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Review: Linear Regression Solution



Linear Regression Cost Function

We are incredibly fortunate that:
● The cost function is Convex (“curves up”) 

⇒ local minimum is a global minimum

● It can be efficiently computed
⇒ there is a closed-form solution to 



Optimization is hard in general!

● Typical cost function

Stationary points are not 
global (or even local) 

minimma



Gradient Descent

First-order, iterative algorithm for finding a local minimum of a 
differentiable function

● First-order: using only gradient information 

● Iterative algorithm: iteratively update parameters

● Differentiable function: continuous optimization



Gradient Descent

Initialize          (typically random) 

Repeat:

Until convergence

Other stopping criteria: fixed # of iters or |            | close to 0
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step size
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Gradient Descent

Initialize          (typically random) 

Repeat:

Until convergence

Other stopping criteria: fixed # of iters or |            | close to 0

Gradients point in the steepest 
direction => negative gradient 
takes a step opposite this 
direction



Gradient Descent in 2D
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Gradient Descent for Non-Convex Functions
Cost function does not need to be convex

But for non-convex functions we often get stuck in a local 
minimum



Starting point matters
Starting point determines in which local minimum we end up

We can run gradient descent with different starting points and 
take the best solution



How to computer gradient?



Computing gradient

Analytically (pencil/paper, Mathematica)

Finite differences

Automated differentiation



Computing gradient requires a limit 

f (x) f (x+ h)
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Finite differences

In finite differencing we choose h and evaluate                           
numerically

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Software like Matlab computes h automatically
Finite differencing is useful to verify correctness of analytical 
derivatives (yes, we often make mistakes in computing 
derivatives)

Expensive for high dimensional functions (e.g., how many 
function evaluation are required when working with d features?)



Automated differentiation

The chain rule:

Computational graph
● nodes are operations and edges are input relations
● forward or reverse accumulation

See 
Autograd



Gradient Descent

How to set the learning rate?

It can treated  as another hyperparameter

More advanced methods used
in practice (soon in NN LecRec)



Gradient Descent for Linear Regression

But closed form solution is more efficient!



Stochastic Gradient Descent

This sum requires running the model for the 
entire dataset at each time step

Stochastic Gradient Descent: approximate the full gradient with 
a a single sample



Stochastic Gradient Descent

With certain conditions on the learning rate, the model will get 
“close” to the optimum “fast enough”. 



Stochastic Gradient Descent

Batch gradient descent Stochastic gradient descent

Intuition: SGD is a noisy estimate of the  full batch gradient

In many cases, SGD can help escape local minima and lead to 
faster convergence.



SGD on Linear Regression 

“residual”   

If residual ≈ 0, the current model’s guess is good and the model 
does not change much.

If residual ≠ 0, then we add         to           , weighted by the 
residual and learning rate.



Mini-batch SGD

Batch GD SGDMini-batch SGD

Mini-batch SGD: randomly sample a mini-batch of size 


