s)

 \Leftrightarrow the determinant of $(X^{\top}X)$ is zero

 \Leftrightarrow $(X^{\top}X)$ is not full rank

1

X is not full column rank

if X is not full column rank, then $X^{\top}X$ is singular

X is not full column rank when:

- a. d=1 and $X\in\mathbb{R}^{n imes 1}$ is simply an all-zero vector, or
- b. *n*<*d*, or
- c. columns (features) in *X* are linearly dependent.

all three cases have similar visual interpretations

(a). d=1 and $X\in\mathbb{R}^{n imes 1}$ is simply an all-zero vector

infinitely many optimal θ

(b). *n*<*d*

$$(x_1,x_2)=(2,3),y=4$$

https://shenshen.mit.edu/demos/ridge/n

infinitely many optimal θ

(c). columns (features) in X are linearly dependent.

 $(x_1,x_2)=(4,6),y=8$

$$(x_1,x_2)=(6,9),y=9$$

У

https://shenshen.mit.edu/demos/ridge/colinear_MSE.html

$$(x_1,x_2)=(2,3), y=7$$

infinitely many optimal θ

 $heta^* = \left(X^ op X
ight)^{-1} X^ op Y$ is not well-defined

.....

infinitely many optimal θ^*

Quick Summary:

When *X* is not full column rank

- $J(\theta)$ has a "flat" bottom, like a half pipe
- This
 formula is not well-defined
- Infinitely many optimal hyperplanes

Typically, X is full column rank

• $J(\theta)$ "curves up" everywhere

$$ullet \; heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$

• θ^* gives the unique optimal hyperplane

 $X^{\top}X$ becoming more invertible

formula isn't wrong, data is trouble-making

when $X^{T}X$ is almost singular, technically

$$\theta^* = \left(X^{ op}X\right)^{-1}X^{ op}Y$$
 does exist

 θ^* does give the unique optimal hyperplane

but

 θ^* tends to be very sensitive to the small changes in the data

 θ^* tends to have huge magnitude

 θ^* tends to overfit

when $X^{\top}X$ is almost singular

lots of hypotheses (lots of θ s) fit the training data reasonably well

prefer θ with small magnitude (less sensitive prediction when x changes slightly)

Outline

- Recap: ordinary linear regression and the closed-form solution
- The "trouble" with the closed-form solution
 - mathematically, visually, practically
- Regularization, ridge regression, and hyperparameters
- Cross-validation

Regularization

- technique to combat overfitting
- at a high-level, it's to sacrifice some training performance, in the hope that testing behaves better
- many ways to regularize (e.g. implicit regularization, drop-out)
- ullet we will look at a particularly simple regularization today, the so-called ridge or l2-regularization

Ridge Regression

• Add a square penalty on the magnitude of the parameters

•
$$J_{\mathrm{ridge}}\left(heta
ight) = rac{1}{n}(X heta - Y)^{ op}(X heta - Y) + \lambda \| heta\|^2$$
 $(\lambda > 0)$

- λ is a so-called "hyperparameter" (we've already seen a hyperparameter in lab 1)
- Setting $abla_{ ext{dige}} (heta) = 0$ we get $heta^*_{ ext{ridge}} = \left(X^ op X + n\lambda I
 ight)^{-1} X^ op Y$
- θ_{ridge}^* always exists, and is always the unique optimal parameters.
- (see ex/lab/hw for discussion about the offset.)

case (c) training data set again

$$(x_1,x_2)=(6,9),y=9$$

$$(x_1,x_2)=(\underbrace{4}_{_{_{\!x_{_{\!z}}}}},6),y=8$$

https://shenshen.mit.e

$$(x_1,x_2^{^{ imes}})=(2,3),y=7$$

Comments on λ

- one that's chosen by users, before we even see the data
- controls the tradeoff between MSE and theta magnitude
- implicitly controls the "richness" of the hypothesis class

Outline

- Recap: ordinary linear regression and the closed-form solution
- The "trouble" with the closed-form solution
 - mathematically, visually, practically
- Regularization, ridge regression, and hyperparameters
- Cross-validation

Validation

Cross-validation

Cross-validation

Comments on cross-validation

- good idea to shuffle data first
- a way to "reuse" data
- cross-validation is more "reliable" than validation (less sensitive to chance)
- it's not to evaluate a hypothesis (testing error is)
- rather, it's to *evaluate* learning algorithm (e.g. hypothesis class choice, hyperparameter choice)
- Can have an outer loop for *picking* good hyperparameter or hypothesis class

Summary

- Closed-form formula for OLS is not well-defined when X^TX is singular, and we have infinitely many optimal θ^* .
- Even in scenarios where X^TX is just ill-conditioned, we get sensitivity issues, many almost-as-good solutions, while the absolutely best θ^* is overfitting to the data.
- We need to indicate our preference somehow, and also fight overfitting.
- Regularization helps battle overfitting -- by constructing a new optimization problem that implicitly prefers small-magnitude θ .
- Least-squares regularization leads to the ridge-regression formulation. (Good news: we can still solve it analytically!)
- λ trades off training MSE and regularization strength, it's a hyperparameter.
- Validation/cross-validation are a way to choose (regularization) hyperparameters.

https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?

We'd love to hear your thoughts.

Thanks!