
https://introml.mit.edu/

Intro to Machine Learning

Lecture 6: Neural Networks II

Oct 9,2025

11am, Room 10-250

Interactive Slides and Lecture Recording

1

https://introml.mit.edu/
https://introml.mit.edu/fall25/lectures/lec06

Computational Graphs

Computational Graphs
Vertex/Nodes :: simple operation that takes some inputs and produces

some output as a function of its inputs

Edge :: represents the inputs(data) flowing to each vertex

Can represent models as graphs
Simple functions to be combined to form quite complex models

Can define algorithms over these graphs:
Prediction via the forward pass
Learning via gradients computed using the backward pass

4

Linear Regression as Computational Graph
e.g. to update W 2

𝜽 → 𝔀𝒊

Choose f (z) = z

5

Choose f (z) = σ(z)

Logistic Classifier as Computational Graph

𝜽 → 𝔀𝒊

6

Computational Graph for Neuron
A neuron:

Outline

• Recap: Multi-layer perceptrons, expressiveness

• Forward pass (to use/evaluate)

• Backward pass (to learn parameters/weights)

• Back-propagation: (gradient descent & the chain rule)

• Practical gradient issues and remedies

7

A layer:

A Layer of Neural Network

A layer:

• (# of neurons) = (layer's output dimension)
• typically, all neurons in one layer use the same

activation f (if not, uglier algebra)

• typically fully connected, where all xi are

connected to all zj , meaning each xi influences

every aj eventually

• typically, no "cross-wiring", meaning e.g. z1won't
affect a2. (the output layer may be an exception if
softmax is used)

A Layer of Neural Network

Fully-connected, feed-forward neural net

10

aka, multi-layer perceptrons (MLP)

We choose:

• # of layers

• # of neurons in each layer

• activation f in each layer

https://playground.tensorflow.org/

12

https://playground.tensorflow.org/

Choice of Activation Functions

in fact, asymptotically, can approximate any function!

image credit: Phillip Isola 14

Compositions of ReLU Can be Expressive

Using Computational Graphs

• Dependency driven scheduling. Operations that do not depend on one
another can be scheduled in parallel

• Graph Optimizations. Such as subgraph elimination.

• Automatic Differentiation. Easily compute gradients.

Forward Pass

• Activation f is chosen as the identity function

• Evaluate the loss ℒ(𝑔 𝑖 , 𝑦(𝑖)) = 𝑔 𝑖 − 𝑦(𝑖)
2

• Repeat for each data point, average the sum of n individual losses

Example: Forward-pass of a linear regressor

17

• Activation f is chosen as the sigmoid function

• Evaluate the loss ℒ𝑛𝑛𝑙 = − 𝑦 𝑖 log 𝑔 𝑖 + 1 − 𝑦 𝑖 log 1 − 𝑔 𝑖

• Repeat for each data point, average the sum of n individual losses

18

Example: Forward-pass of a logistic classifier

19

Multilayer Network

Layer Number (not exponent)

linear combination

(nonlinear) activation

Forward pass: evaluate given current params.

• the loss incurred on the current data ℒ(𝑔 𝑖 , 𝑦(𝑖))

• the training error 𝐽 =
1

𝑛
σ𝑖=1
𝑛 ℒ𝑛𝑛𝑙

(𝑖)
loss function

20

• The model outputs 𝑔 𝑖 = 𝑓𝐿 ⋯𝑓2 𝑓1 𝐱 𝑖 ;𝐖1 ;𝐖2 ;⋯𝐖𝐿

https://playground.tensorflow.org/

21

https://playground.tensorflow.org/

Feature Learning?

Energies 2020, 13

Backward Pass

Stochastic gradient descent to learn linear regressor

• Randomly pick a data point 𝑥 𝑖 , 𝑦(𝑖)

• Evaluate the gradient ∇𝑤ℒ(𝑥
𝑖 , 𝑦(𝑖))

• Update the weights 𝑤 ← 𝑤 − 𝜂∇𝑤ℒ(𝑥
𝑖 , 𝑦(𝑖))

24

for simplicity, say the dataset has only one data point (x, y) x ∈ Rd

w ∈ Rd

y ∈ R

25

Stochastic gradient descent to learn linear regressor

26

Stochastic gradient descent to learn linear regressor

Loss

𝑔

𝑔

𝓌

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝓌 = 1.5

𝑔 = 𝓌𝑇𝑥

𝑔,𝓌 = (4.5,1.5)

𝑔∗ = 𝑦 = 6

ℒ = 𝑔 − 𝑦 2

ℒ, g = (2.25,4.5)

default choice in hidden layers

very simple function form, so is the gradient:

27

if 𝑧 < 0
otherwise

ReLU Activation Function

𝜕ReLU(𝑧)

𝜕𝑧
= ቊ

0
1

x ∈ Rd

w ∈ Rd

y ∈ R

Backpropagation with ReLU

29

Stochastic gradient descent to learn linear regressor

Loss

𝑔

𝑧

𝓌

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝓌 = 1.5

𝑧 = 𝓌𝑥

𝑧,𝓌 = (4.5,1.5)

𝑔∗ = 𝑦 = 6

ℒ = 𝑔 − 𝑦 2

ℒ, g = (2.25,4.5)

𝑔

𝑧

𝑔, 𝑧 = (4.5,4.5)

ReLU

e.g. to update W 2

30

Backward pass: run SGD to update all parameters

• Randomly pick a data point 𝑥 𝑖 , 𝑦(𝑖)

• Evaluate the gradient ∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))

• Update the weights 𝑊2 ← 𝑊2 − 𝜂∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))

e.g. to update W 2

31

Backward pass: run SGD to update all parameters

• Randomly pick a data point 𝑥 𝑖 , 𝑦(𝑖)

• Evaluate the gradient ∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))

• Update the weights 𝑊2 ← 𝑊2 − 𝜂∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))

32

how to find
𝜕ℒ

𝜕𝑊2?

Backward pass: run SGD to update all parameters

Now, how to update W 1?

33

• Evaluate the gradient ∇𝑊1ℒ(𝑥 𝑖 , 𝑦(𝑖))

• Update the weights 𝑊1 ← 𝑊1 − 𝜂∇𝑊1ℒ(𝑥 𝑖 , 𝑦(𝑖))

Backward pass: run SGD to update all parameters

34

how to find
𝜕ℒ

𝜕𝑊1?

Backward pass: run SGD to update all parameters

35

reuse of computation

Backward pass: run SGD to update all parameters

36

reuse of computation

Backward pass: run SGD to update all parameters

Practical Issues with
Backpropagation

38

Backpropagation with ReLU

39

Stochastic gradient descent to learn linear regressor

Loss

𝑔

𝑧

𝓌

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝔀 = −𝟏

𝑧 = 𝓌𝑥

𝑧,𝓌 = (−3, −1)

𝑔∗ = 𝑦 = 6

ℒ = 𝑔 − 𝑦 2

ℒ, g = (36,0)
𝑔

𝑧

𝑔, 𝑧 = (0, −3)

ReLU

𝜕ℒ

𝜕𝓌
=

𝜕𝑧

𝜕𝓌

𝜕𝑔

𝜕𝑧

𝜕ℒ

𝜕𝑔 ‘Dead ReLU’

now, slightly more complex network

40

Backpropagation with (Wide) ReLU

41

𝑥

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝓌 = 1.5

𝓌 = 1.5

𝓌 = −1

Backpropagation with (Wide) ReLU

1

42

if z2 > 0 and z1 < 0, some weights (grayed-out ones) won't get updated

Backpropagation with (Wide) ReLU

if z2 < 0, no weights get updated

43

Backpropagation with (Wide) ReLU

• Width: # of neurons in layers

• Depth: # of layers

• Typically, increasing either the width or depth (with non-linear

activation) makes the model more expressive, but it also

increases the risk of overfitting

• To combat vanishing gradient is another reason networks are

typically wide

Still have vanishing gradient tendency if the network is deep

36

Large Neural Networks are Expressive

if z2 < 0, no weights get updated

45

Backpropagation with (Wide) ReLU

Residual (skip) Connection

46

Now, g = a1 + ReLU(z2),

even if z2 < 0, with skip connection, weights in earlier layers can still get updated

Backpropagation Was Not Obvious…

47

The architecture of the first known deep network which was

trained by Alexey Grigorevich Ivakhnenko in 1965
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J.

Williams. "Learning representations by back-propagating

errors." nature 323.6088 (1986): 533-536.

…Neither Was the Use of ReLU

Prior to 2010, most activation functions used were

the logistic sigmoid and hyperbolic tangent

Around 2010, the use of ReLU became common again

•ReLU avoids saturation/vanishing

gradients (in positive region)

•ReLU is cheaper to compute

•ReLU creates sparse

representation naturally, because

many hidden units output exactly

zero for a given input

Summary

• We saw that multi-layer perceptrons are a way to automatically find good
features/transformations

• Roughly speaking, can asymptotically learn anything (universal approximation theorem)

• How to learn? Still just (stochastic) gradient descent!

• Thanks to the layered structure, turns out we can reuse lots of computation in gradient

descent update -- back propagation

• Practically, there can be numerical gradient issues. There're remedies, e.g. via having lots of

neurons, or, via residual connections

49

https://forms.gle/kMAu9HkyHoi1ysoGA

We'd love to hear

your thoughts.

Thanks!

50

https://forms.gle/kMAu9HkyHoi1ysoGA
https://forms.gle/kMAu9HkyHoi1ysoGA

	Slide 1: Intro to Machine Learning
	Slide 2: Computational Graphs
	Slide 3: Computational Graphs
	Slide 4
	Slide 5
	Slide 6: A neuron:
	Slide 7: Outline
	Slide 8: A layer:
	Slide 9: A layer:
	Slide 10: Fully-connected, feed-forward neural net
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Using Computational Graphs
	Slide 16: Forward Pass
	Slide 17: Example: Forward-pass of a linear regressor
	Slide 18: Example: Forward-pass of a logistic classifier
	Slide 19: Multilayer Network
	Slide 20: Forward pass: evaluate given current params.
	Slide 21
	Slide 22: Feature Learning?
	Slide 23: Backward Pass
	Slide 24: Stochastic gradient descent to learn linear regressor
	Slide 25: x ∈ Rd w ∈ Rd y ∈ R
	Slide 26
	Slide 27: ReLU Activation Function
	Slide 28: x ∈ Rd w ∈ Rd y ∈ R
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Now, how to update W 1?
	Slide 34
	Slide 35: reuse of computation
	Slide 36: reuse of computation
	Slide 37: Practical Issues with Backpropagation
	Slide 38
	Slide 39
	Slide 40: now, slightly more complex network
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Residual (skip) Connection
	Slide 47: Backpropagation Was Not Obvious…
	Slide 48: …Neither Was the Use of ReLU
	Slide 49: Summary
	Slide 50

