
CHAPTER 3

Gradient Descent

In the previous chapter, we showed how to describe an interesting objective function for
machine learning, but we need a way to find the optimal Θ∗ = arg minΘ J(Θ), particularly
when the objective function is not amenable to analytical optimization. For example, this
can be the case when J(Θ) involves a more complex loss function, or more general forms
of regularization. It can also be the case when there is simply too much data for it to be
computationally feasible to analytically invert the required matrices.

There is an enormous and fascinating literature on the mathematical and algorithmic
foundations of optimization, but for this class, we will consider one of the simplest meth- Which you should con-

sider studying some
day!

Which you should con-
sider studying some
day!

ods, called gradient descent.
Intuitively, in one or two dimensions, we can easily think of J(Θ) as defining a surface

over Θ; that same idea extends to higher dimensions. Now, our objective is to find the
Θ value at the lowest point on that surface. One way to think about gradient descent is
that you start at some arbitrary point on the surface, look to see in which direction the
“hill” goes down most steeply, take a small step in that direction, determine the direction
of steepest descent from where you are, take another small step, etc.

Below, we explicitly give gradient descent algorithms for one and multidimensional
objective functions (Sections 3.1 and 3.2). We then illustrate the application of gradient
descent to a loss function which is not merely mean squared loss (Section 3.3). And we
present an important method known as stochastic gradient descent (Section 3.4), which is
especially useful when datasets are too large for descent in a single batch, and has some
important behaviors of its own.

3.1 Gradient descent in one dimension

We start by considering gradient descent in one dimension. Assume Θ ∈ R, and that we
know both J(Θ) and its first derivative with respect to Θ, J ′(Θ). Here is pseudo-code for
gradient descent on an arbitrary function f. Along with f and its gradient f ′, we have
to specify some hyper-parameters. These hyper-parameters include the initial value for
parameter Θ, a step-size hyper-parameter η, and an accuracy hyper-parameter ε.

The hyper-parameter η is often called learning rate when gradient descent is applied in
machine learning. For simplicity, ηmay be taken as a constant, as is the case in the pseudo-
code below; and we’ll see adaptive (non-constant) step-sizes soon. What’s important to

22

MIT 6.390 Spring 2023 23

notice though, is that even when η is constant, the actual magnitude of the change to Θ
may not be constant, as that change depends on the magnitude of the gradient itself too.

1D-GRADIENT-DESCENT(Θinit,η, f, f ′, ε)

1 Θ(0) = Θinit

2 t = 0
3 repeat
4 t = t+ 1
5 Θ(t) = Θ(t−1) − η f ′(Θ(t−1))

6 until |f(Θ(t)) − f(Θ(t−1))| < ε

7 return Θ(t)

Note that this algorithm terminates when the change in the function f is sufficiently small.
There are many other reasonable ways to decide to terminate, including:

• Stop after a fixed number of iterations T , i.e., when t = T .

• Stop when the change in the value of the parameter Θ is sufficiently small, i.e., when∣∣Θ(t) −Θ(t−1)
∣∣ < ε.

• Stop when the derivative f ′ at the latest value of Θ is sufficiently small, i.e., when∣∣f ′(Θ(t))
∣∣ < ε.

Study Question: Consider all of the potential stopping criteria for
1D-GRADIENT-DESCENT, both in the algorithm as it appears and listed separately
later. Can you think of ways that any two of the criteria relate to each other?

Theorem 3.1.1. Choose any small distance ε̃ > 0. If f is sufficiently “smooth” and convex, and if A function is convex
if the line segment be-
tween any two points
on the graph of the
function lies above or
on the graph.

A function is convex
if the line segment be-
tween any two points
on the graph of the
function lies above or
on the graph.

the step size η is sufficiently small, gradient descent will reach a point within ε̃ of a global optimum
point Θ.

However, we must be careful when choosing the step size to prevent slow convergence,
non-converging oscillation around the minimum, or divergence.

The following plot illustrates a convex function f(x) = (x−2)2, starting gradient descent
at xinit = 4.0 with a step-size of 1/2. It is very well-behaved!

−1 1 2 3 4 5 6

2

4

x

f(x)

Study Question: What happens in this example with very small η? With very big η?

If f is non-convex, where gradient descent converges to depends on xinit. First, let’s
establish some definitions. Suppose we have analytically defined derivatives for f. Then

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 24

we say that f has a local minimum point or local optimum point at x if f ′(x) = 0 and f ′′(x) > 0,
and we say that f(x) is a local minimum value of f. More generally, x is a local minimum
point of f if f(x) is at least as low as f(x ′) for all points x ′ in some small area around x. We
say that f has a global minimum point at x if f(x) is at least as low as f(x ′) for every other
input x ′. And then we call f(x) a global minimum value. A global minimum point is also a
local minimum point, but a local minimum point does not have to be a global minimum
point.

If f is non-convex (and sufficiently smooth), gradient descent (run long enough with
small enough step size) will get very close to a local minimum point, but we cannot guar-
antee that it will converge to a global minimum point.

The plot below shows two different xinit, and how gradient descent started from each
point heads toward two different local optimum points.

−2 −1 1 2 3 4

4

6

8

10

x

f(x)

3.2 Multiple dimensions

The extension to the case of multi-dimensional Θ is straightforward. Let’s assume Θ ∈ Rm,
so f : Rm → R. The gradient of fwith respect to Θ is

∇Θf =



∂f/∂Θ1

...
∂f/∂Θm




The algorithm remains the same, except that the update step in line 5 becomes

Θ(t) = Θ(t−1) − η∇Θf(Θ(t−1))

and any termination criteria that depended on the dimensionality of Θ would have to
change. The easiest thing is to keep the test in line 6 as

∣∣f(Θ(t)) − f(Θ(t−1))
∣∣ < ε, which

is sensible no matter the dimensionality of Θ.

Study Question: Which termination criteria from the 1D case were defined in a way
that assumes Θ is one dimensional?

3.3 Application to regression

Recall from the previous chapter that choosing a loss function is the first step in formulating
a machine-learning problem as an optimization problem, and for regression we studied the

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 25

mean square loss, which captures loss as (guess − actual)2. This leads to the ordinary least
squares objective

J(θ) =
1
n

n∑

i=1

(
θTx(i) − y(i)

)2
. (3.1)

We use the gradient of the objective with respect to the parameters,

∇θJ =
2
n
X̃T︸︷︷︸
d×n

(X̃θ− Ỹ)︸ ︷︷ ︸
n×1

, (3.2)

to obtain an analytical solution to the linear regression problem. Gradient descent could
also be applied to numerically compute a solution, using the update rule

θ(t) = θ(t−1) − η
2
n

n∑

i=1

([
θ(t−1)

]T
x(i) − y(i)

)
x(i) . (3.3)

Beware double super-
scripts! [θ]

T is the trans-
pose of the vector θ

Beware double super-
scripts! [θ]

T is the trans-
pose of the vector θ

3.3.1 Ridge regression

Now, let’s add in the regularization term, to get the ridge-regression objective:

Jridge(θ, θ0) =
1
n

n∑

i=1

(
θTx(i) + θ0 − y

(i)
)2

+ λ‖θ‖2 .

Recall that in ordinary least squares, we finessed handling θ0 by adding an extra di-
mension of all 1’s. In ridge regression, we really do need to separate the parameter vector
θ from the offset θ0, and so, from the perspective of our general-purpose gradient descent
method, our whole parameter set Θ is defined to be Θ = (θ, θ0). We will go ahead and find
the gradients separately for each one: Some passing familiar-

ity with matrix deriva-
tives is helpful here. A
foolproof way of com-
puting them is to com-
pute partial derivative
of J with respect to each
component θi of θ. See
Appendix A on matrix
derivatives!

Some passing familiar-
ity with matrix deriva-
tives is helpful here. A
foolproof way of com-
puting them is to com-
pute partial derivative
of J with respect to each
component θi of θ. See
Appendix A on matrix
derivatives!

∇θJridge(θ, θ0) =
2
n

n∑

i=1

(
θTx(i) + θ0 − y

(i)
)
x(i) + 2λθ

∂Jridge(θ, θ0)

∂θ0
=

2
n

n∑

i=1

(
θTx(i) + θ0 − y

(i)
)

.

Note that ∇θJridge will be of shape d × 1 and ∂Jridge/∂θ0 will be a scalar since we have
separated θ0 from θ here.

Study Question: Convince yourself that the dimensions of all these quantities are
correct, under the assumption that θ is d × 1. How does d relate to m as discussed
for Θ in the previous section?

Study Question: Compute ∇θ ‖θ‖2 by finding the vector of partial derivatives
(∂ ‖θ‖2

/∂θ1, . . . ,∂ ‖θ‖2
/∂θd). What is the shape of ∇θ ‖θ‖2?

Study Question: Compute ∇θLridge(θ
Tx + θ0,y) by finding the vector of partial

derivatives (∂Lridge(θ
Tx+ θ0,y)/∂θ1, . . . ,∂Lridge(θ

Tx+ θ0,y)/∂θd).

Study Question: Use these last two results to verify our derivation above.

Putting everything together, our gradient descent algorithm for ridge regression be-
comes

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 26

RR-GRADIENT-DESCENT(θinit, θ0init,η, ε)

1 θ(0) = θinit

2 θ
(0)
0 = θ0init

3 t = 0
4 repeat
5 t = t+ 1

6 θ(t) = θ(t−1) − η
(

1
n

∑n
i=1

(
θ(t−1)Tx(i) + θ

(t−1)
0 − y(i)

)
x(i) + λθ(t−1)

)

7 θ
(t)
0 = θ

(t−1)
0 − η

(
1
n

∑n
i=1

(
θ(t−1)Tx(i) + θ

(t−1)
0 − y(i)

))

8 until
∣∣∣Jridge(θ

(t), θ(t)0) − Jridge(θ
(t−1), θ(t−1)

0)
∣∣∣ < ε

9 return θ(t), θ(t)0

Study Question: Is it okay that λ doesn’t appear in line 7?

Study Question: Is it okay that the 2’s from the gradient definitions don’t appear in
the algorithm?

3.4 Stochastic gradient descent

When the form of the gradient is a sum, rather than take one big(ish) step in the direction
of the gradient, we can, instead, randomly select one term of the sum, and take a very The word “stochastic”

means probabilistic,
or random; so does
“aleatoric,” which is a
very cool word. Look
up aleatoric music,
sometime.

The word “stochastic”
means probabilistic,
or random; so does
“aleatoric,” which is a
very cool word. Look
up aleatoric music,
sometime.

small step in that direction. This seems sort of crazy, but remember that all the little steps
would average out to the same direction as the big step if you were to stay in one place. Of
course, you’re not staying in that place, so you move, in expectation, in the direction of the
gradient.

Most objective functions in machine learning can end up being written as a sum over
data points, in which case, stochastic gradient descent (SGD) is implemented by picking a
data point randomly out of the data set, computing the gradient as if there were only that
one point in the data set, and taking a small step in the negative direction.

Let’s assume our objective has the form

f(Θ) =

n∑

i=1

fi(Θ) ,

where n is the number of data points used in the objective (and this may be different from
the number of points available in the whole data set). Here is pseudocode for applying
SGD to such an objective f; it assumes we know the form of∇Θfi for all i in 1 . . .n:

STOCHASTIC-GRADIENT-DESCENT(Θinit,η, f,∇Θf1, . . . ,∇Θfn, T)

1 Θ(0) = Θinit

2 for t = 1 to T
3 randomly select i ∈ {1, 2, . . . ,n}
4 Θ(t) = Θ(t−1) − η(t)∇Θfi(Θ(t−1))

5 return Θ(t)

Note that now instead of a fixed value of η, η is indexed by the iteration of the algo-
rithm, t. Choosing a good stopping criterion can be a little trickier for SGD than traditional
gradient descent. Here we’ve just chosen to stop after a fixed number of iterations T .

For SGD to converge to a local optimum point as t increases, the step size has to decrease
as a function of time. The next result shows one step size sequence that works.

Last Updated: 05/17/23 14:48:54

MIT 6.390 Spring 2023 27

Theorem 3.4.1. If f is convex, and η(t) is a sequence satisfying

∞∑

t=1

η(t) =∞ and
∞∑

t=1

η(t)2 <∞ ,

then SGD converges with probability one to the optimal Θ. We have left out some
gnarly conditions in this
theorem. Also, you can
learn more about the
subtle difference be-
tween “with probabil-
ity one” and “always”
by taking an advanced
probability course.

We have left out some
gnarly conditions in this
theorem. Also, you can
learn more about the
subtle difference be-
tween “with probabil-
ity one” and “always”
by taking an advanced
probability course.

Why these two conditions? The intuition is that the first condition, on
∑
η(t), is needed

to allow for the possibility of an unbounded potential range of exploration, while the sec-
ond condition, on

∑
η(t)2, ensures that the step sizes get smaller and smaller as t increases.

One “legal” way of setting the step size is to make η(t) = 1/t but people often use rules
that decrease more slowly, and so don’t strictly satisfy the criteria for convergence.

Study Question: If you start a long way from the optimum, would making η(t) de-
crease more slowly tend to make you move more quickly or more slowly to the opti-
mum?

There are multiple intuitions for why SGD might be a better choice algorithmically than
regular GD (which is sometimes called batch GD (BGD)):

• BGD typically requires computing some quantity over every data point in a data set.
SGD may perform well after visiting only some of the data. This behavior can be
useful for very large data sets – in runtime and memory savings.

• If your f is actually non-convex, but has many shallow local optimum points that
might trap BGD, then taking samples from the gradient at some pointΘmight “bounce”
you around the landscape and away from the local optimum points.

• Sometimes, optimizing f really well is not what we want to do, because it might
overfit the training set; so, in fact, although SGD might not get lower training error
than BGD, it might result in lower test error.

Last Updated: 05/17/23 14:48:54

