
APPENDIX C

Autoencoders

In previous chapters, we have largely focused on classification and regression problems,
where we use supervised learning with training samples that have both features/inputs
and corresponding outputs or labels, to learn hypotheses or models that can then be used
to predict labels for new data.

In contrast to supervised learning paradigm, we can also have an unsupervised learn-
ing setting, where we only have features but no corresponding outputs or labels for our
dataset. On natural question aries then: if there are no labels, what are we learning?

One canonical example of unsupervised learning is clustering, where the goal is to
develop algorithms that can reason about “similarity” among data points’s features, and
group the data points into clusters. We will learn about clustering towards the end of the
semester in Chapter 6.

Autoencoders are another family of unsupervised learning algorithms, in this case seek-
ing to obtain insights about our data by learning compressed versions of the original data,
or, in other words, by finding a good lower-dimensional feature representations of the
same data set. Such insights might help us to discover and characterize underlying fac-
tors of variation in data, which can aid in scientific discovery; to compress data for efficient
storage or communication; or to pre-process our data prior to supervised learning, perhaps
to reduce the amount of data that is needed to learn a good classifier or regressor.

C.1 Autoencoder structure

Assume that we have input data D = {x(1), . . . , x(n)}, where x(i) ∈ Rd. We seek to learn an
autoencoder that will output a new dataset Dout = {a(1), . . . ,a(n)}, where a(i) ∈ Rk with
k < d. We can think about a(i) as the new representation of data point x(i). For example,
in Fig. C.1 we show the learned representations of a dataset of MNIST digits with k = 2.
We see, after inspecting the individual data points, that unsupervised learning has found
a compressed representation where images of the same digit based are close to each other,
potentially greatly aiding subsequent clustering or classification tasks.

Formally, an autoencoder consists of two functions, a vector-valued encoder g : Rd → Rk

that deterministically maps the data to the representation space a ∈ Rk, and a decoder
h : Rk → Rd that maps the representation space back into the original data space.

123



MIT 6.390 Spring 2023 124

Figure C.1: Compression of digits dataset into two dimensions. The input x(i), an image of a hand-
written digit, is shown at the new low-dimensional representation (a1,a2).

The basic architecture of an autoencoder is shown in Figure C.2; note that bias terms
W1

0 and W2
0 into the summation nodes exist, but are omitted for clarity in the figure. In

this example, the original d-dimensional input is compressed into k = 3 dimensions via
the encoder g(x;W1,W1

0) = f1(W
1Tx +W1

0) with W1 ∈ Rd×k and W1
0 ∈ Rk, and where

the non-linearity f1 is applied to each dimension of the vector. To recover (an approxima-
tion to) the original instance, we then apply the decoder h(a;W2,W2

0) = f2(W
2Ta +W2

0),
where f2 denotes a different non-linearity (activation function). In general, both the de-
coder and the encoder could involve multiple layers, as opposed to the single layer shown
here. Learning seeks parametersW1,W1

0 andW2,W2
0 such that the reconstructed instances,

h(g(x(i);W1,W1
0);W

2,W2
0), are close to the original input x(i).

Figure C.2: Autoencoder structure, showing the encoder (left half, light green), and the decoder
(right half, light blue), encoding inputs x to the representation a, and decoding the representation to
produce x̃, the reconstruction. In this specific example, the representation (a1, a2, a3) only has three
dimensions.

Last Updated: 05/17/23 14:48:54



MIT 6.390 Spring 2023 125

C.2 Autoencoder Learning

We learn the weights in an autoencoder using the same tools that we previously used for
supervised learning, namely (stochastic) gradient descent of a multi-layer neural network
to minimize a loss function. All that remains is to specify the loss function L(x̃, x), which
tells us how to measure the discrepancy between the reconstruction x̃ = h(g(x;W1,W1

0);W
2,W2

0)

and the original input x. For example, for continuous-valued x it might make sense to use
squared loss, i.e., LSE(x̃, x) =

∑d
j=1(xj − x̃j)

2.Learning then seeks to optimize the parame- Alternatively, you could
think of this as multi-
task learning, where the
goal is to predict each
dimension of x. One
can mix-and-match loss
functions as appropriate
for each dimension’s
data type.

Alternatively, you could
think of this as multi-
task learning, where the
goal is to predict each
dimension of x. One
can mix-and-match loss
functions as appropriate
for each dimension’s
data type.

ters of h and g so as to minimize the reconstruction error, measured according to this loss
function:

min
W1,W1

0 ,W2,W2
0

n∑

i=1

LSE

(
h(g(x(i);W1,W1

0);W
2,W2

0), x
(i)
)

C.3 Evaluating an autoencoder

What makes a good learned representation in an autoencoder? Notice that, without further
constraints, it is always possible to perfectly reconstruct the input. For example, we could
let k = d and h and g be the identity functions. In this case, we would not obtain any
compression of the data.

To learn something useful, we must create a bottleneck by making k to be smaller (of-
ten much smaller) than d. This forces the learning algorithm to seek transformations that
describe the original data using as simple a description as possible. Thinking back to the
digits dataset, for example, an example of a compressed representation might be the digit
label (i.e., 0–9), rotation, and stroke thickness. Of course, there is no guarantee that the
learning algorithm will discover precisely this representation. After learning, we can in-
spect the learned representations, such as by artificially increasing or decreasing one of the
dimensions (e.g., a1) and seeing how it affects the output h(a), to try to better understand
what it has learned.

As with clustering, autoencoders can be a preliminary step toward building other mod-
els, such as a regressor or classifier. For example, once a good encoder has been learned,
the decoder might be replaced with another neural network that is then trained with su-
pervised learning (perhaps using a smaller dataset that does include labels).

C.4 Linear encoders and decoders

We close by mentioning that even linear encoders and decoders can be very powerful. In
this case, rather than minimizing the above objective with gradient descent, a technique
called principal components analysis (PCA) can be used to obtain a closed-form solution to
the optimization problem using a singular value decomposition (SVD). Just as a multilayer
neural network with nonlinear activations for regression (learned by gradient descent) can
be thought of as a nonlinear generalization of a linear regressor (fit by matrix algebraic
operations), the neural network based autoencoders discussed above (and learned with
gradient descent) can be thought of as a generalization of linear PCA (as solved with matrix
algebra by SVD).

Last Updated: 05/17/23 14:48:54


