CHAPTER D

Feature representation

Linear regression and classification are powerful tools, but in the real world, data often
exhibit non-linear behavior that cannot immediately be captured by the linear models which
we have built so far. For example, suppose the true behavior of a system (with d = 2) looks
like this wavelet:

Such behavior is actually ubiquitous in physical systems, e.g., in the vibrations of the sur-
face of a drum, or scattering of light through an aperture. However, no single hyperplane
would be a very good fit to such peaked responses!

A richer class of hypotheses can be obtained by performing a non-linear feature trans-
formation ¢(x) before doing the regression. That is, 0'x + 0y is a linear function of x, but
8T d(x) + 0y is a non-linear function of x if ¢ is a non-linear function of x.

There are many different ways to construct ¢. Some are relatively systematic and do-
main independent. Others are directly related to the semantics (meaning) of the original
features, and we construct them deliberately with our domain in mind.

5.1 Gaining intuition about feature transformations

In this section, we explore the effects of non-linear feature transformations on simple clas-
sification problems, to gain intuition.

Our favorite illustrative example is the “exclusive or” (XOR) data set, the drosophila of
machine-learning data sets:

39

This plot is of the jinc
function J;(p)/p for p =
X3 + x5

D. Melanogaster is a
species of fruit fly, used
as a simple system in
which to study genetics,
since 1910.

MIT 6.390 Spring 2023 40

-+

+ —

There is no linear separator for this two-dimensional dataset! But, we have a trick
available: take a low-dimensional data set and move it, using a non-linear transformation
into a higher-dimensional space, and look for a linear separator there. Let’s look at an
example data set that starts in 1-D:

0

These points are not linearly separable, but consider the transformation ¢(x) = [x,x?]". [What's a linear separa-
Putting the data in ¢ space, we see that it is now separable. There are lots of possible tor for data in 1D? A

int!
separators; we have just shown one of them here. point!

separator

A linear separator in ¢ space is a nonlinear separator in the original space! Let’s see
how this plays out in our simple example. Consider the separator x> — 1 = 0, which labels
the half-plane x> — 1 > 0 as positive. What separator does it correspond to in the original
1-D space? We have to ask the question: which x values have the property that x> —1 = 0.
The answer is +1 and —1, so those two points constitute our separator, back in the original
space. And we can use the same reasoning to find the region of 1D space that is labeled
positive by this separator.

- -

Py
Y
-1

— -9
®

+
|
0

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 41

5.2 Systematic feature construction

Here are two different ways to systematically construct features in a problem independent
way.

5.2.1 Polynomial basis

If the features in your problem are already naturally numerical, one systematic strategy for
constructing a new feature space is to use a polynomial basis. The idea is that, if you are
using the kth-order basis (where k is a positive integer), you include a feature for every
possible product of k different dimensions in your original input.

Here is a table illustrating the kth order polynomial basis for different values of k, call-
ing out the cases whend =1and d > 1:

Order d=1 in general (d > 1)
0 (1] (1]
1 1,x]" 1,%x1,...,xal"
2 [1,x, x24T [1,%1,...,%a,%3,x1%2, .. J T
3 [1,x,%x% %37 [1,x1,...,x%, X1X2, ..., X1X2X3, ..)T

This transformation can be used in combination with linear regression or logistic regres-
sion (or any other regression or classification model). When we're using a linear regression
or classification model, the key insight is that a linear regressor or separator in the trans-
formed space is a non-linear regressor or separator in the original space.

For example, the wavelet pictured at the start of this chapter can be fit much better than

with just a hyperplane, using linear regression with polynomials up to order k = 8: Specifically, this exam-
ple uses [1,X3 +x3, (x} +
x3)%, (4 + %)

The raw data (with n = 1000 random samples) is plotted on the left, and the regression
result (curved surface) is on the right.

So, what if we try to solve the XOR classification problem using a polynomial basis as
the feature transformation? We can just take our two-dimensional data and transform it
into a higher-dimensional data set, by applying ¢. Now, we have a classification problem
as usual.

Let’s try it for k = 2 on our XOR problem. The feature transformation is

T 2 21T
b(Ix1,%2]") = [1,%1, %2, X7, X1X2, X5

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 42

Study Question: If we train a classifier after performing this feature transformation,
would we lose any expressive power if we let 8, = 0 (i.e., trained without offset in-
stead of with offset)?

We might run a classification learning algorithm and find a separator with coefficients
0 =10,0,0,0,4,0]T and 8y = 0. This corresponds to

0+ 0x1 +0xz +0x3 + 4xyx0 + X3 +0 =0

and is plotted below, with the gray shaded region classified as negative and the white
region classified as positive:

3

Study Question: Be sure you understand why this high-dimensional hyperplane is
a separator, and how it corresponds to the figure.

For fun, we show some more plots below. Here is another result for a linear classifier
on XOR generated with logistic regression and gradient descent, using a random initial
starting point and second-order polynomial basis:

-

3

=g -2 Sl 0 1l 2 g

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 43

Here is a harder data set. Logistic regression with gradient descent failed to separate
it with a second, third, or fourth-order basis feature representation, but succeeded with a
fifth-order basis. Shown below are some results after ~ 1000 gradient descent iterations
(from random starting points) for bases of order 2 (upper left), 3 (upper right), 4 (lower
left), and 5 (lower right).

5 T T T T T T 5 T T T T T T
Py - PR s s e
3 [o +,. e a e i o e
pc —e + 2E e —e +
o~ H o~
x x
1 P + — + - + - +
Of - S0...... S oFE
— | I i b I EE
-2 i i i i i i -2 i i i i i i
=2 =il 0 1 2 3 4 5 =2 =il 0 a 2 8 4 5
x1 x1
5 T T T T T T 5 T T T T T
PRE. = s e J e - 0t AN J
3 s — + e - Y- - + i -
pe = — + 2 o — + B
o o
x x
e 4+ + 1. S e E +
- il Ob i
o I I &l
-2 i i i i i i =) i i i i i i
=2 -1 0 1 2 3 4 5 =2 -1 0 1 2 3 4 5
x1 x1

Study Question: Percy Eptron has a domain with four numeric input features,
(x1,...,%4). He decides to use a representation of the form

& (x) = PolyBasis((x1,x2),3) " PolyBasis((x3, x4), 3)

where a™b means the vector a concatenated with the vector b. What is the dimen-
sion of Percy’s representation? Under what assumptions about the original features is
this a reasonable choice?

5.2.2 Radial basis functions

Another cool idea is to use the training data itself to construct a feature space. The idea works
as follows. For any particular point p in the input space X, we can construct a feature f,,
which takes any element x € X and returns a scalar value that is related to how far x is
from the p we started with.

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 44

Let’s start with the basic case, in which X = R4. Then we can define
fp(x) = e Blp—x|*

This function is maximized when p = x and decreases exponentially as x becomes more
distant from p.

The parameter 3 governs how quickly the feature value decays as we move away from
the center point p. For large values of (3, the f,, values are nearly 0 almost everywhere
except right near p; for small values of (3, the features have a high value over a larger part
of the space.

(Study Question: What is f,(p)? J

Now, given a dataset D containing n points, we can make a feature transformation ¢
that maps points in our original space, RY, into points in a new space, R™. It is defined as
follows:

d)(X) = [fxm (X),fx(z) (X), ce ,fx(n) (XHT

So, we represent a new datapoint x in terms of how far it is from each of the datapoints in
our training set.

This idea can be generalized in several ways and is the fundamental concept underlying
kernel methods, that you should read about some time. This idea of describing objects in
terms of their similarity to a set of reference objects is very powerful and can be applied to
cases where X is not a simple vector space, but where the inputs are graphs or strings or
other types of objects, as long as there is a distance metric defined on it.

5.3 Hand-constructing features for real domains

In many machine-learning applications, we are given descriptions of the inputs with many
different types of attributes, including numbers, words, and discrete features. An impor-
tant factor in the success of an ML application is the way that the features are chosen to be
encoded by the human who is framing the learning problem.

5.3.1 Discrete features

Getting a good encoding of discrete features is particularly important. You want to create
“opportunities” for the ML system to find the underlying regularities. Although there
are machine-learning methods that have special mechanisms for handling discrete inputs,
most of the methods we consider in this class will assume the input vectors x are in R4. So,
we have to figure out some reasonable strategies for turning discrete values into (vectors
of) real numbers.

We'll start by listing some encoding strategies, and then work through some examples.
Let’s assume we have some feature in our raw data that can take on one of k discrete values.

e Numeric: Assign each of these values a number, say 1.0/k,2.0/k,...,1.0. We might
want to then do some further processing, as described in Section 5.3.3. This is a
sensible strategy only when the discrete values really do signify some sort of numeric
quantity, so that these numerical values are meaningful.

o Thermometer code: If your discrete values have a natural ordering, from 1,...,k, but
not a natural mapping into real numbers, a good strategy is to use a vector of length
k binary variables, where we convert discrete input value 0 < j < k into a vector in
which the first j values are 1.0 and the rest are 0.0. This does not necessarily imply
anything about the spacing or numerical quantities of the inputs, but does convey
something about ordering.

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 45

o Factored code: If your discrete values can sensibly be decomposed into two parts
(say the “make” and “model” of a car), then it’s best to treat those as two separate
features, and choose an appropriate encoding of each one from this list.

e One-hot code: If there is no obvious numeric, ordering, or factorial structure, then
the best strategy is to use a vector of length k, where we convert discrete input value
0 < j < kinto a vector in which all values are 0.0, except for the jth, which is 1.0.

e Binary code: It might be tempting for the computer scientists among us to use some
binary code, which would let us represent k values using a vector of length log k.
This is a bad idea! Decoding a binary code takes a lot of work, and by encoding your
inputs this way, you’d be forcing your system to learn the decoding algorithm.

As an example, imagine that we want to encode blood types, that are drawn from the
set {A+, A—, B+, B—, AB+, AB—, O+, O—}. There is no obvious linear numeric scaling or
even ordering to this set. But there is a reasonable factoring, into two features: {A, B, AB, O}
and {+,—}. And, in fact, we can further reasonably factor the first group into {A,notA},

{B, notB}.So, here are two plausible encodings of the whole set: It is sensible (according
to Wikipedia!) to treat
e Use a 6-D vector, with two components of the vector each encoding the correspond- | O as having neither fea-

ing factor using a one-hot encoding. ture A nor feature B.

e Use a 3-D vector, with one dimension for each factor, encoding its presence as 1.0
and absence as —1.0 (this is sometimes better than 0.0). In this case, AB+ would be
[1.0,1.0,1.0]" and O— would be [-1.0,—1.0,—1.0]T.

(Study Question: How would you encode A+ in both of these approaches? J

5.3.2 Text

The problem of taking a text (such as a tweet or a product review, or even this document!)
and encoding it as an input for a machine-learning algorithm is interesting and compli-
cated. Much later in the class, we'll study sequential input models, where, rather than
having to encode a text as a fixed-length feature vector, we feed it into a hypothesis word
by word (or even character by character!).

There are some simple encodings that work well for basic applications. One of them is
the bag of words (BOW) model. The idea is to let d be the number of words in our vocabulary
(either computed from the training set or some other body of text or dictionary). We will
then make a binary vector (with values 1.0 and 0.0) of length d, where element j has value
1.0 if word j occurs in the document, and 0.0 otherwise.

5.3.3 Numeric values

If some feature is already encoded as a numeric value (heart rate, stock price, distance, etc.)
then you should generally keep it as a numeric value. An exception might be a situation in
which you know there are natural “breakpoints” in the semantics: for example, encoding
someone’s age in the US, you might make an explicit distinction between under and over
18 (or 21), depending on what kind of thing you are trying to predict. It might make sense
to divide into discrete bins (possibly spacing them closer together for the very young) and
to use a one-hot encoding for some sorts of medical situations in which we don’t expect a
linear (or even monotonic) relationship between age and some physiological features.

If you choose to leave a feature as numeric, it is typically useful to scale it, so that it
tends to be in the range [-1,+1]. Without performing this transformation, if you have

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 46

one feature with much larger values than another, it will take the learning algorithm a lot

of work to find parameters that can put them on an equal basis. So, we might perform

. X—X . : .
transformation ¢(x) = , where X is the average of the x(!, and o is the standard
o

deviation of the x(¥). The resulting feature values will have mean 0 and standard deviation
1. This transformation is sometimes called standardizing a variable .

Then, of course, you might apply a higher-order polynomial-basis transformation to
one or more groups of numeric features.

Such standard variables
are often known as “z-
scores,” for example, in
the social sciences.

Study Question: Consider using a polynomial basis of order k as a feature trans-
formation ¢ on your data. Would increasing k tend to increase or decrease structural
error? What about estimation error?

Last Updated: 05/17/23 14:48:54

