
Introduction to
 Machine Learning

Recurrent Neural
Networks

Neural Network Architectures

Inject structural knowledge about the input domain into our
neural network.

If the neural network is “aware” of input domain structure, then
it can learn faster and generalize better.

Image Audio Molecules fMRI

Neural Network Architectures

- Convolution Neural Networks: for processing data where
there is locality and translational invariance

- Recurrent Neural network architecture tailored for
processing sequential data

- Language
- Audio
- Time series data

Sequence Classification

Input
()
) ((
() (())
(())) ((
((((()

Output
0
0
1
1
0

Sequence Classification
1. Input consists of “(“ and “)”

2. Detect whether “(())” occurs in
the sequence

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1 0 1 1 0 0

0 1 0 0 1 1

1

0

0

1

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1 0 1 1 0 0

0 1 0 0 1 1

1

0

0

1

1 1 0 0

0 0 1 1
Convolutional
filter

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1 0 1 1 0 0

0 1 0 0 1 1

1

0

0

1

1 1 0 0

0 0 1 1

1

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1 0 1 1 0 0

0 1 0 0 1 1

1

0

0

1

1 1 0 0

0 0 1 1

1 1

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1 0 1 1 0 0

0 1 0 0 1 1

1

0

0

1

1 1 0 0

0 0 1 1

1 1 4

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1 0 1 1 0 0

0 1 0 0 1 1

1

0

0

1

1 1 0 0

0 0 1 1

1 1 4 4

Max-pooling over time

Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (= ,) =

() (())

1

0

0

1

1 1 4 4
“1” if output after
max pooling >= 4

1 0 1 1 0 0

0 1 0 0 1 1

1 1 0 0

0 0 1 1

Sequence Classification

Can deal with varying sequence lengths

(() ((())) (

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1

Sequence Classification

Can deal with varying sequence lengths

(() ((())) (

3 1 1 3 4 3 1

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1

Sequence Classification

Can deal with varying sequence lengths

(() ((())) (

3 1 1 3 4 3 1

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1
4

Max-pooling over time

Sequence Classification

Can deal with varying sequence lengths

(() ((())) (

3 1 1 3 4 3 1

1 1 0 1 1 1 0 0 0 1

0 0 1 0 0 0 1 1 1 0

1 1 0 0

0 0 1 1
4

Max-pooling over time

1D convolutions are great for
detecting local patterns that
are translation invariant

Harder Sequence Classification

Bounded Parenthese Problem:

1. Input: consists of “(” and “)”
2. Every string has to have an equal

number of “(” and “)”
3. Every string has to have a prefix

where there are at least as many
“(” as “)”

Bounded Parenthese Problem:

1. Input: consists of “(” and “)”
2. Every string has to have an equal

number of “(” and “)”
3. Every string has to have a prefix

where there are at least as many
“(” as “)”

Input
()
((()))
() (())
(())) ()
()) (()
(()) ()

Output
1
1
1
0
0
1

Harder Sequence Classification

- We need to detect global vs local patterns

 (((((((((()))))))))

- Things are not translation invariant

() (()) (())) (

- Deeper convolution layers may work, but doesn’t feel like

the right architecture.

Harder Sequence Classification

State Machines

State Machines

Initial state

Update state with current input

(Optional) Produce an output

State Machine for Bounded Parenthese

is a two dimensional vector

Count of “(“ minus count of “)”

Minimum of the above metric across time steps

State Machine for Bounded Parenthese

is a two dimensional vector

Count of “(“ minus count of “)”

Minimum of the above metric across time steps

Claim: if is the zero vector after processing all the
inputs, then it is a bounded parenthese string

State Machine for Bounded Parenthese

Count of “(“ minus count of “)”

Minimum of the above metric across time steps

((())) () ()

State Machine for Bounded Parenthese

Count of “(“ minus count of “)”

Minimum of the above metric across time steps

((())) () ()

()) (()

State Machine for Bounded Parenthese

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((()))

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

State Machine for Bounded Parenthese

((())) ()) (()

Recurrent Neural Networks

- State machine with learnable parameters

Recurrent Neural Networks

- State machine with learnable parameters

f1: non-linear function (e.g., tanh)

f2: depends on output (e.g., softmax
if predicting something at each time
step)

Recurrent Neural Networks

● Hidden state is a
function of previous
hidden state and
current input.

Recurrent Neural Networks

● Hidden state is a
function of previous
hidden state and
current input.

● Same weights at
each state ⇒
parameter sharing!

RNNs for Sequence Classification

RNNs for Sequence Classification

Transition function is
differentiable ⇒ can
obtain gradients with
backpropagation.

RNNs for Sequence Tagging

RNNs for Language Modeling

The hungry cat meows

The hungry cat meows

RNNs for Language Modeling

The hungry cat meows

The hungry cat meows

One-hot vector with dimension
= Vocab size
(10K-100K)

RNNs for Language Modeling

The hungry cat meows

The hungry cat meows
Distribution over
words in the vocab

One-hot vector with dimension
= Vocab size
(10K-100K)

RNNs for Language Modeling

The hungry cat meows

The hungry cat meows
Distribution over
words in the vocab

One-hot vector with dimension
= Vocab size
(10K-100K)

Total loss = sum over
multiclass negative
log likelihood

RNNs for Language Modeling

RNN Training: Backpropagation Through Time

RNN Training: Backpropagation Through Time

RNN Training: Backpropagation Through Time

RNN Training: Backpropagation Through Time

RNN Training: Backpropagation Through Time

Dynamic programming (as
usual) to calculate gradients

Intuition: like a regular neural
network “unrolled” in time

RNN Training: Backpropagation Through Time

Deeper RNNs

Bidirectional RNNs

Gated RNNs

Gated Recurrent Unit (GRU) [Chung et al. 2014, Cho et al. 2014]

Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997]

Gated RNNs

Summary

- Recurrent Neural Networks: tailored for processing
sequential data

- RNN Applications:
- Sequence Classification
- Language Modeling (GPT3 is language model!)

- RNN Variants
- Deeper / Bi-directional RNNs
- Gated RNNs

