Introduction to
Machine Learning

Clustering




Goals of Supervised Learning

Learn a hypothesis h from labeled dataseD = {z'V,4¥}7, that has
low error on unseen data.
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Goals of Reinforcement Learning

Find a “policy” 7 :S — A that maximizes reward in an
environment.

plant:

fallow:

O R(poor, plant)=10
=
0.9

R(rich, fallow)=0
R(poor, fallow)=0

= P(St = poor | St1 = rich, A1 = plant)
0.1 = T(rich, plant, poor)

0.98



Goals of Unsupervised Learning?

Clustering

Cluster Dendrogram
A

Height

https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/



Goals of Unsupervised Learning?

Representation Learning
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The ML Landscape

Supervised Learning: Train a model that performs well (e.g., high
accuracy) on unseen data.

Reinforcement Learning: Learn a policy that maximizes expected
reward in some environment.

Unsupervised Learning:

o Extract useful insights from data
o Learn features for downstream tasks



Clustering

e Find a mapping from each

data point to a cluster.

e Modeling choices:

o How many clusters?
How do we define
“close”?

O

have succeeded?

How do we know if we
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K-Means Clustering Objective

arg mlnﬂay ZiZI 2321 l{y( ) — J}llx( ) o /’L(J)”%

Find K cluster assignments and
cluster means such that across all
data points, the squared
Euclidean distance between the
data point and the cluster mean
of its assigned cluster is
minimized.
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K-Means Algorithm

Input:

1. Data points {z},
2. Number of clusters k
3. Number of iterations

Output:

1. An assignment of each point to a
cluster.

2. A “centroid” of each cluster with
which to assign new points.



K-Means Algorithm

Input:

1.
2. Number of clusters k
3. Number of iterations

Data points {z"},

Output:

1.

2.

An assignment of each point to a

cluster.

A “centroid” of each cluster with
which to assign new points.

k-means (k, 7)

Init {pPY_, {y YL,
for t =1 to 7
Yold = Y
for i =1 to n
y(i) = . .
arg min ||x(7’) — /L(J)”%
J
for ;] =1 to k
'u(y) _ | |
>y Hy® = j}a®
2?21 l{y(i) = ]}
if Yy = Yold
break. '
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)
Init-ﬂﬁﬂ}?:p{yurﬁgl
for t =1 to 7

Yold = Y
for 1 = 1 to n
y(i) = . .
arg min 2 — 40 3
for j i 1 to k
MU):
>y Hy® = j}a®
}:Zzll{y@)::j}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)
Init {uP}¥_;, {y Y,
for t =1 to 7
Yold = Y
for 1 = 1 to n
y(i) = . .
arg min |2 — u0)|
for j i 1 to k
MU):
>y Hy® = j}a®
}:Zzll{y@)::j}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)

*. Init {u(j)}§=1a {y(i)}?ﬂ

* & . for t =1 to 7
K=5 Yold = Y

for i =1 to n

return{p@ Yo {y®}r,




K-Means Algorithm

k-means (k, 7)
Init-ﬂﬁﬂ}?:p{yurﬁgl
for t =1 to 7

Yold = Y
for 1 =1 ton
y(i) = . .
arg min ) — 40 3
for j i 1l to k
MU):
>y Hy® = j}a®
}:Zzll{y@)::j}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)
Init {,u(j)};?:l, {y(i)}?:l
for t =1 to 7
Yold = Y
for 1 =1 ton
y(i) = . .
arg min ||z — p9)|2
for j i 1l to k
M(j) _
Z?=1 1{y(i) — j}:c(i)
Z?:I 1{y® = 5}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)
Init<Uﬁ”}§:u{y“fﬂll
for t =1 to 7

Yold = Y
for 1 = 1 to n
y@) = . .
arg min |29 — u)]2
for j i 1l to k

Assign each data ;) =
point to closest Y7 | 1{y® = j}z®
“centroid” S H{y® =}

if Y = Youd
break
return{p@ Yo, {y¥},




K-Means Algorithm

for i =1 to n

. (1) _
t ntroid ¥ = : :
~Peate SemIOI Y g min o) — 4|

] k-means (k, 7)
sidis | Tnit {p@}_, (¥},
- - .- c . for t = 1 to T
g . Yold = Y
: J—

S

as the average |
of all the pointsf°r(j)j -1 tok
assignedtoit *__~ - -
J Yoy Hy® = j}a®
if ¥y = Yold
break. _
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, T)
tnit {p@ Y {y®@}r,
for t =1 to 7
Yold = Y
for i =1 ton

y(i) — _ _
arg min ||$(2) — ,U(J)”g
j
for ;] =1 to k
,u(j) — | |
Z?:l ]_{y("‘) — ]}w(z)
S H{y® =}
y 2 .o if Y = Yold
ﬂ*@ * . break. .
return{p@ Yo, {y¥},




K-Means Algorithm

lteration 2

k-means (k, 7)
Init {,u(j)}?zl, {y(i)}?:l
for t =1 to 7
Yold = Y
for 1 =1 ton
y(i) = . .
arg min ||z — p9)|2
for j i 1 to k
M(j) _
Z?=1 1{y(i) — j}x(i)
Z?:l 1{y® = 5}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)
:’v Init {:u(j)}?zb{y(i)}?:l
w : d for t =1 to 7T

i ' °_-ﬁ_‘§n§g . Yold = Y

for i = 1 to n

! y(i) = . .
lteration 2 arg min [ERETENF:

for ;] =1 to k

,u(j) —

2?21 1{y(i) _ j}x("')
Zyzl 1{y(z) — .7}
if Yy = Youd
break. _
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, 7)
Init-ﬂfﬂ}ﬁzp{yurﬂll
for t =1 to 7

Yold = Y
for 1 = 1 to n
y(i) = . .
arg min |2 — u0)|
for j i 1 to k
M(j) —
>y Hy® = j}a®
Z?:l 1{y® = 5}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, T)
Init-ﬂﬂﬂ}izp{yurﬂll
for t =1 to 7

Yold = Y
for 1 = 1 to n
y(i) = . .
arg min |2 — u0)|
for j i 1 to k
M(j) —
>y Hy® = j}a®
Z?:l 1{y® = 5}
if Y = Yold
break
return{p@ Yo, {y¥},




K-Means Algorithm

k-means (k, T)
tnit {p@}e_ {y@}r,

for t =1 to 7
Yold = Y
for i =1 to n
y(i) —

arg min |z® — p)2

for ;] =1 to k

,u(j) —
>y Hy® = j}a®
if Y = Youd
break _
return{pW Yo, {y},




K-Means Algorithm

k-means (k, 7)
Init<Uﬁ”}§:u{y“fﬂll
for t =1 to 7

Yold = Y
for i = 1 to n
y ) = | |
arg min |2 — u©|[3

for j =1 to k

N(j) _
Use centroid to Y1, 1{y® = j}z®
cluster new S H{y@ =5}
data if Y= Yo

break

return{pW Yo, {y¥},



K-Means Algorithm

K-means is sensitive to initialization!

3 - L AU \ )
/ST
. = e

K-means is guaranteed to converge with iterations, but not
necessarily to the global minimum.



K-Means Algorithm

K-means is sensitive to initialization! Why can’t we
And number of clusters just increase K?
L\ AL
S ‘ ':@3 . -8 . '_.1%;3




K-Means Algorithm

K-means is sensitive to initialization!

And number of clusters
And choice of distance metric

What are some issues with this “distance”?

k-means (k, 7)

Init {p@}e | {y@}r,
for t = 1 to 7
Yold = Y
for i =1 to n
y(i) = . .
arg min ||£E(Z) — ,U(J)Hg
J
for ; =1 to k
'u(J) — | |
>y Hy® = j}a®
2?21 1{y(i) =3}
if Yy = Youd
break_ .
return{p@ Yo, {y®},




K-Means Algorithm

clustering

using k-means
algorithm




K-Means Algorithm

Can also just do gradient descent!

2
i) _ (j)”
X
H 2

L(p) = Zm)m
1=1

K-means algorithm is just one way

using k-means S« > e
of optimizing the K-means objective

algorithm

argmin, .y ;. Zj:l 1{y® = j}||z® — #(‘7)”3



When to use K-Means?

K-means works well when:
- Data “circular”
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When to use K-Means?

K-means works well when:
- Data “circular”
- Clusters have roughly the same size




When to use K-Means?

K-means works well when:
- Data “circular”
- Clusters have roughly the same size
- Clusters are well separated




