Introduction to
Machine Learning

Reinforcement
Learning

-
KimiazEs

&0
EsEE
Vv <
A ¢

£§§AlphaGo fee Sedol d
D LZ ///’\x\
2SS Nt

+ [s] Aiphastar W 1770 945 113 940 o %
T SUPPLY MINERALS WORKERS ARMY APM PRODUCTION

(8] LiquidTLO Y 147172 335 61 86 1377)

Reinforcement Learning

Markov Decision Process
(87 Aa Ta Ra v 80)

S = set of possible states

A = set of possible actions

T:S x AxS — R:transition model
R:S8 x A— R:reward function

Y = discount factor

Reinforcement Learning

Markov Decision Process
(87 Aa T7 Ra v 80)

S = set of possible states

A = set of possible actions

T:S x AxS — R:transition model
R:S8 x A— R:reward function

Y = discount factor

0.98

0.99

St = poor | St.1 = rich, At1 = plant)
rich, plant, poor)

0.05

Reinforcement Learning

0.99

P(St = poor | St1 = rich, At1 = plant)
T(rich, plant, poor)

Markov Decision Process
(87 Aa T7 Ra v 80)

S = set of possible states

A = set of possible actions

T:S x AxS — R:transition model
R:S8 x A— R:reward function

0.05

Goal in RL: find a “policy” 7 :S — A that maximizes reward

Y = discount factor

0.98

Review: Value of a policy

e Givenan MDP andapolicy m:S8 — A we can find the value
of a policy by solving a system of linear equations.

Review: Value of a policy

e Givenan MDP andapolicy m:S8 — A we can find the value
of a policy by solving a system of linear equations.

0.9 0.9 0.1
R(rich, plant)=100
. fallow: ' R(poor, plant)=10
poor soil poor soil R(rich, fallow)=0
=~ R(poor, fallow)=0

VO(s) = 0; VI(s) = @(s, 7(s) * h: horizon (e.g. how

— -) .
many growing seasons
left)
« V1(s) : value (expected

value of the value of the (expected) value of ;?;%;d) ;Vt't: policy =
policy with A policy on this the policy across 9
steps left time step all future time steps

Review: Value of a policy

e Givenan MDP andapolicy m:S8 — A we can find the value
of a policy by solving a system of linear equations.

0.9 0.9 0.1
R(rich, plant)=100
_ fallow:) R(poor, plant)=10
poor soil poor soll R(rich, fallow)=0
=~ R(poor, fallow)=0

0.9

VR(s) = 0;VI(s) = R(s,m(s)) + Sy Tls,m(s), o) - VITA (') T pIoeon (00 20w

™ many growing seasons
— / / left)
Vi(s) = R(s,7(s)) + 712 5 T(s,m(s),s")V(s') « V' (s) : value (expected
_ o reward) with policy =
Can use to evaluate which policy is better. starting at s

How to compute best policy?

Review: Optimal policy in a known MDP

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)
« Q"(s,a): expected reward of starting at s, making action a, and then making the

“best” action for the h-1 steps left
« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)

Review: Optimal policy in a known MDP

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)
« Q"(s,a): expected reward of starting at s, making action a, and then making the

“best” action for the h-1 steps left
« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)

Q°(s,a) = 0;Q"(s,a) = R(s,a) + Y. T(s,a,s")max, Q" 1(s,a")

Review: Optimal policy in a known MDP

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)
« Q"(s,a): expected reward of starting at s, making action a, and then making the

“best” action for the h-1 steps left
« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)

Q%(s,a) = 0;Q"(s,a) = R(s,a) + .., T(s,a,s') max, Q"1(s',a’)
Q' (rich, plant) = 100; Q! (rich, fallow) = 0; Q*(poor, plant) = 10; Q" (poor, fallow) = 0

Review: Optimal policy in a known MDP

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)
« Q"(s,a): expected reward of starting at s, making action a, and then making the

“best” action for the h-1 steps left
« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)

Q%(s,a) = 0;Q"(s,a) = R(s,a) + .., T(s,a,s') max, Q"1(s',a’)
Q' (rich, plant) = 100; Q! (rich, fallow) = 0; Q*(poor, plant) = 10; Q" (poor, fallow) = 0

Q?(rich, plant) = R(rich, plant) + T'(rich, plant, rich) max Q*(rich, a’)
+ T(rich, plant, poor) mépg Q* (poor, a’)

Review: Optimal policy in a known MDP

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)

« Q"(s,a): expected reward of starting at s, making action a, and then making the
“best” action for the h-1 steps left

« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)
Q%(s,a) = 0;Q"(s,a) = R(s,a) + .., T(s,a,s') max, Q"1(s',a’)
Q' (rich, plant) = 100; Q! (rich, fallow) = 0; Q*(poor, plant) = 10; Q" (poor, fallow) = 0

Q?(rich, plant) = 100 + (0.1)(100)
+(0.9)(10) = 119

Review: Optimal policy in a known MDP

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)
« Q"(s,a): expected reward of starting at s, making action a, and then making the

“best” action for the h-1 steps left
« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)
Q%(s,a) = 0;Q"(s,a) = R(s,a) + .., T(s,a,s') max, Q"1(s',a’)
Q' (rich, plant) = 100; Q! (rich, fallow) = 0; Q*(poor, plant) = 10; Q" (poor, fallow) = 0
Q?(rich, plant) = 119; Q?(rich, fallow) = 91; Q*(poor, plant) = 29; Q*(poor, fallow) = 91

Review: (Finite-Horizon) Value lteration

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9

* h: horizon (e.g. how many planting seasons)
« Q"(s,a): expected reward of starting at s, making action a, and then making the

“best” action for the h-1 steps left
« With Q can find an optimal policy: 7} (s) = arg max, Q" (s, a)

Q%(s,a) = 0;Q"(s,a) = R(s,a) + .., T(s,a,s') max, Q"1(s',a’)

Q' (rich, plant) = 100; Q! (rich, fallow) = 0; Q*(poor, plant) = 10; Q" (poor, fallow) = 0
Q?(rich, plant) = 119; Q?(rich, fallow) = 91; Q*(poor, plant) = 29; Q*(poor, fallow) = 91
What's best?|Any s, 77 (s) = plant; w5 (rich) = plant, 75 (poor) = fallow

Review: (Infinite-Horizon) Value Iteration

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9 0.9

 What if | don’t stop farming? Is there any optimal policy?
 Theorem. There exists a (stationary) optimal policy 7~ l.e.,
for every policy m and for every state s € S, Vi« (s) > Vi (s)

Review: (Infinite-Horizon) Value Iteration

0.9 00 0.1
' R(rich, plant)=100
poor soil poor soall R(rich, fallow)=0
R(poor, fallow)=0
0.1

0.9 0.9

What if | don’t stop farming? Is there any optimal policy?
Theorem. There exists a (stationary) optimal policy 7" |.e.,
for every policy m and for every state s € S, Vi« (s) > Vi (s)
Q*(s,a) : expected reward if we make best actions in future
o |f we knew Q@*(s,a), then: 7*(s) = argmax, Q*(s, a)
Note: Q*(s,a) = R(s,a) +v>_, T(s,a,s’) maxy Q*(s',a’)

* Not linear in Q*(s,a), so not as easy to solve as V,(s)

Review: (Infinite-Horizon) Value Iteration

Finite-horizon value iteration:

Q%(s,a) =0 Q'(s,a) = R(s,a)
Q"(s,a) = R(s,a) +v>.., T(s,a,s") max, Q" 1(s',a’)

Review: (Infinite-Horizon) Value Iteration

Finite-horizon value iteration:

QO(37a) =0 Ql(saa) — R(Saa')
Q"(s,a) = R(s,a) +v>.., T(s,a,s") max, Q" 1(s',a’)
Infinite-Horizon-Value-Iteration (S, A,T,R,~,¢€)

for each state s€S and each actiona€e A
Initialize Qqa(s,a) =0

Review: (Infinite-Horizon) Value Iteration

Finite-horizon value iteration:

Q%(s,a) =0 Q'(s,a) = R(s,a)
Q"(s,a) = R(s,a) +v>.., T(s,a,s") max, Q" 1(s',a’)

Infinite-Horizon-Value-Iteration (S, A,T,R,~,¢€)
for each state s€S8 and each actionace A
Initialize Qqa(s,a) =0
while True
for each state s€ S and each actiona€ A

Qnew(sa a) — R(37 CL) T+ Zs/ T(Sa a, S/) maXe’ QOld(S,7 CL’)

Review: (Infinite-Horizon) Value Iteration

Finite-horizon value iteration:

Q%(s,a) =0 Q'(s,a) = R(s,a)
Q"(s,a) = R(s,a) +v>.., T(s,a,s") max, Q" 1(s',a’)

Infinite-Horizon-Value-Iteration (S, A,T,R,~,¢€)
for each state s€ S and each actionae A
Initialize Qq(s,a) =0
while True
for each state s€ S and each action a€ A
Qnew(s,a) = R(s,a) + 7)., T(s,a,s") maxy Qola(s’, a’)
if maXs q |Q01d(8, CL) — Qnew(S, a)| <e€
return Qpnew

Qold — Qnew

Review: (Infinite-Horizon) Value Iteration

Finite-horizon value iteration:

Q%(s,a) =0 Q'(s,a) = R(s,a)
Q"(s,a) = R(s,a) +v>.., T(s,a,s") max, Q" 1(s',a’)

Infinite-Horizon-Value-Iteration (S, A,T,R,~,¢€)
for each state s€ S and each actionae A
Initialize Qq(s,a) =0
while True
for each state s€ S and each action a€ A
Qnew(s,a) = R(s,a) + v, T(s,a,s") maxy Qola(s’, a’)

if maxs g |Qo1d(S,a) — Qnew(s,a)| < e
return Qpew Issue: need to know reward and

C _ '
Qold = Qnew transition functions!

A more realistic scenario

0.1

02 0.9
fallow:
>
0.9 0.1

poor soil
ﬁ poor soil
o ?

R(rich, plant)=100
R(poor, plant)=10
R(rich, fallow)=0
R(poor, fallow)=0

-~

R(rich, plant)="
R(poor, plant)="
R(rich, fallow)="
R(poor, fallow)="

\)\)\)

Reinforcement Learning Overview

Goal in RL: find a “policy” ©:S — A that maximizes reward in an
unknown MDP.

Reinforcement Learning Overview

Goal in RL: find a “policy” ©:S — A that maximizes reward in an
unknown MDP.

RL Algorithms
!
{ 3
Model-Free RL Model-Based RL
{ 3 { 3
Policy Optimization Q-Learning Learn the Model Given the Model

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Reinforcement Learning Overview

Goal in RL: find a “policy” ©:S — A that maximizes reward in an
unknown MDP.

RL Algorithms
|
{ 3
Model-Free RL Model-Based RL
{ ~] 3
Policy Optimization Q-Learning Learn the Model Given the Model

Today!

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Q-Learning

Q-LEARNING(S, A, sg,Y, &)

forsecS,ac A:
Qls,a] =0 Initialize Q function to 0

Q-Learning

Q-LEARNING(S, A, sg,Y, &)
forsecS,ac A:
Qls,a] =0 Initialize Q function to 0

s = so // Or draw an s randomly from &
while True:
a = select_action(s, Q) “Act” in the environment

Q-Learning

Q-LEARNING(S, A, sg, Y, &)
forsecS,ac A:
Qls,a] =0 Initialize Q function to O
s = 8o // Or draw an s randomly from &
while True:

a = select_action(s, Q) “Act” in the environment
r,s’ = execute(a) Receive reward, transition to s’

Intuition: sampling to estimate the transition model
T:SXxXAXxS—>R

Q-Learning

Q-LEARNING(S, A, sg, Y, &)
forseS,ac A:
Qls,al =0 Initialize Q function to O
s = sg // Or draw an s randomly from &
while True:
a = select_action(s, Q) “Act” in the environment
r,s’ = execute(a) Receive reward, transition to s’

Qls,al = (1 — «)Qls, al + (r +ymaxqs Q[s’, a’])

Update Q function for the
sampled state and action

Q-Learning

Q-LEARNING(S, A, sg, Y, &)
forseS,ac A:

Qls,al =0 Initialize Q function to O
s = 8o // Or draw an s randomly from &
while True:
a = select_action(s, Q) “Act” in the environment
r,s’ = execute(a) Receive reward, transition to s’
Qls,al = (1 —«)Qls,al + a(r +ymaxy: Qls’, a’])
s =s'

Update Q function for the

Move onto next state sampled state and action

What changed?

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,al =0
s = 8o // Or draw an s randomly from 8
while True:

a = select_action(s, Q)

r,s’ = execute(a)

Qls,al = (1 —a)Qls, a] + a(r +ymaxqs Q[s’,a’])
s =s'

while True
for each state s €S and each action a€ A

Qnew(s,a) = R(s,a) +v)_, T(s,a,s") maxqe Qola(s’, a’)

What changed?

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,al =0
s = 8o // Or draw an s randomly from 8
while True:

a = select_action(s, Q)

r,s’ = execute(a)

Qls,al = (1 —a)Qls, a] + a(r +ymaxqs Q[s’,a’])
s =g’

while True
for each state s €S and each action a€ A

new(S,a) = R(s,a) + ,T(s,a,s") maxy, Qoa(s’,a’
Wnew(8,a) = R(s,a) +v >, T(s,a,s") ,

Since we don’t know R and T, we estimate it by “sampling” in the environment

What changed?

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,al =0
s = 8o // Or draw an s randomly from 8
while True:

a = select_action(s, Q)
r,s’ = execute(a)
Qls,al = (1 —a)Qls, a] + &(r +ymaxq Q[s’,a’])

s =s’ ,
Moving average

What changed?

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,al =0
s = 8o // Or draw an s randomly from 8
while True:

a = select_action(s, Q)
r,s’ = execute(a)
Qls,al = (1 —a)Qls, a] + &(r +ymaxq Q[s’,a’])

s =s’ ,
Moving average

Qls,a] = Qls,a] —«x (Q[s, a] — (r+ymaxQls’, a']))

Looks like gradient descent!

Q-Learning

Qls,a] = Qlfs,a] — x (Q[s, al] — (r+yn}3x Q[s’,a/]))

Linear regression with just the bias term

y = 6o
1

L(0o) = 5(y - 0p)

0o = 0o —n(6o — y)

Q-Learning

Qls,a] = Qlfs,a] — x (Q[s, alll — (r—i—ynha}x Q[s’,a/]))

Linear regression with just the bias term

y =t

L(6o) = 1(?J — o)

2 Current guess
6o = 6o — n(6o — y) Target

Q-Learning

Qls,a] = Qfs,a] — «x (Q[s, alll — (r—i—ynha}x Q[s’,a/]))

Linear regression with just the bias term

y = 0o
1 Learning rate

L(6o) = =(y — 60)*

2 Current guess
0o = 6o — n(6o — y) Target

Q-Learning

Qls,a] = Qfs,a] — «x (Q[S, alll — (r+yn}9x Q[s’,a/]))

Linear regression with just the bias term

y = 0o

, 1 . Learning rate
L(6p) = 5(9 - 0) Current guess
0y = O — 77(90 _ y) Target

Key difference: in Q-learning, the target itself is a function of what is
being learned (and the reward)!

Q-Learning

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,a] =0
s = 8o // Or draw an s randomly from 8
while True:
a = select_action(s, Q) How to select an action?

r,s’ = execute(a)
Qls,al = (1 —a)Qls, a] + a(r +ymaxqs Q[s’,a’])
s =g’

Q-Learning

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,a] =0
s = 8o // Or draw an s randomly from 8
while True:
a = select_action(s, Q) How to select an action?

r,s’ = execute(a)
Qls,al = (1 —a)Qls, a] + a(r +ymaxqs Q[s’,a’])
s =g’

Argmax action from current policy?

argmaxqeca Q(s, a)

Initially Q function is bad = argmax not a good idea.

Q-Learning

Q-LEARNING(S, A, sg,Y, &)
forscS,ac A:

Qls,a] =0
s = 8o // Or draw an s randomly from 8
while True:
a = select_action(s, Q) How to select an action?

r,s’ = execute(a)
Qls,al = (1 —a)Qls, a] + a(r +ymaxqs Q[s’,a’])
s =g’

e-greedy strategy:
e with probability 1 — €, choose argmaxqc4 Q(s, a)

e with probability €, choose the action a € A uniformly at random

Exploitation

Exploration

Q-Learning

Q[s,a] is a scalar for each possible state and action. (“Tabular”
Q-learning)

What if states are high dimensional or continuous?

DQN: Deep Q-Networks

e Parameterize Q function to be an output from a neural network!

DQN: Deep Q-Networks

| Network 1 | 4.5 Separate
/: : network for
State -\ Network 2 | - 3.2 o oh action
© Network3 1.5 (3 actions)

DQN: Deep Q-Networks

| Network 1 | 4.5 Separate
/: S network for
State -\ Network 2 | - 32 o oh action
© Network3 1.5 (3 actions)
| sz s =3 == 5 |
State (Neural W 4.5/ Score for
- L Network J .'s| each action

DQN: Deep Q-Networks

Network 1

State Network 2

-
A
-
A
-
A

Network 3

State (Neural

—

L Network

State

Neural

Network

—

Action (one-hot
for discrete)

.5

3.

= w |
= w b

1.

2

.5

Ul N Ul

5

Separate
network for
each action
(3 actions)

Score for
each action

Score
corresponding
to input action

DQN: Deep Q-Networks

Network 1

4.5 Separate
network for

State

<’ Network 2

Network 3

each action
1.5 (3 actions)

State (Neural

—

L Network

State

Neural

;"g Score for
1.5 each action

What are the pros and cons of
these approaches?

Score

Network

—

Action (one-hot
for discrete)

1.5 corresponding
to input action

DQN: Deep Q-Networks

Q-LEARNING(S, A, sg,Y, &)
1 forseS,acA:

2 Qls,al =0

3 s = sg // Or draw an s randomly from 8

4 while True:

5 a = select_action(s, Q)

6 r,s’ = execute(a)

7 Qls,a] = (1 —a)Qls, a] + &(r +ymaxq Qls’,a’])
8 s =35’

DQN: Deep Q-Networks

Q-LEARNING(S, A, sg,Y, &)

1
2
3
4

o N O O

forsc§,ac A:

Randomly initialize QQ(S, CL)

Qls,al =0
s = so // Or draw an s randomly from 8
while True:

a = select_action(s, Q)

r,s’ = execute(a)

Qls,al = (1 —)Qls, a] + (r +ymaxq- Q[s’, a’l)
s =35’

DQN: Deep Q-Networks

Q-LEARNING(S, A, sg,Y, &)

; for SS[SS"; EZJSL ' Randomly initialize QQ(S, CL)
3 s = sg // Or draw an s randomly from 8

4 while True:

a = select_action(s, Q)

r,s’ = execute(a)

Qls,a] = (1 —a)Qls, a] + &(r +ymaxq Qls’,a’])

5= S, \
Minimize regression loss

(Qo(s,a) — (r+ymax Qp(s', a)))*

o N O O

DQN: Deep Q-Networks

Q-LEARNING(S, A, sg,Y, &)

forsc§,ac A: o
Qls,a] =0 Randomly initialize Q@(S, a)

s = sg // Or draw an s randomly from §

while True:

a = select_action(s, Q)
r,s’ = execute(a)
Qls,a] = (1 —a)Qls, a] + &(r +ymaxq Qls’,a’])

5= S, \
Minimize regression loss

Issue: instability arising from both guess and NN
target being from a learned network. (Qo(s,a) — (r+v HZE}X Qy(s,a’)))

OGO DN -

DQN: Fitted Q-Learning

FITTED-Q-LEARNING(A, sg,Y, &, €, m)

s = 8o // Or draw an s randomly from 8
D={}
initialize neural-network representation of Q
while True:
Dnew = experience from executing e-greedy policy based on Q for m steps
D =D U Dpew represented as (s, a,r,s’) tuples
Deup = {(x'V),y M)} where x(") = (s,a) and y!) =1 +ymaxqreq Q(s’, a’)
for each tuple (s, a,r,s')V € D
re-initialize neural-network representation of Q
Q = supervised_NN_regression(Dgyp)

DQN: Fitted Q-Learning

FITTED-Q-LEARNING(A, sg,Y, &, €, m)

s = 8o // Or draw an s randomly from 8
D={}
initialize neural-network representation of Q
while True:
Dnew = experience from executing e-greedy policy based on Q for m steps
D =D U Dpew represented as (s, a,r,s’) tuples
Deup = {(x'V),y M)} where x(") = (s,a) and y!) =1 +ymaxqreq Q(s’, a’)
for each tuple (s, a,r,s')V € D
re-initialize neural-network representation of Q
Q = supervised_NN_regression(Dgyp)

Collect data from current policy

DQN: Fitted Q-Learning

FITTED-Q-LEARNING(A, sg,Y, &, €, m)

s = 8o // Or draw an s randomly from 8
D={}
initialize neural-network representation of Q
while True:
Dnew = experience from executing e-greedy policy based on Q for m steps
D =D U Dpew represented as (s, a,r,s’) tuples
Doy = {(x'V,y))} where x") = (s,a) and yV) =1 +ymaxqarea Q(s’,a’)
for each tuple (s, a,r,s')V) € D
re-initialize neural-network representation of Q Cregte supervised
Q = supervised_NN_regression(Dgyp)

Collect data from current policy

learning dataset

DQN: Fitted Q-Learning

FITTED-Q-LEARNING(A, sg,Y, &, €, m)

s = 8o // Or draw an s randomly from 8
D={}
initialize neural-network representation of Q
while True:
Dnew = experience from executing e-greedy policy based on Q for m steps
D =D U Dpew represented as (s, a,r,s’) tuples
Doy = {(x'V,y))} where x") = (s,a) and yV) =1 +ymaxqarea Q(s’,a’)
for each tuple (s, a,r,s')V € D
re-initialize neural-network representation of Q Cregte supervised
Q = supervised_NN_regression(Dgyp)

Collect data from current policy

learning dataset
Train a neural network with regression loss!

