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Neural Network Architectures

Inject structural knowledge about the input domain into our 
neural network.

If the neural network is “aware” of input domain structure, then 
it can learn faster and generalize better.

Image Audio Molecules fMRI



Neural Network Architectures

- Convolution Neural Networks: for processing data where 
there is locality and translational invariance

- Recurrent Neural network architecture tailored for 
processing sequential data

- Language
- Audio
- Time series data



Sequence Classification
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Sequence Classification
1. Input consists of “(“ and “)”

2. Detect whether “( ( ) )” occurs in 
the sequence
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Sequence Classification

1-D convolutions to the rescue!
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Sequence Classification

Can deal with varying sequence lengths

                
(    (     )    (     (     (     )    )    )    (

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1



Sequence Classification

Can deal with varying sequence lengths

                
(    (     )    (     (     (     )    )    )    (

3 1 1 3 4 3 1

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1



Sequence Classification

Can deal with varying sequence lengths

                
(    (     )    (     (     (     )    )    )    (

3 1 1 3 4 3 1

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1
4

Max-pooling over time



Sequence Classification

Can deal with varying sequence lengths
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Max-pooling over time

1D convolutions are great for 
detecting local patterns that 
are translation invariant



Harder Sequence Classification

Bounded Parenthese Problem:

1. Input: consists of “(” and “)”
2. Every string has to have an equal 

number of “(” and “)”
3. Every string has to have a prefix 

where there are at least as many 
“(” as “)”
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- We need to detect global vs local patterns

     ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) )  

- Things are not translation invariant

( ) ( ( ) )                           ( ( ) ) ) (
        
- Deeper convolution layers may work, but doesn’t feel like 

the right architecture.

Harder Sequence Classification



State Machines



State Machines

Initial state 

Update state with current input

(Optional) Produce an output 



State Machine for Bounded Parenthese

is a two dimensional vector 

Count of “(“ minus count of “)” 

Minimum of the above metric across time steps 



State Machine for Bounded Parenthese

is a two dimensional vector 

Count of “(“ minus count of “)” 

Minimum of the above metric across time steps 

Claim: if       is the zero vector after processing all the 
inputs, then it is a bounded parenthese string 
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- State machine with learnable parameters



Recurrent Neural Networks

- State machine with learnable parameters

f1: non-linear function (e.g., tanh)

f2: depends on output (e.g., softmax 
if predicting something at each time 
step)



Recurrent Neural Networks

● Hidden state is a 
function of previous 
hidden state and 
current input.

 



Recurrent Neural Networks

● Hidden state is a 
function of previous 
hidden state and 
current input.

● Same weights at 
each state ⇒ 
parameter sharing! 



RNNs for Sequence Classification



RNNs for Sequence Classification

Transition function is 
differentiable ⇒ can 
obtain gradients with 
backpropagation.



RNNs for Sequence Tagging



RNNs for Language Modeling

The     hungry    cat      meows
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RNNs for Language Modeling

The     hungry    cat      meows

The     hungry    cat      meows
Distribution over 
words in the vocab 

One-hot vector with dimension 
= Vocab size
(10K-100K)

Total loss = sum over 
multiclass negative 
log likelihood



RNNs for Language Modeling



RNN Training: Backpropagation Through Time



RNN Training: Backpropagation Through Time



RNN Training: Backpropagation Through Time



RNN Training: Backpropagation Through Time



RNN Training: Backpropagation Through Time

Dynamic programming (as 
usual) to calculate gradients

Intuition: like a regular neural 
network “unrolled” in time



RNN Training: Backpropagation Through Time



Deeper RNNs



Bidirectional RNNs



Gated RNNs

Gated Recurrent Unit (GRU) [Chung et al. 2014, Cho et al. 2014]



Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997]

Gated RNNs



Summary

- Recurrent Neural Networks: tailored for processing 
sequential data

- RNN Applications:
- Sequence Classification
- Language Modeling (GPT3 is language model!)

- RNN Variants
- Deeper / Bi-directional RNNs
- Gated RNNs


