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Computational Graphs



Computational Graphs
Vertex/Nodes :: simple operation that takes some inputs and produces 

some output as a function of its inputs

Edge :: represents the inputs(data) flowing to each vertex

Can represent models as graphs
Simple functions to be combined to form quite complex models

Can define algorithms over these graphs:
Prediction via the forward pass
Learning via gradients computed using the backward pass
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Linear Regression as Computational Graph
e.g. to update W 2

𝜽 → 𝔀𝒊

Choose f (z) =  z
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Choose f (z) =  σ(z)

Logistic Classifier as Computational Graph

𝜽 → 𝔀𝒊
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Computational Graph for Neuron
A neuron:



Outline

• Recap: Multi-layer perceptrons, expressiveness

• Forward pass (to use/evaluate)

• Backward pass (to learn parameters/weights)

• Back-propagation: (gradient descent & the chain rule) 

• Practical gradient issues and remedies
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A layer:

A Layer of Neural Network



A layer:

• (# of neurons) = (layer's output dimension)
• typically, all neurons in one layer use the same 

activation f (if not, uglier algebra)

• typically fully connected, where all xi are

connected to all zj , meaning each xi influences 

every aj eventually

• typically, no "cross-wiring", meaning e.g. z1won't 
affect a2. (the output layer may be an exception if 
softmax is used)

A Layer of Neural Network



Fully-connected, feed-forward neural net
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aka, multi-layer perceptrons (MLP)

We choose:

• #  of layers

• #  of neurons in each layer

• activation f  in each layer





https://playground.tensorflow.org/
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Choice of Activation Functions



in fact, asymptotically, can approximate any function!

image credit: Phillip Isola 14

Compositions of ReLU Can be Expressive



Using Computational Graphs

• Dependency driven scheduling. Operations that do not depend on one 
another can be scheduled in parallel

• Graph Optimizations. Such as subgraph elimination.

• Automatic Differentiation. Easily compute gradients. 



Forward Pass



• Activation f is chosen as the identity function

• Evaluate the loss ℒ(𝑔 𝑖 , 𝑦(𝑖)) = 𝑔 𝑖 − 𝑦(𝑖)
2

 

• Repeat for each data point, average the sum of n individual losses

Example: Forward-pass of a linear regressor
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• Activation f is chosen as the sigmoid function

• Evaluate the loss ℒ𝑛𝑛𝑙 = − 𝑦 𝑖 log 𝑔 𝑖 + 1 − 𝑦 𝑖 log 1 − 𝑔 𝑖

• Repeat for each data point, average the sum of n individual losses
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Example: Forward-pass of a logistic classifier
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Multilayer Network

Layer Number (not exponent)



linear combination

(nonlinear) activation

Forward pass: evaluate given current params.

• the loss incurred on the current data ℒ(𝑔 𝑖 , 𝑦(𝑖))

• the training error    𝐽 =
1

𝑛
σ𝑖=1
𝑛 ℒ𝑛𝑛𝑙

(𝑖)
loss function
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• The model outputs 𝑔 𝑖 = 𝑓𝐿 ⋯𝑓2 𝑓1 𝐱 𝑖 ;𝐖1 ;𝐖2 ;⋯𝐖𝐿



https://playground.tensorflow.org/
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Feature Learning?

Energies 2020, 13



Backward Pass



Stochastic gradient descent to learn linear regressor

• Randomly pick a data point 𝑥 𝑖 , 𝑦(𝑖)

• Evaluate the gradient ∇𝑤ℒ(𝑥
𝑖 , 𝑦(𝑖))

• Update the weights 𝑤 ← 𝑤 − 𝜂∇𝑤ℒ(𝑥
𝑖 , 𝑦(𝑖))
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for simplicity, say the dataset has only one data point (x, y) x ∈ Rd 

w ∈ Rd 

y ∈ R
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Stochastic gradient descent to learn linear regressor
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Stochastic gradient descent to learn linear regressor

Loss

𝑔

𝑔

𝓌

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝓌 = 1.5

𝑔 = 𝓌𝑇𝑥

𝑔,𝓌 = (4.5,1.5)

𝑔∗ = 𝑦 = 6

ℒ = 𝑔 − 𝑦 2

ℒ, g = (2.25,4.5)



default choice in hidden layers

very simple function form, so is the gradient:
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if 𝑧 < 0
otherwise

ReLU Activation Function

𝜕ReLU(𝑧)

𝜕𝑧
= ቊ

0
1



x ∈ Rd 

w ∈ Rd 

y ∈ R

Backpropagation with ReLU
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Stochastic gradient descent to learn linear regressor

Loss

𝑔

𝑧

𝓌

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝓌 = 1.5

𝑧 = 𝓌𝑥

𝑧,𝓌 = (4.5,1.5)

𝑔∗ = 𝑦 = 6

ℒ = 𝑔 − 𝑦 2

ℒ, g = (2.25,4.5)

𝑔

𝑧

𝑔, 𝑧 = (4.5,4.5)

ReLU



e.g. to update W 2
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Backward pass: run SGD to update all parameters

• Randomly pick a data point 𝑥 𝑖 , 𝑦(𝑖)

• Evaluate the gradient ∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))

• Update the weights  𝑊2 ← 𝑊2 − 𝜂∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))



e.g. to update W 2
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Backward pass: run SGD to update all parameters

• Randomly pick a data point 𝑥 𝑖 , 𝑦(𝑖)

• Evaluate the gradient ∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))

• Update the weights  𝑊2 ← 𝑊2 − 𝜂∇𝑊2ℒ(𝑥 𝑖 , 𝑦(𝑖))
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how to find 
𝜕ℒ

𝜕𝑊2?

Backward pass: run SGD to update all parameters



Now, how to update W 1?
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• Evaluate the gradient ∇𝑊1ℒ(𝑥 𝑖 , 𝑦(𝑖))

• Update the weights  𝑊1 ← 𝑊1 − 𝜂∇𝑊1ℒ(𝑥 𝑖 , 𝑦(𝑖))

Backward pass: run SGD to update all parameters



34

how to find 
𝜕ℒ

𝜕𝑊1?

Backward pass: run SGD to update all parameters
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reuse of computation

Backward pass: run SGD to update all parameters
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reuse of computation

Backward pass: run SGD to update all parameters



Practical Issues with 
Backpropagation



38

Backpropagation with ReLU
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Stochastic gradient descent to learn linear regressor

Loss

𝑔

𝑧

𝓌

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝔀 = −𝟏

𝑧 = 𝓌𝑥

𝑧,𝓌 = (−3, −1)

𝑔∗ = 𝑦 = 6

ℒ = 𝑔 − 𝑦 2

ℒ, g = (36,0)
𝑔

𝑧

𝑔, 𝑧 = (0, −3)

ReLU

𝜕ℒ

𝜕𝓌
=

𝜕𝑧

𝜕𝓌

𝜕𝑔

𝜕𝑧

𝜕ℒ

𝜕𝑔 ‘Dead ReLU’



now, slightly more complex network
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Backpropagation with (Wide) ReLU
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𝑥

Consider a single data point 𝑥, 𝑦 = (3,6)
and a model with initial weight 𝓌 = 1.5

𝓌 = 1.5

𝓌 = −1

Backpropagation with (Wide) ReLU



1
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if z2 >  0 and z1 <  0, some weights (grayed-out ones) won't get updated

Backpropagation with (Wide) ReLU



if z2 <  0, no weights get updated
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Backpropagation with (Wide) ReLU



• Width: #  of neurons in layers

• Depth: #  of layers

• Typically, increasing either the width or depth (with non-linear 

activation) makes the model more expressive, but it also 

increases the risk of overfitting

• To combat vanishing gradient is another reason networks are

typically wide

Still have vanishing gradient tendency if the network is deep
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Large Neural Networks are Expressive



if z2 <  0, no weights get updated
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Backpropagation with (Wide) ReLU



Residual (skip) Connection
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Now, g =  a1 +  ReLU(z2),

even if z2 <  0, with skip connection, weights in earlier layers can still get updated



Backpropagation Was Not Obvious…
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The architecture of the first known deep network which was 

trained by Alexey Grigorevich Ivakhnenko in 1965
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. 

Williams. "Learning representations by back-propagating 

errors." nature 323.6088 (1986): 533-536.



…Neither Was the Use of ReLU

Prior to 2010, most activation functions used were 

the logistic sigmoid and hyperbolic tangent

Around 2010, the use of ReLU became common again

•ReLU avoids saturation/vanishing 

gradients (in positive region)

•ReLU is cheaper to compute

•ReLU creates sparse 

representation naturally, because 

many hidden units output exactly 

zero for a given input



Summary

• We saw that multi-layer perceptrons are a way to automatically find good
features/transformations

• Roughly speaking, can asymptotically learn anything (universal approximation theorem)

• How to learn? Still just (stochastic) gradient descent!

• Thanks to the layered structure, turns out we can reuse lots of computation in gradient 

descent update -- back propagation

• Practically, there can be numerical gradient issues. There're remedies, e.g. via having lots of 

neurons, or, via residual connections
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https://forms.gle/kMAu9HkyHoi1ysoGA

We'd love to hear 

your thoughts.

Thanks!
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