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Logistics

1. There is a student in our class who needs copies of class notes as an approved
accommodation. If you're interested in serving as a paid note taker, please reach out to
DAS, at 617-253-1674 or das-student@mit.edu.
 
2. Midterm 1: October 8, 730pm-9pm. It covers all the materials up to and including
week 4 (linear classification). If you need to take the conflict or accommodation exam,
please get in touch with us at  by Sept 24.
 
3. Heads-up: Midterm 2 is November 12, 730pm-9pm. Final is December 15, 9am-12pm.
 
More details on introML homepage
 
 

6.390-personal@mit.edu
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Outline
Gradient descent (GD)

The gradient vector

GD algorithm

Gradient decent properties 

Stochastic gradient descent (SGD)

SGD algorithm and setup

SGD vs. GD
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Recall:

This 👉 formula is not well-defined

Typically,  is full column rankX

θ =∗ X X X Y( ⊤ )−1 ⊤

 "curves up" everywhereJ(θ)

When  is not full column rankX

 has a "flat" bottom, like a half pipeJ(θ)

Infinitely many optimal hyperplanes  gives the unique optimal hyperplane θ∗

 can be costly to compute (lab2, Q2.7)θ∗No way yet to obtain an optimal parameter
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https://epoch.ai/blog/machine-learning-
model-sizes-and-the-parameter-gap
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https://arxiv.org/pdf/2001.08361
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https://losslandscape.com/gallery/
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In the real world,

the number of parameters is huge

the number of training data points is huge

hypothesis class is typically highly nonlinear

loss function is rarely as simple as squared error

Need a more efficient and general algorithm to train
=> gradient descent methods 
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Outline
Gradient descent algorithm (GD)

The gradient vector

GD algorithm

Gradient decent properties

Stochastic gradient descent (SGD)

SGD algorithm and setup

SGD vs. GD
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For , its gradient   is defined at the point  as: f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved.

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.
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∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

3. The gradient can be symbolic or numerical.

f(x, y, z) = x +2 y +3 zexample:

its symbolic gradient:

just like a derivative can be a function or a number.

evaluating the symbolic gradient at a point gives a numerical gradient:

∇f(x, y, z) =
2x
3y2

1

∇f(3, 2, 1) = ∇f(x, y, z) =
(x,y,z)=(3,2,1)

6
12
1
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4. The gradient points in the direction of the (steepest) increase in the function value.

 

cos(x) =
dx
d

x=−4
−sin(−4) ≈ −0.7568

 

cos(x) =
dx
d

x=5
−sin(5) ≈ 0.9589

f(x) = cos(x)

x
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5. The gradient at the function minimizer is necessarily zero.

f(x) = cos(x)

x
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For , its gradient   is defined at the point  as: f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved.

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.

3. The gradient can be symbolic or numerical.

4. The gradient points in the direction of the (steepest) increase in the function value.

5. The gradient at the function minimizer is necessarily zero.
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Outline
Gradient descent algorithm (GD)

The gradient vector

GD algorithm

Gradient decent properties

Stochastic gradient descent (SGD)

SGD algorithm and setup

SGD vs. GD
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Want to fit a line (without offset) to

minimize the MSE: J(θ) = (3θ − 6)2
A single training data point

(x, y) = (3, 6)
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MSE could get better.

How to formalize this?

Suppose we fit a line y = 1.5x

1.5
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∇ J =θ J (θ)′

J(θ) = (3θ − 6)2

= 2[3(3θ − 6)]∣θ=1.5

< 0

MSE could get better. How to?

Leveraging the gradient.

Suppose we fit a line y = 1.5x

1.5
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= 2[3(3θ − 6)]∣θ=2.4

> 0

MSE could get better. How to?

Leveraging the gradient.

Suppose we fit a line y = 2.4x

∇ J =θ J (θ)′

J(θ) = (3θ − 6)2

2.4
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hyperparameters
initial guess
of parameters learning rate precision
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level set,
contour plot
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iteration
counter
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What does this 2d vector     represent? anything in the psuedocode?

What does this 3d vector        represent? anything in the psuedocode?
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objective improvement
is nearly zero.

Other possible stopping criterion for line 6:  

Small parameter change: , or
Small gradient norm:  

∥θ −(t) θ ∥ <(t−1) ϵ

∥∇ J(θ )∥ <θ
(t−1) ϵ
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Outline
Gradient descent algorithm (GD)

The gradient vector

GD algorithm

Gradient decent properties

Stochastic gradient descent (SGD)

SGD algorithm and setup

SGD vs. GD
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When minimizing a function, we aim for a global minimizer.

At a global minimizer the gradient vector is zero

⇒

⇍

gradient descent
can achieve this
(to arbitrary
precision)
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the gradient vector is zero
⇐

the objective function is convex 
{

A function  is convex if any line segment connecting two points

of the graph of  lies above or on the graph. 

f

f

 is concave if  is convex.

Convex functions are the largest well-understood class of functions

where optimization theory guarantees convergence and efficiency

f −f

When minimizing a function, we aim for a global minimizer.

At a global minimizer

33



https://shenshen.mit.edu/demos/convex.html
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Some examples

Convex functions

Non-convex functions
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MSE: J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

convexity is why we can claim the point
whose gradient is zero is a global minimizer.

is always convex
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https://shenshen.mit.edu/demos/ridge/ridge.html
 (x ,x ) =1 2 (2, 3), y = 7

 (x ,x ) =1 2 (4, 6), y = 8

 (x ,x ) =1 2 (6, 9), y = 9

case (c) training data set again

Ridge objective with  is always (strongly) convexλ > 0 convexity is why we can claim the point
whose gradient is zero is a global minimizer.
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Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimizer of .

f

f

f

η

f

Gradient Descent Performance
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if violated, may not have gradient,
can't run gradient descent

Gradient Descent Performance

Assumptions:

 is sufficiently "smooth"

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimizer of .

f

f

f

η

f
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if violated, may get stuck at a saddle point

or a local minimum

Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimizer of .

f

f

f

η

f

Gradient Descent Performance
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if violated:
may not terminate/no
minimum to converge to

Gradient Descent Performance

Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimizer of .

f

f

f

η

f
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Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimizer of .

f

f

f

η

f

Gradient Descent Performance

if violated:
see demo on next slide,
also lab/hw
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https://shenshen.mit.edu/demos/gd.html
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J(θ)

θ1

θ2
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Outline
Gradient descent algorithm (GD)

The gradient vector

GD algorithm

Gradient decent properties

Stochastic gradient descent (SGD)

SGD algorithm and setup

SGD vs. GD

48



Fit a line (without offset) to the dataset, the MSE: training data
p1 2 5
p2 3 6
p3 4 7

x y

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

49



Suppose we fit a line y = 2.5x J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]∣θ=2.5

gradient info can
help MSE get better

= [0 +3
1 6(7.5 − 6) + 8(10 − 7)] = 11

11

2.5
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the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

=                                     3
1 [ ] J1  J2  J3+ +

=                                    3
1 [ ]∇  Jθ 1 ∇  Jθ 2 ∇ Jθ 3+ +

51

p1 2 5

p2 3 6

p3 4 7

x y

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]



the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

=                                     3
1 [ ] J1  J2  J3+ +

=                                    3
1 [ ]∇  Jθ 1 ∇  Jθ 2
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∇ Jθ 3+ +

p1 2 5

p2 3 6

p3 4 7

x y

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]



the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

=                                     3
1 [ ] J1  J2  J3+ +

=                                    3
1 [ ]
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∇  Jθ 1 ∇  Jθ 2 ∇ Jθ 3+ +

p1 2 5

p2 3 6

p3 4 7

x y

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]



∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

=                                     3
1 [ ] J1  J2  J3+ +
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=                                    3
1 [ ]∇  Jθ 1 ∇  Jθ 2 ∇ Jθ 3+ +

p1 2 5

p2 3 6

p3 4 7

x y

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]



J(θ) = θ x − y
n

1

i=1

∑
n

( ⊤ (i) (i))2

∇ J(θ) =θ 2 θ x − y x
n

1

i=1

∑
n

( ⊤ (i) (i)) (i)

Gradient of an ML objective

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

Using our example data set,

∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

Using any dataset,
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J(θ) = J (θ)
n

1

i=1

∑
n

iJ(θ) = θ x − y
n

1

i=1

∑
n

( ⊤ (i) (i))2

= ∇ J (θ)
n

1

i=1

∑
n

θ i∇ J(θ) =θ 2 θ x − y x
n

1

i=1

∑
n

( ⊤ (i) (i)) (i)

Gradient of an ML objective

An ML objective function is a finite sum

and its gradient w.r.t. :θ

∇ J(θ) =θ ∇( J (θ))
n

1

i=1

∑
n

i

In general, 

👋 (gradient of the sum) = (sum of the gradient)
👆

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ
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= ∇ J (θ)
n

1

i=1

∑
n

θ i

J(θ) = J (θ)
n

1

i=1

∑
n

i

Gradient of an ML objective

An ML objective function is a finite sum

and its gradient w.r.t. :θ

∇ J(θ) =θ ∇ ( J (θ))θ
n

1

i=1

∑
n

i

In general, 

gradient info from a single 
 data point's lossith

need to add  of these,
each

n

∇ J (θ) ∈θ i Rd

Costly in practice!

loss incurred on a single 
 data pointith
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∇ J(θ)θ ≈ ∇ J (θ)θ i= ∇ J (θ)
n

1

i=1

∑
n

θ i
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∇ J =θ [4(2θ −3
1 5) + 6(3θ − 6) + 8(4θ − 7)]

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

=                                     3
1 [ ] J1  J2  J3+ +

=                                    3
1 [ ]∇  Jθ 1 ∇  Jθ 2 ∇ Jθ 3+ +
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p1 2 5

p2 3 6

p3 4 7

x y

J(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]



p1 2 5

p2 3 6

p3 4 7

x y
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x1 x2 y
p1 1 2 3
p2 2 1 2
p3 3 4 6

J(θ) = (3 − θ − 2θ ) + (2 − 2θ − θ ) + (6 − 3θ − 4θ )
3
1

[ 1 2
2

1 2
2

1 2
2]
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x1 x2 y
p1 1 2 3
p2 2 1 2
p3 3 4 6

J(θ) = (3 − θ − 2θ ) + (2 − 2θ − θ ) + (6 − 3θ − 4θ )
3
1

[ 1 2
2

1 2
2

1 2
2]
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x1 x2 y
p1 1 2 3
p2 2 1 2
p3 3 4 6

J(θ) = (3 − θ − 2θ ) + (2 − 2θ − θ ) + (6 − 3θ − 4θ )
3
1

[ 1 2
2

1 2
2

1 2
2]
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is much more "random"

is more efficient 

may get us out of a local min

Compared with GD, SGD:

∇ J(θ)θ ≈ ∇ J (θ)θ i= ∇ J (θ)
n

1

i=1

∑
n

θ i
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Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small and satisfies additional "scheduling" condition

Conclusion:

Stochastic gradient descent converges arbitrarily close to a global minimum of 

with probability 1.

f

f

f

η

f

Stochastic gradient descent performance

 and η(t) =∑t=1
∞ ∞ η(t) <∑t=1

∞ 2 ∞
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∇ J (θ)
b

1

i=1

∑
b

θ i

batch size

🥰more accurate gradient estimate
🥰stronger theoretical guarantee
🥺higher cost per parameter update

∇ J (θ)θ i

SGD mini-batch GD

= ∇ J(θ)θ∇ J (θ)
n

1

i=1

∑
n

θ i

GD
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Summary

Most ML methods can be formulated as optimization problems. We won’t always be able
to solve optimization problems analytically (in closed-form) nor efficiently.

We can still use numerical algorithms to good effect.  Lots of sophisticated ones available.
Gradient descent is one of the simplest.

The GD algorithm, iterative algorithm, keeps applying the parameter update rule.

Under appropriate conditions (most notably, when objective function is convex, and
when learning rate is small enough), GD can guarantee convergence to a global
minimum.

SGD is approximated GD, it uses a single data point to approximate the entire data set,
it's more efficient, more random, and less guarantees.

mini-batch GD is a middle ground between GD and SGD.
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https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?
embedded=true

Thanks!
We'd love to hear

your .thoughts
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