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asymptotically, can
approximate any function!

Σ

…

…

…

x

4

[images credit: visionbook.mit.edu]



Two different ways to visualize a function

[images credit: visionbook.mit.edu]

e.g. the identity function
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Representation transformations for a variety of neural net operations

[images credit: visionbook.mit.edu]
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and stack of neural net operations

)

[images credit: visionbook.mit.edu]
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wiring graph equation mapping 1D mapping 2D

[images credit: visionbook.mit.edu]
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[images credit: visionbook.mit.edu]

What does training a neural net classifier look like? 
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Training data x

z1

a1

z2

g

z =1  linear (x) ∈ R2
a =1  ReLU(z )1

g = softmax(z )2

z =2  linear (a ) ∈1 R2

x ∈ R2 maps from
complex data

space to desired
target space
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[images credit: visionbook.mit.edu]
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Deep neural nets transform datapoints, layer by layer

Each layer is a different representation, aka embedding, of the data

[images credit: visionbook.mit.edu]

From data to latent embeddings: representation learning

(From latent embeddings to data: generative modeling)
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https://distill.pub/2017/feature-visualization/
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Often, what we will be “tested” on is not what we were trained on.

[images credit: visionbook.mit.edu]

"common"-sense
representation

task-specific
prediction
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Final-layer adaptation: freeze , train a new final layer to new target dataf

[images credit: visionbook.mit.edu]

"common"-sense
representation

task-specific
prediction
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Finetuning: initialize  as , then continue training for  as well, on new target dataf ’ f f ′

[images credit: visionbook.mit.edu]

"common"-sense
representation

task-specific
prediction
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[images credit: visionbook.mit.edu]
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ImageNet also taught us that labeling 14 million images by hand is brutal.
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Label prediction (supervised learning)

Label

x y

Features

Labels  are
expensive…

yUnlabeled features 
are abundant

x

Can we learn useful things with just ? x
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[Bartlett, 1932]
[Intraub & Richardson, 1989]
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[https://www.behance.net/gallery/35437979/Velocipedia]
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🧠

humans also learn representations

[images credit: visionbook.mit.edu]
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Compact (minimal)

Explanatory (roughly sufficient)

Disentangled (independent factors)

Interpretable (understandable by humans)

Make subsequent problem solving easy

[See “Representation Learning”, Bengio 2013, for more commentary]

Auto-encoders
explicitly aims {

⎩⎨
⎧

these may just
emerge as well

Good representations are:
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Auto-encoder

"What I cannot create, I do not understand." Feynman

[images credit: visionbook.mit.edu]

compact representation/embedding
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Auto-encoderAuto-encoder

encoder decoder

bottleneck

x =x~ NN(x;W )

∣∣x−
W
min ∣∣x~ 2
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Data space:
(high dimensional, irregular)

Encoder

Decoder

Representation space
(low dimensional, regular)

[Typically, encoders can serve as a translator to get "good representations",
whereas decoders can serve as "generative models"]



[Vincent et al, Extracting and composing robust features with denoising autoencoders, ICML 08]

But it's easy to "cheat" with auto-encoders

[Steck 20, Zhang et al 17]

encoder decoder

the reconstruction error is fine
but not very useful
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Unsupervised Learning (feature reconstruction)

Features Reconstructed
Features

x x̂
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Self-supervised Learning (partial feature reconstruction)

x̂

x

Partial
Features

Other Partial
Features

Harder reconstruction, forces understanding.
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Masked Auto-Encoder (Vision)

[He, et al. Masked Autoencoders Are Scalable Vision Learners, 2021]
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Large Language Models (LLMs) are trained in this self-supervised way

Scrape the internet for plain texts.

Cook up “labels” (prediction targets) from these texts.

Convert “unsupervised” problem into “supervised” setup.
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"To date, the cleverest thinker of all time was Issac. "

feature label

To date, the cleverest

…

To date, the cleverest  thinker
To date, the cleverest thinker was
…

… …

To date, the cleverest thinker of all time was  Issac
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[video edited from  ]3b1b

Word embedding
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https://s3.amazonaws.com/media-p.slid.es/videos/1146306/beexziK7/embedding_1.mp4
http://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw


dot-product similarity

[video edited from  ]3b1b

dot-product similarity
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dict_en2fr = { 
  "apple" : "pomme",
  "banana": "banane", 
  "lemon" : "citron"}

1
2
3
4

For now, let's look at how good embeddings enable "soft" dictionary look-up:

Key Value

apple pomme:

bananebanana :

citronlemon :

Good word embeddings space is equipped with sensible dot-product similarity
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query = "lemon" 
output = dict_en2fr[query]

dict_en2fr = { 1
  "apple" : "pomme",2
  "banana": "banane", 3
  "lemon" : "citron"}4
 5

6
7

apple pomme

banane

citron

banana

lemon

Key Value

lemon :

:

:

Query Output

citron
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query = "orange" 
output = dict_en2fr[query]

dict_en2fr = { 1
  "apple" : "pomme",2
  "banana": "banane", 3
  "lemon" : "citron"}4
 5

6
7

Python would complain. 🤯

orange apple pomme

banane

citron

banana

lemon

Key Value

:

:

:

Query Output
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???

What if we run



What if we run

But we can probably see the rationale behind this:

apple pomme

banane

citron

banana

lemon

orange :

:

:

Key ValueQuery Output
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query = "orange" 
output = dict_en2fr[query]

dict_en2fr = { 1
  "apple" : "pomme",2
  "banana": "banane", 3
  "lemon" : "citron"}4
 5

6
7

   0.80.10.1 pomme banane citron    0.1    0.8+ +pomme banane citron    0.1+ +



via these merging percentages [0.1  0.1  0.8] made sense

We put (query, key, value) in "good" embeddings in our human brain

such that "merging" the values

orangeorangeorange    0.80.1apple pomme

banane

citron

banana

lemon

:

:

:

0.1

Key ValueQuery Output

pomme banane citron    0.1    0.8+ +pomme banane citron    0.1+ +apple

banana

lemon

orange

41

0.8    0.1   0.1 pomme banane citron+ +

very roughly, the attention mechanism in transformers automates this process. 
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orangeorange pomme

banane

citron

dot-product similarity

   0.80.10.1 pomme banane citron    0.1    0.8+ +pomme banane citron    0.1+ +

softmax ( )= [ ]0.1    0.1   0.8

1. compare query and key for merging percentages: 
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:

:

:

0.1

Key ValueQuery Output

pomme banane citron    0.1    0.8+ +orangeorange pomme banane citron+ +

0.8    0.1   0.1 pomme banane citron+ +2. then output merged values

1. compare query and key for merging percentages: 

many more bells and whistles, we'll discuss next week
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1. masking: reconstruction

2. contrastive: similarity

3. multi-modality: alignment

[Section slides partially adapted from Kaiming He, Philip Isola, and Andrew Owens]
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[Zhang, Isola, Efros, ECCV 2016]

e.g. masking channels

1. Masking
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predict color from gray-scale

[Zhang, Isola, Efros, ECCV 2016]

1. Masking
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e.g. medical imaging

[Zhou+,'22; Chen+,'22; Huang+,'22; An+,'22]

1. Masking
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e.g. 3d geometry

[Pang+, '22; Liang+, '22; Min+, '22; Krispel+, '22]

1. Masking
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e.g. audio

[Baade+, '22; Chong+, '22; Niizumi, '22; Huang+, '22]
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e.g. graphs

[Tan+, '22; Zhang+, '22; Hou+, '22; Li+, '22]
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e.g. robotics

[Xiao+, '22; Radosavovic+, '22; Seo+, '22;]

1. Masking
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[Feichtenhofer, et al., "Masked Autoencoders As Spatiotemporal Learners", NeurIPS 2022]

1. Masking
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[Feichtenhofer, et al., "Masked Autoencoders As Spatiotemporal Learners", NeurIPS 2022]
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[He, et al. Masked Autoencoders Are Scalable Vision Learners, 2021]

masking ratio

transfer
accuracy

masking 75% is
optimal for images

1. Masking
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95% masked

98% masked

Similar empirical studies shows 15% as optimal for languages, and 95% for videos
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The allegory of the cave

2. Contrastive learning 
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[images credit: visionbook.mit.edu]

2. Contrastive learning 
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[images credit: visionbook.mit.edu]

2. Contrastive learning 
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SimCLR animation

[Chen, Kornblith, Norouzi, Hinton, ICML 2020]

2. Contrastive learning 
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3. Multi-modality

[images credit: visionbook.mit.edu]
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[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]

e.g. video, audio, images
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[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]

What did the model learn?

62



[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]
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e.g. image classification (done in the contrastive way)

[Radford et al, Learning Transferable Visual Models From Natural Language Supervision, ICML, 2011]
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e.g. image classification (done in the contrastive way)

[Radford et al, Learning Transferable Visual Models From Natural Language Supervision, ICML, 2011]
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[https://arxiv.org/pdf/2204.06125.pdf]

e.g Dall-E: text-image generation
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[Slide Credit: Yann LeCun]
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Summary

We looked at the mechanics of NN. Today we see they learn representations, just like our

brains do.

This is useful because representations transfer — they act as prior knowledge that enables

quick learning on new tasks.

Representations can also be learned without labels, e.g. as we do in unsupervised, or self-

supervised learning. This is great since labels are expensive and limiting.

Without labels there are many ways to learn representations:

representations as compressed codes, auto-encoder with bottleneck

(representations that are predictive of their context)

(representations that are shared across sensory modalities)
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https://forms.gle/GDq3R5Cdb6iRCN62A

Thanks!
We'd love to hear

your thoughts.
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