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Outline

e Neural networks are representation learners
e Auto-encoders

« Word embeddings

* (Some recent representation learning ideas)
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Two different ways to visualize a function

e.g. the identity function
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Representation transformations for a variety of neural net operations
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and stack of neural net operations

X, =relu(x;)| .

X1=2*X0 v
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Parameters

wiring graph equation mapping 1D mapping 2D
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What does training a neural net classifier look like?

Input data

Series of geometric transformations

\
4

L

(1.e., a neural net)

Target output

Yy




g = softmax(z)
zo = linear (a;) € R?
a; = ReLU(z)
z1 = linear (z) € R?

r € R?

Training data

e
°

.
¢
=
maps from
complex data
- space to desired
target space
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| linear |

Training iteration oo cee : —> .
8 [images credit: visionbook.mit.edu]
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Deep neural nets transform datapoints, layer by layer Embedding

Each layer is a different representation, aka embedding, of the data

From data to latent embeddings: representation learning

Representation learning ——

(From latent embeddings to data: generative modeling) Data

+<—— Generative modeling
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Often, what we will be “tested” on is not what we were trained on.
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Training

Genre recognition

classical

hip hop

rock

|-

metal

alternative

rap

. 101 JOI®IC)

"common"-sense task-specific
representation prediction

Adapting

Preference prediction

7w

@O

Like
Neural

Dislike

Finetuning: initialize f’ as f, then continue training for f' as well, on new target data
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Pretraining
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ImageNet also taught us that labeling 14 million images by hand is brutal.

Undergrads were|time-consuming, algorithms were flawed, and
the team didn’t hav+ money-Li said the project failed to win any
of the federal grants she applied for, receiving comments on
proposals that it was shameful Princeton would research this
topic, and that the only strength of proposal was that Li was a
woman.

A solution finally surfaced in a chance hallway conversation with
a graduate student who asked Li whether she had heard of
Amazon Mechanical Turk, a service where hordes of humans
sitting at computers around the world would complete small
online tasks for pennies.

“He showed me the website, and I can tell you literally that day I
knew the ImageNet project was going to happen,” she said.
“Suddenly we found a tool that|could scalethat we could not
possibly dream of by hiring Princeton undergrads.”
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Label prediction (supervised learning)

Features Label

— — — Y
Unlabeled features x Labels y are
are abundant expensive...

Can we learn useful things with just z?
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Outline

« Neural networks are representation learners
- Auto-encoders

e Word embeddings

* (Some recent representation learning ideas)
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Observed image

Drawn from memory
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humans also learn representations
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Good representations are:

Auto-encoders
explicitly aims

these may just
emerge as well

Compact (minimal)

Explanatory (roughly sufficient)

Disentangled (independent factors)
Interpretable (understandable by humans)

Make subsequent problem solving easy

[See “Representation Learning”, Bengio 2013, for more commentary]
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Auto-encoder

compact representation/embedding
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"What I cannot create, I do not understand." Feynman
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Data space: Representation space

(high dimensional, irregular) ~ (low dimensional, regular)

Decoder

~
Encoder

[Typically, encoders can serve as a translator to get "good representations”,
whereas decoders can serve as "generative models"]
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But it's easy to "cheat" with auto-encoders

encoder decoder
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Unsupervised Learning (feature reconstruction)

Features

Reconstructed
Features
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Self-supervised Learning (partial feature reconstruction)

Partial

Features

Harder reconstruction, forces understanding.

‘ £
Other Partial
Features
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Masked Auto-Encoder (Vision)
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[He, et al. Masked Autoencoders Are Scalable Vision Learners, 2021]
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Large Language Models (LLMs) are trained in this self-supervised way

« Scrape the internet for plain texts.
« Cook up “labels” (prediction targets) from these texts.

e Convert “unsupervised” problem into “supervised” setup.
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"To date, the cleverest thinker of all time was Issac. "

feature

To date, the
To date, the cleverest

To date, the cleverest thinker

To date, the cleverest thinker of all time was

To date, the —

label

cleverest
thinker

was

Issac

model
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Outline

« Neural networks are representation learners
e Auto-encoders

« Word embeddings

* (Some recent representation learning ideas)
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Word embedding
Words ——— Vectors

[video edited from



https://s3.amazonaws.com/media-p.slid.es/videos/1146306/beexziK7/embedding_1.mp4
http://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

dot-product similarity

= o

Dot product



http://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://s3.amazonaws.com/media-p.slid.es/videos/1146306/7o9hpOLj/dot-product.mp4

Good word embeddings space is equipped with sensible dot-product similarity

For now, let's look at how good embeddings enable "soft" dictionary look-up:

dict en2fr = ({

"apple" : "pomme",
"banana": "banane",
"lemon" : "citron"}

Key Value
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Query

lemon [

query =
output =

Key

"lemon"
dict en2fr[query]

Value

Output

citron
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What if we run

Query

) query =

output =

Key

orange |

"orange"
dict en2fr[query]

Value

Output

?7?7?

Python would complain. &

39



What if we run

query = "orange"
output = dict en2fr[query]

But we can probably see the rationale behind this:

Query

N

orange

Key

7 .
.
.
)
: -

Value

Output

ya
N\

01 [SRRRRE) + 0.1 AR + 0.5 (RGN
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Query

orange

Key

N
7 .
)
)
.
: -

Value

Output

/N

01 [ + 0.1 [EARARE] + 0.5 o

We put (query, key, value) in "good" embeddings in our human brain

such that "merging" the values 0.1 - +0.1 - +0.8 -

via these merging percentages [0.1 0.1 0.8] made sense

very roughly, the attention mechanism in transformers automates this process.
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Query

orange | :

Value

Output

-%01-”1-”8-

1. compare query and key for merging percentages:

softmax

orange

orange

orange

0.1 01 08]
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Query Value Output

orange): NS - (o 0.1 (o - o R - 0. [
\= %

1. compare query and key for merging percentages:

softmax orange orange orange — [01 0.1 08]

Y )

2. then output merged values 0.1 - +0.1 - + 0.8 -

many more bells and whistles, we'll discuss next week



Outline

« Neural networks are representation learners
« Auto-encoders

« Word embeddings

- (Some recent representation learning ideas)

e 1. masking: reconstruction
e 2. contrastive: similarity

e 3. multi-modality: alignment
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1. Masking

e.g. masking channels

[Zhang, Isola, Efros, ECCV 2016]
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1. Masking

predict color from gray-scale
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1. Masking e.g. medical imaging ¥ A A liloss
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Decoder
Reconstruction
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Masked graph modeling
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1. Masking

I

\

2

encoder

-/

[Feichtenhofer, et al., "Masked Autoencoders As Spatiotemporal Learners", NeurIPS 2022]

v
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(a) agnostic, 90%

encoder e

(b) space-only, 90%  (c) time-only, 75% (d) block, 75%

[Feichtenhofer, et al., "Masked Autoencoders As Spatiotemporal Learners", NeurIPS 2022]
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1. Masking

masking 75% is
optimal for images

transfer
accuracy o
70 |-
60 -
—a— MAE
50 | | | | | | |
10 20 30 40 50 60 80 90

masking ratio
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Similar empirical studies shows 15% as optimal for languages, and 95% for videos

95% masked
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2. Contrastive learning
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2. Contrastive learning

Observations

[images credit: visionbook.mit.edu]
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2. Contrastive learning

(@) (@) )

Matching views Unmatching view

Data space

Encoder

Representation space

Pull together
» Push apart
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2. Contrastive learning

% Supervised #*SimCLR (4x)
i | #*SimCLR (2x)
§ eCPCv2-L
E 70F 4ai MoCo (4x
(:_) #*SimCLR eCMC J ( )
[} oPIRL-c2x
< AMDIM
— 65} b eMoCo (2x)
¢ QCPCv2 PIRL-ens.
° PIRL eBigBiGAN
*%',‘ 6ok *MoCo
S LA
@
E E eRotation
™ e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Figure 1. ImageNet top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised methods

(pretrained on ImageNet). Our method, SimCLR, is shown in bold.
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3.

Multi-modality

State

| 7/
S i

Observations

[images credit: visionbook.mit.edu]
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e.g. video, audio, images

[Owens et al, Ambient Sound Provides Supervision for Visual Learning, ECCV 2016]
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What did the model learn?

r
L&
r

Strongest responses in dataset
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e.g. image classification (done in the contrastive way)

1. Contrastive pre-training

pepper the
aussie pup "

-

”.
i& |

i
& il

—_—

Text
Encoder

Image
Encoder

I,'T;

I1,T,

I;-T,

I, T,

I,Ts

I, T3

Iz:T3

N

I Ty

I, Ty

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]

I_e = 12_normalize(np.dot(I_f, W_i), axis=1)

T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
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e.g. image classification (done in the contrastive way)

1. Contrastive pre-training

pepper the Text
aussie pup Encoder

Image
Encoder

In

I T

Iy

I,

I, T,

Iy T,

I, T

I, Ts

373

IyT3

I Ty
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Iz Ty

Iy Ty

2. Create dataset classifier from label text

a photo of Text
a {object}. Encoder

3. Use for zero-shot prediction

Image

_ I
Encoder 1

IT ‘T7

IT ‘TZ Il 'TK

|

a photo of
a dog.

I Ty
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e.g Dall-E: text-image generation

_ CLIP objective img
- > encoder
“a corqi
playing a
flame R
throwing P .
trumpet” (55?’)(50 O O
O+O~
O O

prior decoder

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.
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Y. LeCun

How Much Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

> A few bits for some samples

P Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data

» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)
» The machine predicts any part of its input for any =
observedpartt. S

» Predicts future frames in videos

» Millions of bits per sample

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardware: Pa: [Shde Credit: Yann LeCun]
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Summary

« We looked at the mechanics of NN. Today we see they learn representations, just like our
brains do.

« This is useful because representations transfer — they act as prior knowledge that enables
quick learning on new tasks.

 Representations can also be learned without labels, e.g. as we do in unsupervised, or self-
supervised learning. This is great since labels are expensive and limiting.

« Without labels there are many ways to learn representations:

= representations as compressed codes, auto-encoder with bottleneck
= (representations that are predictive of their context)

= (representations that are shared across sensory modalities)
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We'd love to hear
your thoughts.

Thanks!
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https://forms.gle/GDq3R5Cdb6iRCN62A

