
CHAPTER 2

Regression

Regressionis an important machine-learning problem that provides a good starting point “Regression,” in com-
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this is forward progress!

“Regression,” in com-
mon parlance, means
moving backwards. But
this is forward progress!

for diving deeply into the field.

2.1 Problem formulation

A hypothesis h is employed as a model for solving the regression problem, in that it maps
inputs x to outputs y,

x→ h → y ,

where x ∈ Rd (i.e., a length d column vector of real numbers), and y ∈ R (i.e., a real
number). Real life rarely gives us vectors of real numbers; the x we really want to take as
input is usually something like a song, image, or person. In that case, we’ll have to define
a function ϕ(x), whose range is Rd, where ϕ represents features of x, like a person’s height
or the amount of bass in a song, and then let the h : ϕ(x) → R. In much of the following,
we’ll omit explicit mention of ϕ and assume that the x(i) are in Rd, but you should always
have in mind that some additional process was almost surely required to go from the actual
input examples to their feature representation, and we’ll talk a lot more about features later
in the course.

Regression is a supervised learning problem, in which we are given a training dataset of
the form

Dn =
{(
x(1),y(1)

)
, . . . ,

(
x(n),y(n)

)}
,

which gives examples of input values x(i) and the output values y(i) that should be asso-
ciated with them. Because y values are real-valued, our hypotheses will have the form

h : Rd → R .

This is a good framework when we want to predict a numerical quantity, like height, stock
value, etc., rather than to divide the inputs into discrete categories.

What makes a hypothesis useful? That it works well on new data; that is, that it makes
good predictions on examples it hasn’t seen. But we don’t know exactly what data this My favorite analogy

is to problem sets. We
evaluate a student’s
ability to generalize by
putting questions on the
exam that were not on
the homework (training
set).
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hypothesis might be tested on when we use it in the real world. So, we have to assume a
connection between the training data and testing data; typically, they are drawn indepen-
dently from the same probability distribution.
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To make this discussion more concrete, we have to provide a loss function, to say how
unhappy we are when we guess an output g given an input x for which the desired output
was a.

Given a training set Dn and a hypothesis hwith parameters Θ, we can define the train-
ing error of h to be the average loss on the training data:

En(h;Θ) =
1
n

n∑

i=1

L(h(x(i);Θ),y(i)) , (2.1)

The training error of h gives us some idea of how well it characterizes the relationship
between x and y values in our data, but it isn’t the quantity that we most care about. What
we most care about is test error:

E(h) =
1
n ′

n+n′∑

i=n+1

L(h(x(i)),y(i))

on n ′ new examples that were not used in the process of finding the hypothesis. It might be worthwhile
to stare at the two er-
rors and think about
what’s the difference.
For example, notice
how Θ is no long a
variable in the testing
error? this is because
in evaluating the test-
ing error, the param-
eters will have been
"picked"/"fixed" already.
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For now, we will try to find a hypothesis with small training error (later, with some
added criteria) and try to make some design choices so that it generalizes well to new data,
meaning that it also has a small test error.

2.2 Regression as an optimization problem

Given data, a loss function, and a hypothesis class, we need a method for finding a good
hypothesis in the class. One of the most general ways to approach this problem is by
framing the machine learning problem as an optimization problem. One reason for taking
this approach is that there is a rich area of math and algorithms studying and developing
efficient methods for solving optimization problems, and lots of very good software imple-
mentations of these methods. So, if we can turn our problem into one of these problems,
then there will be a lot of work already done for us!

We begin by writing down an objective function J(Θ), where Θ stands for all the parame-
ters in our model. We often write J(Θ;D) to make clear the dependence onthe data D. The Don’t be too perturbed
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Don’t be too perturbed
by the semicolon where
you expected to see a
comma! It’s a math way
of saying that we are
mostly interested in this
as a function of the ar-
guments before the “;”,
but we should remem-
ber that there’s a depen-
dence on the stuff after
it, as well.

objective function describes how we feel about possible hypotheses Θ: we will generally
look for values for parameters Θ that minimize the objective function:

You can think about
Θ∗ here as “the theta
that minimizes J”:
arg minx f(x) means the
value of x for which
f(x) is the smallest.
Sometimes we write
arg minx∈X f(x) when
we want to explicitly
specify the set X of val-
ues of x over which we
want to minimize.
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Θ∗ = arg min
Θ
J(Θ) .

A very common form for a machine-learning objective is

J(Θ) =


 1
n

n∑

i=1

L(h(x(i);Θ),y(i))︸ ︷︷ ︸
loss


+ λ︸︷︷︸

non-negative constant

R(Θ)︸ ︷︷ ︸
regularizer

. (2.2)

The loss tells us how unhappy we are about the prediction h(x(i);Θ) that Θ makes for
(x(i),y(i)). Minimizing this loss makes the prediction better. The regularizer is an addi-
tional term that encourages the prediction to remain general, and the constant λ adjusts
the balance between reproducing seen examples, and being able to generalize to unseen
examples. We will return to discuss this balance, and more about the idea of regulariza-
tion, in Section 2.6.
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2.3 Linear regression

To make this discussion more concrete, we have to provide a hypothesis class and loss
function.

We will begin by picking a class of hypotheses H that we think might provide a good set
of possible models of the relationship between x and y in our data. We will start with a very
simple class of linear regression hypotheses. It is both simple to study and very powerful,
and will serve as the basis for many other important techniques (even neural networks!).

In linear regression, the set H of hypotheses has the form

h(x; θ, θ0) = θ
Tx+ θ0 , (2.3)

with model parameters Θ = (θ, θ0). In one dimension (d = 1) this has the same familiar
slope-intercept form as y = mx+b; in higher dimensions, this model describes the so-called
hyperplanes.

We define a loss function to describe how to evaluate the quality of the predictions our
hypothesis is making, when compared to the “target” y values in the data set. The choice
of loss function is part of modeling your domain. In the absence of additional information
about a regression problem, we typically use squared loss:

L(g,a) = (g− a)2 .

where g = h(x) is our "guess" from the hypothesis, and a is the "actual" observation (in
other words, here a is being used equivalently as y). With this choice of squared loss, the
average loss as generally defined in 2.1 will become the so-called mean squared error (MSE),
which we’ll study closely very soon.

The squared loss penalizes guesses that are too high the same amount as it penal-
izes guesses that are too low, and has a good mathematical justification in the case that
your data are generated from an underlying linear hypothesis with the so-called Gaussian-
distributednoise added to the y values. But there are applications in which other losses We won’t get into the

details of Gaussian dis-
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but it’s one of the most
important distributions
and well-worth study-
ing closely at some
point. One obvious fact
about Gaussian is that
it’s symmetric; this is in
fact one of the reasons
squared loss works well
under Gaussian settings,
as the loss is also sym-
metric.
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would be better, and much of the framework we discuss can be applied to different loss
functions, although this one has a form that also makes it particularly computationally
convenient.

Our objective in linear regression will be to find a hyperplane that goes as close as
possible, on average, to all of our training data.

Applying the general optimization framework to the linear regression hypothesis class
of Eq. 2.3 with squared loss and no regularization, our objective is to find values for Θ =

(θ, θ0) that minimize the MSE:

J(θ, θ0) =
1
n

n∑

i=1

(
θTx(i) + θ0 − y

(i)
)2

, (2.4)

resulting in the solution:
θ∗, θ∗0 = arg min

θ,θ0
J(θ, θ0) . (2.5)

For one-dimensional data (d = 1), this becomes the familiar problem of fitting a line
to data. For d > 1, this hypothesis may be visualized as a d-dimensional hyperplane
embedded in a (d + 1)-dimensional space (that consists of the input dimension and the y
dimension). For example, in the left plot below, we can see data points with labels y and
input dimensions x1 and x2. In the right plot below, we see the result of fitting these points
with a two-dimensional plane that resides in three dimensions. We interpret the plane as
representing a function that provides a y value for any input (x1, x2).

Last Updated: 05/17/23 14:48:54
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A richer class of hypotheses can be obtained by performing a non-linear feature trans-
formation before doing the regression, as we will later see (in Chapter 5), but it will still
end up that we have to solve a linear regression problem.

2.4 A gloriously simple linear regression algorithm

Okay! Given the objective in Eq. 2.4, how can we find good values of θ and θ0? We’ll study
several general-purpose, efficient, interesting algorithms. But before we do that, let’s start
with the simplest one we can think of: guess a whole bunch of different values of θ and θ0, see
which one has the smallest error on the training set, and return it.

RANDOM-REGRESSION(D,k)

1 For i in 1 . . .k: Randomly generate hypothesis θ(i), θ(i)0

2 Let i = arg mini J(θ(i), θ
(i)
0 ;D)

3 Return θ(i), θ(i)0

This seems kind of silly, but it’s a learning algorithm, and it’s not completely useless.

Study Question: If your data set has n elements and the dimension of the x values is
d, what is the size of an individual θ(i)?

Study Question: How do you think increasing k will change the training error of the
resulting hypothesis?

2.5 Analytical solution: ordinary least squares

One very interesting aspect of the problem of finding a linear hypothesis that minimizes
mean squared error (this general problem is often called ordinary least squares (OLS)) is that
we can find a closed-form formula for the answer! What does “closed

form” mean? Generally,
that it involves direct
evaluation of a mathe-
matical expression using
a fixed number of “typ-
ical” operations (like
arithmetic operations,
trig functions, powers,
etc.). So equation 2.5 is
not in closed form, be-
cause it’s not at all clear
what operations one
needs to perform to find
the solution.
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Everything is easier to deal with if we assume that all of the the x(i) have been aug-
mented with an extra input dimension (feature) that always has value 1, so that they are in
d+ 1 dimensions, and rather than having an explicit θ0, we let it be the last element of our
θ vector, so that we have, simply,

y = θTx .

Last Updated: 05/17/23 14:48:54
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In this case, the objective becomes

J(θ) =
1
n

n∑

i=1

(
θTx(i) − y(i)

)2
. (2.6)

Study Question: Stop and prove to yourself that adding that extra feature with
value 1 to every input vector and getting rid of the θ0 parameter is equivalent to our
original model.

We approach this just like a minimization problem from calculus homework: take the
derivative of J with respect to θ, set it to zero, and solve for θ. There are additional steps
required, to check that the resulting θ is a minimum (rather than a maximum or an inflec-
tion point) but we won’t work through that here. It is possible to approach this problem
by:

• Finding ∂J/∂θk for k in 1, . . . ,d, We will use d here for
the total number of fea-
tures in each x(i), in-
cluding the added 1.

We will use d here for
the total number of fea-
tures in each x(i), in-
cluding the added 1.

• Constructing a set of k equations of the form ∂J/∂θk = 0, and

• Solving the system for values of θk.

That works just fine. To get practice for applying techniques like this to more complex
problems, we will work through a more compact (and cool!) matrix view. Along the way,
it will be helpful to collect all of the derivatives in one vector. In particular, the gradient of
Jwith respect to θ is following column vector of length d:

∇θJ =



∂J/∂θ1

...
∂J/∂θd


 .

Study Question: Work through the next steps and check your answer against ours
below.

We can think of our training data in terms of matrices X and Y, where each column of X
is an example, and each “column” of Y is the corresponding target output value:

X =




x
(1)
1 . . . x

(n)
1

...
. . .

...
x
(1)
d . . . x

(n)
d


 Y =

[
y(1) . . . y(n)

]
.

Study Question: What are the dimensions of X and Y?

In most textbooks, they think of an individual example x(i) as a row, rather than a
column. So that we get an answer that will be recognizable to you, we are going to define
a new matrix and vector, X̃ and Ỹ, which are just transposes of our X and Y, and then work
with them:

X̃ = XT =




x
(1)
1 . . . x

(1)
d

...
. . .

...
x
(n)
1 . . . x

(n)
d


 Ỹ = YT =



y(1)

...
y(n)


 .

Study Question: What are the dimensions of X̃ and Ỹ?

Last Updated: 05/17/23 14:48:54
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Now we can write

J(θ) =
1
n
(X̃θ− Ỹ)T︸ ︷︷ ︸

1×n

(X̃θ− Ỹ)︸ ︷︷ ︸
n×1

=
1
n

n∑

i=1






d∑

j=1

X̃ijθj


− Ỹi




2

and using facts about matrix/vector calculus, we get You should be able to
verify this by doing a
simple (say, 2× 2) exam-
ple by hand.

You should be able to
verify this by doing a
simple (say, 2× 2) exam-
ple by hand.∇θJ =

2
n
X̃T︸︷︷︸
d×n

(X̃θ− Ỹ)︸ ︷︷ ︸
n×1

. (2.7)

See Appendix A.5 for a nice way to think about finding this derivative.
Setting∇θJ to 0 and solving, we get:

2
n
X̃T (X̃θ− Ỹ) = 0

X̃T X̃θ− X̃T Ỹ = 0

X̃T X̃θ = X̃T Ỹ

θ = (X̃T X̃)−1X̃T Ỹ

And the dimensions work out!

θ =
(
X̃T X̃

)−1

︸ ︷︷ ︸
d×d

X̃T︸︷︷︸
d×n

Ỹ︸︷︷︸
n×1

So, given our data, we can directly compute the linear regression that minimizes mean
squared error. That’s pretty awesome!

2.6 Regularization

The objective function of Eq. 2.2 balances memorization, induced by the loss term, with
generalization, induced by the regularization term. Here, we address the need for regu-
larization specifically for linear regression, and show how this can be realized using ridge
regression.

2.6.1 Regularization and linear regression

If all we cared about was finding a hypothesis with small loss on the training data, we
would have no need for regularization, and could simply omit the second term in the
objective. But remember that our ultimate goal is to perform well on input values that we
haven’t trained on! It may seem that this is an impossible task, but humans and machine-
learning methods do this successfully all the time. What allows generalization to new input
values is a belief that there is an underlying regularity that governs both the training and
testing data. One way to describe an assumption about such a regularity is by choosing
a limited class of possible hypotheses. Another way to do this is to provide smoother
guidance, saying that, within a hypothesis class, we prefer some hypotheses to others. The
regularizer articulates this preference and the constant λ says how much we are willing to
trade off loss on the training data versus preference over hypotheses.

For example, consider what happens when d = 2 and x2 is highly correlated with x1,
meaning that the data look like a line, as shown in the left panel of the figure below. Thus,
there isn’t a unique best hyperplane . Such correlations happen often in real-life data, be- Sometimes there’s tech-

nically a unique best
hyperplane, but just be-
cause of noise.

Sometimes there’s tech-
nically a unique best
hyperplane, but just be-
cause of noise.Last Updated: 05/17/23 14:48:54
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cause of underlying common causes; for example, across a population, the height of people
may depend on both age and amount of food intake in the same way. This is especially the
case when there are many feature dimensions used in the regression. Mathematically, this
leads to X̃T X̃ close to singularity, such that (X̃T X̃)−1 is undefined or has huge values, re-
sulting in unstable models (see the middle panel of figure and note the range of the y
values—the slope is huge!):

A common strategy for specifying a regularizer is to use the form

R(Θ) =
∥∥Θ−Θprior

∥∥2

when we have some idea in advance that Θ ought to be near some value Θprior. Here, the Learn about Bayesian
methods in machine
learning to see the the-
ory behind this and cool
results!

Learn about Bayesian
methods in machine
learning to see the the-
ory behind this and cool
results!

notion of distance is quantified by the norm of the parameter vector: for any d-dimensional

or more precisely, the l2
norm
or more precisely, the l2
norm

vector v ∈ Rd, we have,

‖v‖ =

√√√√
d∑

i=1

|vi|2 .

In the absence of such knowledge a default is to regularize toward zero:

R(Θ) = ‖Θ‖2 .

When this is done in the example depicted above, the regression model becomes stable,
producing the result shown in the right-hand panel in the figure. Now the slope is much
more sensible.

2.6.2 Ridge regression

There are some kinds of trouble we can get into in regression problems. What if
(
X̃T X̃

)
is

not invertible, as in the above example?

Study Question: Consider, for example, a situation where the data-set is just the
same point repeated twice: x(1) = x(2) = [1 2]T . What is X̃ in this case? What is
X̃T X̃? What is (X̃T X̃)−1?

Another kind of problem is overfitting: we have formulated an objective that is just
about fitting the data as well as possible, but we might also want to regularize to keep the
hypothesis from getting too attached to the data.

We address both the problem of not being able to invert (X̃T X̃)−1 and the problem of
overfitting using a mechanism called ridge regression. We add a regularization term ‖θ‖2 to
the OLS objective, with a non-negative scalar value λ to control the tradeoff between the
training error and the regularization term.

Last Updated: 05/17/23 14:48:54
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Study Question: Why do we emphasize on the non-negativity of the scalr λ? When
we add a regularizer of the form ‖θ‖2, what is our most “preferred” value of θ, in the
absence of any data?

Here is the ridge regression objective function:

Jridge(θ, θ0) =
1
n

n∑

i=1

(
θTx(i) + θ0 − y

(i)
)2

+ λ‖θ‖2

Larger λ values pressure θ values to be near zero. Note that we don’t penalize θ0; intu-
itively, θ0 is what “floats” the regression surface to the right level for the data you have,
and so you shouldn’t make it harder to fit a data set where the y values tend to be around
one million than one where they tend to be around one. The other parameters control the
orientation of the regression surface, and we prefer it to have a not-too-crazy orientation.

There is an analytical expression for the θ, θ0 values that minimize Jridge, but it’s a little
bit more complicated to derive than the solution for OLS because θ0 needs special treatment.
If we decide not to treat θ0 specially (so we add a 1 feature to our input vectors as discussed
above), then we get:

∇θJridge =
2
n
X̃T (X̃θ− Ỹ) + 2λθ .

Setting to 0 and solving, we get: Remember that I stands
for the identity matrix,
a square matrix that has
1’s along the diagonal
and 0’s everywhere else.

Remember that I stands
for the identity matrix,
a square matrix that has
1’s along the diagonal
and 0’s everywhere else.

2
n
X̃T (X̃θ− Ỹ) + 2λθ = 0

1
n
X̃T X̃θ−

1
n
X̃T Ỹ + λθ = 0

1
n
X̃T X̃θ+ λθ =

1
n
X̃T Ỹ

X̃T X̃θ+ nλθ = X̃T Ỹ

(X̃T X̃+ nλI)θ = X̃T Ỹ

θ = (X̃T X̃+ nλI)−1X̃T Ỹ

Whew! So the solution is:
θridge =

(
X̃T X̃+ nλI

)−1
X̃T Ỹ (2.8)

and the term in front becomes invertible when λ > 0. This is called “ridge”
regression because we
are adding a “ridge”
of nλ values along the
diagonal of the matrix
before inverting it.

This is called “ridge”
regression because we
are adding a “ridge”
of nλ values along the
diagonal of the matrix
before inverting it.

Study Question: What is the dimension of I in the equation above?

2.7 Evaluating learning algorithms

In this section, we will explore how to evaluate supervised machine-learning algorithms.
We will study the special case of applying them to regression problems, but the basic ideas
of validation, hyper-parameter selection, and cross-validation apply much more broadly.

We have seen how linear regression is a well-formed optimization problem, which has
an analytical solution when ridge regularization is applied. But how can one choose the
best amount of regularization, as parameterized by λ? Two key ideas involve the evalua-
tion of the performance of a hypothesis, and a separate evaluation of the algorithm used to
produce hypotheses, as described below.

Last Updated: 05/17/23 14:48:54
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2.7.1 Evaluating hypotheses

The performance of a given hypothesis hmay be evaluated by measuring test error on data
that was not used to train it. Given a training set Dn, a regression hypothesis h, and if we It’s a bit funny to in-

terpret the analytical
formulas given above
for θ as “training,” but
later when we employ
more statistical meth-
ods “training” will be a
meaningful concept.
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choose squared loss, we can define the OLS training error of h to be the mean square error
between its predictions and the expected outputs:

En(h) =
1
n

n∑

i=1

[
h(x(i)) − y(i)

]2
.

Test error captures the performance of h on unseen data, and is the mean square error on
the test set, with a nearly identical expression as that above, differing only in the range of
index i:

E(h) =
1
n ′

n+n′∑

i=n+1

[
h(x(i)) − y(i)

]2

on n ′ new examples that were not used in the process of constructing h.
In machine learning in general, not just regression, it is useful to distinguish two ways

in which a hypothesis h ∈ H might contribute to test error. Two are:

Structural error: This is error that arises because there is no hypothesis h ∈ H that will
perform well on the data, for example because the data was really generated by a
sine wave but we are trying to fit it with a line.

Estimation error: This is error that arises because we do not have enough data (or the
data are in some way unhelpful) to allow us to choose a good h ∈ H, or because we
didn’t solve the optimization problem well enough to find the best h given the data
that we had.

When we increase λ, we tend to increase structural error but decrease estimation error, There are technical defi-
nitions of these concepts
that are studied in more
advanced treatments
of machine learning.
Structural error is re-
ferred to as bias and
estimation error is re-
ferred to as variance.

There are technical defi-
nitions of these concepts
that are studied in more
advanced treatments
of machine learning.
Structural error is re-
ferred to as bias and
estimation error is re-
ferred to as variance.

and vice versa.

2.7.2 Evaluating learning algorithms

Note that this section is relevant to learning algorithms generally—we are just introducing the topic
here since we now have an algorithm that can be evaluated!

A learning algorithm is a procedure that takes a data set Dn as input and returns an
hypothesis h from a hypothesis class H; it looks like

Dn −→ learning alg (H) −→ h

Keep in mind that h has parameters θ and θ0. The learning algorithm itself may have
its own parameters, and such parameters are often called hyperparameters. The analytical
solutions presented above for linear regression, e.g., Eq. 2.8, may be thought of as learning
algorithms, where λ is a hyperparameter that governs how the learning algorithm works
and can strongly affect its performance.

How should we evaluate the performance of a learning algorithm? This can be tricky.
There are many potential sources of variability in the possible result of computing test error
on a learned hypothesis h:

• Which particular training examples occurred in Dn

• Which particular testing examples occurred in Dn′

• Randomization inside the learning algorithm itself

Last Updated: 05/17/23 14:48:54
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2.7.2.1 Validation

Generally, to evaluate how well a learning algorithm works, given an unlimited data source,
we would like to execute the following process multiple times:

• Train on a new training set (subset of our big data source)

• Evaluate resulting h on a validation set that does not overlap the training set (but is still
a subset of our same big data source)

Running the algorithm multiple times controls for possible poor choices of training set
or unfortunate randomization inside the algorithm itself.

2.7.2.2 Cross validation

One concern is that we might need a lot of data to do this, and in many applications data
is expensive or difficult to acquire. We can re-use data with cross validation (but it’s harder
to do theoretical analysis).

CROSS-VALIDATE(D,k)

1 divide D into k chunks D1,D2, . . .Dk (of roughly equal size)
2 for i = 1 to k
3 train hi on D \Di (withholding chunk Di)
4 compute “test” error Ei(hi) on withheld data Di

5 return 1
k

∑k
i=1 Ei(hi)

It’s very important to understand that (cross-)validation neither delivers nor evaluates
a single particular hypothesis h. It evaluates the algorithm that produces hypotheses.

2.7.2.3 Hyperparameter tuning

The hyper-parameters of a learning algorithm affect how the algorithm works but they are
not part of the resulting hypothesis. So, for example, λ in ridge regression affects which
hypothesis will be returned, but λ itself doesn’t show up in the hypothesis (the hypothesis
is specified using parameters θ and θ0).

You can think about each different setting of a hyper-parameter as specifying a different
learning algorithm.

In order to pick a good value of the hyper-parameter, we often end up just trying a lot
of values and seeing which one works best via validation or cross-validation.

Study Question: How could you use cross-validation to decide whether to use ana-
lytic ridge regression or our random-regression algorithm and to pick K for random
regression or λ for ridge regression?
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