
https://introml.mit.edu/

Intro to Machine Learning
 Lecture 11: Markov Decision Processes

Shen Shen

Nov 13, 2025
11am, Room 10-250

Interactive Slides and Lecture Recording

1

https://introml.mit.edu/
https://introml.mit.edu/fall25/lectures/lec11

Toddler demo, Russ Tedrake thesis, 2004
uses vanilla policy gradient (actor-critic)

2

https://s3.amazonaws.com/media-p.slid.es/videos/1146306/TkgXlQ2O/toddler.mp4

3

Reinforcement Learning with Human Feedback

4

https://say-can.github.io/img/demo_sequence_compressed.mp4

5

https://say-can.github.io/img/demo_sequence_compressed.mp4

Markov Decision Processes Definition

Policy Evaluation

State value functions:

Bellman recursions and Bellman equations

Vπ

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

π∗

Q∗

Markov Decision Processes Definition

Policy Evaluation

State value functions:

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

Outline

6

Markov Decision Processes

Research area initiated in the 50s by Bellman, known under various names:

Stochastic optimal control (Control theory)

Stochastic shortest path (Operations research)

Sequential decision making under uncertainty (Economics)

Reinforcement learning (Artificial intelligence, Machine learning)

A rich variety of elegant theory, mathematics, algorithms, and applications—but also

considerable variation in notation.

We will use the most RL-flavored notations.

7

(state, action) results in a transition into a next state:T

Normally, we get to the “intended” state;

E.g., in state (7), action “↑” gets to state (4)

If an action would take Mario out of the grid world, stay put;

E.g., in state (9), “→” gets back to state (9)

In state (6), action “↑” leads to two possibilities:

20% chance to (2)

80% chance to (3).

80%
20%

Running example: Mario in a grid-world

8

9 possible states s

4 possible actions : {Up ↑, Down ↓, Left ←, Right →}a

1 2 3

4 5 6

7 8 9

(state, action) pairs give rewards:

in state 3, any action gives reward 1

in state 6, any action gives reward -10

any other (state, action) pair gives reward 0

1

1
1 1

−10

−10
−10 −10

reward of (3,)↓reward of)(3, ↑

reward of)(6, ↓

reward of)(6, →

discount factor: a scalar of 0.9 that reduces the 'worth' of future rewards depending
on when Mario receives them.

So, e.g., for (3,) pair, Mario gets←

at the start of the game, a reward of 1
at the 2nd time step, a discounted reward of 0.9
at the 3rd time step, a further discounted reward of ... and so on(0.9)2

9

Mario in a grid-world, cont'd

 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

Markov Decision Processes - Definition and terminologies

In 6.390,

 and are small discrete sets,
unless otherwise specified.
S A

10

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

S s

A a

T s, a, s(′) s s′ a

Markov Decision Processes - Definition and terminologies

80%
20%

T 7, ↑, 4 =() 1

T 9, →, 9 =() 1

T 6, ↑, 3 =() 0.8

T 6, ↑, 2 =() 0.2

1 2 3

4 5 6

7 8 9

In 6.390,

 and are small discrete sets,
unless otherwise specified.
S A

 and are short-hand for the next-
timestep state and action.
s′ a′

11

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

 : reward, takes in a (state, action) pair and returns a reward.

S s

A a

T s, a, s(′) s s′ a

R(s, a)

Markov Decision Processes - Definition and terminologies

reward of)(3, ↑

reward of)(6, →

R 3, ↑ =() 1

R 6, → =() −10

In 6.390,

 and are small discrete sets,
unless otherwise specified.

 and are short-hand for the next-
timestep state and action.

S A

s′ a′

 is deterministic and bounded.R(s, a)

1
1

1
1

-10
-10

-10
-10

12

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

 : reward, takes in a (state, action) pair and returns a reward.

S s

A a

T s, a, s(′) s s′ a

R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

The goal of an MDP is to find a good policy.

Markov Decision Processes - Definition and terminologies

In 6.390,

 and are small discrete sets,
unless otherwise specified.

 and are short-hand for the next-
timestep state and action.

 is deterministic and bounded.

S A

s′ a′

R(s, a)

 is deterministic.π(s)

13

a =t π(s)t

r =t R(s , a)t t

Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

a trajectory (also called an experience or rollout) of horizon

h

τ = s , a , r , s , a , r ,… s , a , r(0 0 0 1 1 1 h−1 h−1 h−1)

time

initial state all depends on π

14

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

T s, a, s(′)

Outline
Markov Decision Processes Definition

Policy Evaluation

State value functions:

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

15

One idea:

Reward R(s, a) r2 r3 r4r1 rh−2

Policy π(s)

Transition T s, a, s(′)

time

…

s2 s3 s4 s5

a2 a3 a4

s0 s1

a0 a1

sh−2

ah−2

sh−1

ah−1

16

rh−1r0

Starting in a given , how good is it to follow a given policy for time steps?s0 π h

But if we start at and follow the "always-up" policy:s =0 6

R(s ,π(s))0 0 γR(s ,π(s))1 1 γ R(s ,π(s))3
3 3γ R(s ,π(s))2

2 2 …+ + + + γ R(s ,π(s))h−1
h−1 h−1+

6

↑

−10

??

👈

80%20%

1 2 3

4 5 6

7 8 9

states and
one special
transition:

rewards: trajectory:0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Starting in a given , how good is it to follow a given policy for time steps?s0 π h

E[]
Value functions:

 expected sum of discounted rewards starting in state and follow for stepsV (s) :h
π s π h

Value is long-term; reward is immediate (one-time)

Horizon-0 values defined as 0 for all statesV (s)0
π

R(s ,π(s))0 0 γR(s ,π(s))1 1 γ R(s ,π(s))3
3 3γ R(s ,π(s))2

2 2 …+ + + + γ R(s ,π(s))h−1
h−1 h−1+

= E γ R s ,π s ∣ s = s,π[∑t=0
h−1 t (t (t)) 0]

V (s) :=h
π

in 6.390, this expectation is only w.r.t. the transition probabilities T s, a, s(′)

(eq. �)

17

0

000

0

horizon = 0: no step lefth

0

0

0

0

V (s) =0
↑ 0

0

00

0

1

−10

horizon = 1: receive the rewardsh

0

V (s) =1
↑ R(s, ↑)

0

0

18

 termsh

evaluate under the "always-up" policyV (s)h
π

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

V (s) =h
↑ E γ R s , ↑ ∣ s = s[∑t=0

h−1 t (t) 0]
= E[R(s , ↑0) + γR(s , ↑1) +⋯+ γ R(s , ↑h−1

h−1)]

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

0

0

R(1, ↑) + γR(1, ↑)

0

R(2, ↑) + γR(2, ↑)

1.9

R(3, ↑) + γR(3, ↑)

0

R(4, ↑) + γR(1, ↑)

= 1 + 0.9 ∗ (1) ⇒ 1.9

R(5, ↑) + γR(2, ↑)

horizon h = 2

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

19

states and
one special transition:

rewards

80%20%

V (s) :2
↑ E[R(s , ↑0) + γR(s , ↑1)]

 terms2

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

−900

−9.28

R(6, ↑) + γ[.2R(2, ↑) + .8R(3, ↑)]

R(8, ↑) + γR(5, ↑)R(7, ↑) + γR(4, ↑) R(9, ↑) + γR(6, ↑)

action ↑

R(3, ↑)γ

action ↑

R(2, ↑)γ

= −10 + 0.9 ∗ (0.2 ∗ 0 + 0.8 ∗ 1)

⇒ −9.28

20

= 0 + 0.9 ∗ (−10) ⇒ −9

20%
2

80%
3action ↑

R(6, ↑)

6
1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

horizon h = 2

1
1

1
1

-10
-10

-10
-10

80%20%

0

0 0 1.9

0

 terms2

V (s) :2
↑ E[R(s , ↑0) + γR(s , ↑1)]

action ↑

action ↑

γ R(3, ↑2)

action ↑ action ↑

action ↑

20%

80%

R(6, ↑)V (6)3
↑ γR(2, ↑)20%+ +

γR(2, ↑) γ R(2, ↑2)

γR(3, ↑)

21

80%

R(6, ↑)

+ R(2, ↑) + γR(2, ↑)[]γ20% R(3, ↑) + γR(3, ↑)[]= γ+ 80%R(6, ↑)

80%= γ20%+ V (2)2
↑ γ+ V (3)2

↑R(6, ↑)

6

2

33

2

γ R(2, ↑2)γR(3, ↑) 20%+ 80% γ R(3, ↑2)+=

R(6, ↑) γR(2, ↑)20%+ + γ R(2, ↑2) γR(3, ↑)80%+ γ R(3, ↑2)= +[]][

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%

horizon h = 3

 terms3

V (s) :3
↑ E[R(s , ↑0) + γR(s , ↑1) + γ R(s , ↑2

2)]

horizon- value in state : the expected
sum of discounted rewards, starting in
state and following policy for steps.

h s

s π h

the immediate reward for
taking the policy-prescribed
action in state .π(s) s sum of future values weighted by the

probability of reaching that next state s′

 horizon future
value at a next state
(h− 1)

s′

discounted by γ

V (6)3
↑ = 80%γ20%+ V (2)2

↑

22

γ+ V (3)2
↑R(6, ↑)

(eq. �) V (s) =h
π R s,π(s) +() γ T s,π(s), s V s∑s′ (′) h−1

π (′)

V (s)2
↑V (s) =1

↑ R(s, ↑)

V (9) =2
↑ R(9, ↑) + γ[V (6)]1

↑

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s∑s′ (′) h−1

π (′)Bellman Recursion (finite horizon)h

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

23

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

= 0 + 0.9 × [−10]

= −9

V (s)3
↑

V (6) =3
↑ R(6, ↑) + γ[.2 × V (2) +2

↑ .8 × V (3)]2
↑

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s∑s′ (′) h−1

π (′)Bellman Recursion (finite horizon)h

V (s)2
↑

= −10 + .9[.2 × 0 + 0.8 × 1.9]

V (s) =1
↑ R(s, ↑)

24

= −8.632

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

V (s)5
↑ V (s)6

↑

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

25

V (s)4
↑

V (6) =6
↑ R(6, ↑) + γ[.2 × V (2) +5

↑ .8 × V (3)]5
↑

= −10 + .9[.2 × 0 + 0.8 × 4.10]

= −7.048

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s∑s′ (′) h−1

π (′)Bellman Recursion (finite horizon)h

…

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

V (s)60
↑ V (s)61

↑

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

26

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s∑s′ (′) h−1

π (′)Bellman Recursion (finite horizon)h

V (s)59
↑

V (6) =61
↑ R(6, ↑) + γ[.2 × V (2) +60

↑ .8 × V (3)]60
↑

= −10 + .9[.2 × 0 + 0.8 × 9.98]

= −2.8144

…

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

V (s)60
↑ V (s)61

↑

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

27

…

V (s)∞
↑

Value functions converge as h→∞

Typically, to ensure is finite.γ < 1 V∞

As we extend the horizon, value differences shrink
because longer-term rewards are heavily discounted
so, as the value functions stop changingh→∞,

convergence can be seen, e.g., via V (3) =∞
↑ 1 + .9 + .9 +2 .9 +3 ⋯= 10

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

80%20%

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s∑s′ (′) h−1

π (′)Recursion (finite) � h

As horizon the Bellman recursion becomes the Bellman equationh→∞,

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s∑s′ (′) ∞

π (′)

28

Equation � (h→∞)

V (s)∞
↑

= 1 + .9 × 10 ⇒ 10

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

V (6) =∞
↑ R(6, ↑) + γ[.2 × V (2) +∞

↑ .8 × V (3)]∞
↑

= −10 + .9[.2 × 0 + 0.8 × 10] ⇒ −2.8

A system of self-consistent linear equations, one for each state∣S∣

V (3) =∞
↑ R(3, ↑) + γ[V (3)]∞

↑

finite-horizon Bellman recursions

infinite-horizon Bellman equations

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s∑s′ (′) ∞

π (′)

V (s) =h
π R(s,π(s)) + γ T s,π(s), s V s∑s′ (′) h−1

π (′)

π(s) V (s)h
πPolicy EvaluationQuick summary

Use the definition and sum up expected rewards:

Or, leverage the recursive structure:

V (s) :=h
π E γ R s ,π s ∣ s = s,π[∑t=0

h−1 t (t (t)) 0]�

�

�

29

Outline
Markov Decision Processes Definition

Policy Evaluation

State value functions:

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

30

Intuitively, an optimal policy is a policy that yields the highest possible value

 from every state

π∗

V (s)h
∗

An MDP has a unique optimal value V (s)h
∗

Optimal policy might not be uniqueπ∗

Optimal policy π∗

e.g. in the "Luigi game", all rewards are 1,

1 2 3

4 5 6

7 8 9

80%20%

γ = 0.9States and one
special transition:

Rewards:

then any policy is an optimal policy
31

Formally: an optimal policy is such that: π∗ V (s) =h
π∗ max V (s) =π h

π V (s), ∀s ∈h
∗ S

How to search for an optimal policy ?π∗

Even if we tediously enumerate over all , do policy evaluation, compare values to

get ...it's not yet clear how to choose actions.

π

V (s)h
∗

 is defined over states, not actions.

It tells us where we'd like to be — not what we should do to get there.

V (s)∗

Optimal policy π∗

32

Bellman recursion under an optimal policy

V (s) =h
∗ max [R(s, a) +a γ T(s, a, s)V (s)]∑s′

′
h−1
∗ ′

Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

time

33

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Optimality recursion
if we've acted optimally for steps: h V (s)h

∗

we must have acted optimally from
the first step onward V (s)h−1

∗ ′

�

 satisfies the Bellman recursion:Q∗

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ h−1

∗ (′ ′)

Define the optimal state-action value functions Q (s, a) :h
∗

the expected sum of discounted rewards, obtained by

starting in state s

take action , for one stepa

act optimally thereafter for the remaining steps(h− 1)

V (s) =h
∗ max [R(s, a) +a γ T(s, a, s)V (s)]∑s′

′
h−1
∗ ′ = max Q (s, a)a [h

∗]�

�

Q (s, a)h
∗

34

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

: the value forQ (s, a)h
∗

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

Rewards:

Q (s, a)0
∗

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

35

Q (s, a)1
∗

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)

= −8

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

receive R(3, ↓)

Consider Q (3, ↓2
∗)

−8

Q (s, a)2
∗

: the value forQ (s, a)h
∗

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

36

Rewards:

Q (s, a)1
∗

Q (3, ↓2
∗) = R(3, ↓) + γmax Q 6, aa′ 1

∗ (′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

next state = 6, act optimally for the
remaining one timestep

receive

s′

max Q 6, aa′ 1
∗ (′)

= 1 + .9 × 10

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

Q (3, ←2
∗) = R(3, ←) + γmax Q 2, aa′ 1

∗ (′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Let's consider Q (3, ←2
∗)

receive R(3, ←)

next state = 2, act optimally for the
remaining one timestep

receive

s′

max Q 2, aa′ 1
∗ (′)

1

Q (s, a)2
∗

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

37

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

: the value forQ (s, a)h
∗

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

Rewards:

−8

Q (s, a)1
∗

= 1

= 1 + .9 × 0

= 1.9

Let's consider Q (3, ↑2
∗)

next state = 3, act optimally for the
remaining one timestep

receive

s′

max Q 3, aa′ 1
∗ (′)

receive R(3, ↑)
1.90

0
0

0
0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a)2
∗

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

: the value forQ (s, a)h
∗

38

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

Rewards:

1
−8

Q (s, a)1
∗

Q (3, ↑2
∗) = R(3, ↑) + γmax Q 3, aa′ 1

∗ (′)

= 1 + .9 × 1

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

next state = 3, act optimally for the
remaining one timestep

receive

s′

max Q 3, aa′ 1
∗ (′)

Q (s, a)2
∗

Let's consider Q (3, →2
∗)

1.9 receive R(3, →)

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

: the value forQ (s, a)h
∗

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

39

Rewards:

1.9
1
−8

Q (s, a)1
∗

Q (3, →2
∗) = R(3, →) + γmax Q 3, aa′ 1

∗ (′)

= 1 + .9 × 1

= 1.9

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

receive R(6, →)

act optimally at the next state
receive

s =′ 6

max Q 6, aa′ 1
∗ (′)

Let's consider Q (6, →2
∗)

Q (s, a)2
∗

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

: the value forQ (s, a)h
∗

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

40

Rewards:

Q (s, a)1
∗

= −10 + .9 × −10 ⇒ −19

Q (6, →2
∗) = R(6, →) + γ[max Q 6, a]a′ 1

∗ (′)

20% chance, = 2, act optimally,
get

s′

max Q 2, aa′ 1
∗ (′)

receive R(6, ↑)
act optimally at the next state s′

Let's consider Q (6, ↑2
∗)

80% chance, = 3, act optimally,
get

s′

max Q 3, aa′ 1
∗ (′)

Q (s, a)1
∗ Q (s, a)2

∗

: the value forQ (s, a)h
∗

γ = 0.9

41

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

Rewards:
0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

Q (6, ↑2
∗) = R(6, ↑) + γ[.2max Q 2, a +a′ 1

∗ (′) .8max Q 3, a]a′ 1
∗ (′)

= −10 + .9[.2 × 0 + .8 × 1] ⇒ −9.28

: the value forQ (s, a)h
∗

γ = 0.9

States and one special
transition:

1 2 3

4 5 6

7 8 9

80%20%

Q (s, a)3
∗

20% chance, = 2, act optimally,
get

s′

max Q 2, aa′ 2
∗ (′)

42

receive R(6, ↑)
act optimally at the next state s′

Let's consider Q (6, ↑3
∗)

80% chance, = 3, act optimally,
get

s′

max Q 3, aa′ 2
∗ (′)

Rewards:
0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a)2
∗

Q (6, ↑3
∗) = R(6, ↑) + γ[.2max Q 2, a +a′ 2

∗ (′) .8max Q 3, a]a′ 2
∗ (′)

= −10 + .9[.2 × 0.9 + .8 × 1.9] ⇒ −8.47

starting in state ,
take action , for one step
act optimally thereafter for the remaining steps

s

a

(h− 1)

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ h−1

∗ (′ ′)

Value Iteration

if run this block times
and break, then the

returns are exactly

h

Qh
∗ {

Q (s, a)∞
∗

Value iteration: what we just did, iteratively invoke �

{

43

Q (s, a)1
∗ Q (s, a)2

∗

π (s) =h
∗ argmax Q (s, a)a h

∗Optimal policy easily extracted: �

Q (s, a)3
∗ Q (s, a)∞

∗…

e.g. the best actions to take in state 5

For finite , optimal policy depends on how many time steps are lefth πh
∗

When , time no longer matters, i.e., there exists a stationary h→∞ π∗

44

Summary
Markov decision processes (MDP) are a nice mathematical framework for making

sequential decisions. It's the foundation to reinforcement learning.

An MDP is defined by a five-tuple, and the goal is to find an optimal policy that

leads to high expected cumulative discounted rewards.

To evaluate how good a given policy is, we can calculate via

the summation-over-rewards definition

Bellman recursion for finite horizon and Bellman equation for infinite horizon

To find an optimal policy, we can recursively find via the value iteration

algorithm, and then act greedily w.r.t. the values.

π V (s)π

Q (s, a)∗

Q∗

45

https://forms.gle/6snt5oZgS1N9nZY78

Thanks!
We'd love to hear

your thoughts.

46

https://forms.gle/6snt5oZgS1N9nZY78

