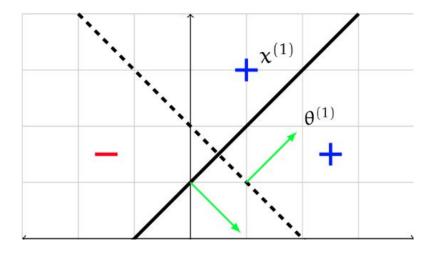
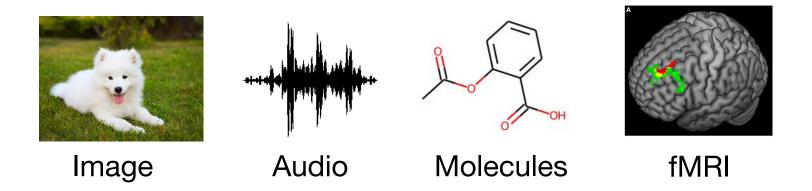
Introduction to Machine Learning



Recurrent Neural Networks

Neural Network Architectures

Inject structural knowledge about the input domain into our neural network.

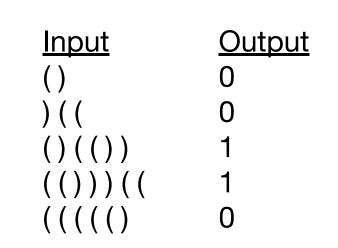


If the neural network is "aware" of input domain structure, then it can learn faster and generalize better.

Neural Network Architectures

- Convolution Neural Networks: for processing data where there is **locality** and **translational invariance**
- Recurrent Neural network architecture tailored for processing sequential data
 - Language
 - Audio
 - Time series data

- 1. Input consists of "(" and ")"
- 2. Detect whether "(())" occurs in the sequence

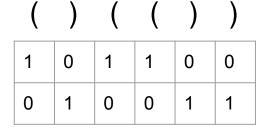


Sequence Classification

1-D convolutions to the rescue!

One-hot representation: (=

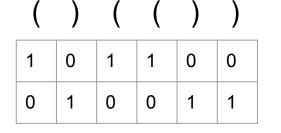
$$\begin{array}{c}
 1 \\
 0
 \end{array}$$
,) = $\begin{array}{c}
 0 \\
 1
 \end{array}$

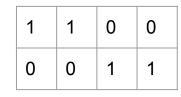


1-D convolutions to the rescue!

One-hot representation: (=

$$\begin{array}{c}
 1 \\
 0
 \end{array}$$
,) = $\begin{array}{c}
 0 \\
 1
 \end{array}$

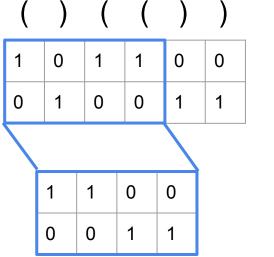




Convolutional filter

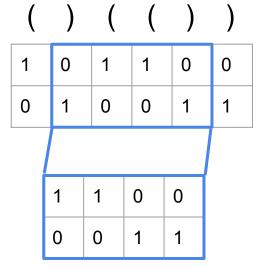
1-D convolutions to the rescue!

One-hot representation: $(= \begin{array}{c} 1 \\ 0 \end{array},) = \begin{array}{c} 0 \\ 1 \end{array}$



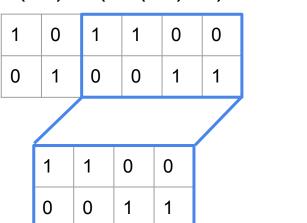
1-D convolutions to the rescue!

One-hot representation: $(= \begin{array}{c} 1 \\ 0 \end{array},) = \begin{array}{c} 0 \\ 1 \end{array}$



1-D convolutions to the rescue!

One-hot representation:
$$(= \begin{bmatrix} 1 \\ 0 \end{bmatrix},) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

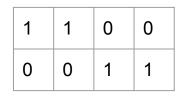


1	1	4
---	---	---

1-D convolutions to the rescue!

One-hot representation:
$$(= \begin{bmatrix} 1 \\ 0 \end{bmatrix},) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

1	0	1	1	0	0
0	1	0	0	1	1



Max-pooling over time

1-D convolutions to the rescue!

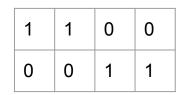
One-hot representation: $(= \begin{bmatrix} 1 \\ 0 \end{bmatrix},) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

•	,	•	•	,	,
1	0	1	1	0	0
0	1	0	0	1	1

1	1	4	
---	---	---	--

"1" if output after max pooling >= 4

(()	((()))	(
1	1	0	1	1	1	0	0	0	1
0	0	1	0	0	0	1	1	1	0



(()	((()))	(
									1
0	0	1	0	0	0	1	1	1	0

1	1	0	0
0	0	1	1

	3	1	1	3	4	3	1	
--	---	---	---	---	---	---	---	--

(()	((()))	(
								0	
0	0	1	0	0	0	1	1	1	0

1	1	0	0
0	0	1	1

4

Max-pooling over time

(()	((()))	(
1	1	0	1	1	1	0	0	0	1
0	0	1	0	0	0	1	1	1	0

1D convolutions are great for detecting **local** patterns that are **translation invariant**

4

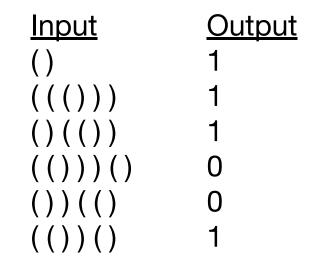
Max-pooling over time

Bounded Parenthese Problem:

- 1. Input: consists of "(" and ")"
- 2. Every string has to have an equal number of "(" and ")"
- Every string has to have a prefix where there are at least as many "(" as ")"

Bounded Parenthese Problem:

- 1. Input: consists of "(" and ")"
- 2. Every string has to have an equal number of "(" and ")"
- Every string has to have a prefix where there are at least as many "(" as ")"



Harder Sequence Classification

- We need to detect **global** vs **local** patterns

- Things are **not** translation invariant

()(()) (()) (

- Deeper convolution layers may work, but doesn't feel like the right architecture.

State Machines

 (S, X, Y, s_0, f, q)

- *S* is a finite or infinite set of possible states;
- X is a finite or infinite set of possible inputs;
- *Y* is a finite or infinite set of possible outputs;
- $s_0 \in S$ is the initial state of the machine;
- f : S × X → S is a *transition function*, which takes an input and a previous state and produces a next state;
- $g : S \to Y$ is an *output function*, which takes a state and produces an output.

State Machines

$$(S, X, Y, s_0, f, g)$$

Initial state S₀

$$s_t = f(s_{t-1}, x_t)$$
 Update state with current input
 $y_t = g(s_t)$ (Optional) Produce an output

$$s_t = f(s_{t-1}, x_t) = f(W^{sx}x_t + W^{ss}s_{t-1})$$

 S_t is a two dimensional vector

Count of "(" minus count of ")" Minimum of the above metric across time steps $s_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$s_t = f(s_{t-1}, x_t) = f(W^{sx}x_t + W^{ss}s_{t-1})$$

 S_t is a two dimensional vector

Count of "(" minus count of ")" Minimum of the above metric across time steps $s_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Claim: if S_t is the zero vector after processing all the inputs, then it is a bounded parenthese string

$$S_{t} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{array}{c} \text{Count of "(" minus count of ")"} \\ \text{Minimum of the above metric across time steps} \\ ((()))) () () \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0$$

$$S_{t} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \begin{array}{c} \text{Count of "(" minus count of ")"} \\ \text{Minimum of the above metric across time steps} \\ (((())))) (() () \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$W^{sx} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \qquad W^{ss} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$f_1\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a\\\min(a,b)\end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix}1 & -1\\0 & 0\end{bmatrix}x_{t} + \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a\\\min(a, b)\end{bmatrix}$$

((()))

 x_t

 s_t

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$
$$s_t = f_1\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_1\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

((()))

 x_t

$$s_t \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$
$$s_t = f_1\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_1\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

))

$$egin{array}{ccc} & (& (& (&) &) \ x_t & & egin{bmatrix} 1 \ 0 \end{bmatrix} & & \ s_t & egin{bmatrix} 0 \ 0 \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} & & \ s_t & egin{bmatrix} 0 \ 0 \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} & & \ s_t &$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$
$$s_t = f_1\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_1\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

)

$$egin{array}{cccc} & (& (& (&)) &) \ x_t & & \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \ s_t & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & \ \end{array}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$
$$s_t = f_1\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_1\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

))

$$egin{array}{cccc} & (& (& (&) &) \ x_t & & egin{bmatrix} 1 \ 0 \end{bmatrix} egin{bmatrix} 2 \ 0 \end{bmatrix} egin{bmatrix} 3 \ 0$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

$$egin{array}{cccc} & (& (& (&) &) \ x_t & & egin{bmatrix} 1 \ 0 \end{bmatrix} egin{bmatrix} 1 \ 0$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$= f_{1}\left(\begin{bmatrix} 1 & -1 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \end{bmatrix} x_{t}\right) = f_{1}\left(\begin{bmatrix} a \end{bmatrix} \right) = \begin{bmatrix} a \\ a \end{bmatrix}$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \right) \end{array}\right) \end{array}\right) \\ x_t \end{array}\right) \\ x_t \end{array} \\ \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] \\ s_t \end{array} \\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 2 \\ 0 \end{array}\right] \left[\begin{array}{c} 3 \\ 0 \end{array}\right] \left[\begin{array}{c} 2 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 1 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \\ \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \left[\begin{array}{c} 0 \\ 0 \end{array}\bigg] \left[\begin{array}{c} 0 \\\bigg] \left[\begin{array}{c} 0 \end{array}\bigg] \left[\begin{array}{c} 0 \end{array}\bigg]$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix}1 & -1\\0 & 0\end{bmatrix}x_{t} + \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a\\\min(a,b)\end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$
$$s_t = f_1\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_1\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$

$$s_t = f_1 \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1} \right) \qquad f_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

$$s_t = f(s_{t-1}, x_t) = f_1(W^{sx}x_t + W^{ss}s_{t-1})$$
$$s_t = f_1\left(\begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix} x_t + \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_1\left(\begin{bmatrix} a\\ b \end{bmatrix}\right) = \begin{bmatrix} a\\ \min(a, b) \end{bmatrix}$$

$$s_{t} = f(s_{t-1}, x_{t}) = f_{1}(W^{sx}x_{t} + W^{ss}s_{t-1})$$
$$s_{t} = f_{1}\left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} x_{t} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} s_{t-1}\right) \qquad f_{1}\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a \\ \min(a, b) \end{bmatrix}$$

- State machine with learnable parameters

$$s_{t} = f_{1} (W^{sx}x_{t} + W^{ss}s_{t-1} + W_{0}^{ss})$$
$$y_{t} = f_{2} (W^{o}s_{t} + W_{0}^{o})$$

0 1	$W^{sx}:\mathfrak{m} imes\ell$
$\mathbf{x}_{t}: \boldsymbol{\ell} \times 1$	$W^{ss}:\mathfrak{m} imes\mathfrak{m}$
$s_t: m \times 1$	$W_0^{ss}:\mathfrak{m} imes 1$
$y_t: v \times 1$	$W^{o}: \mathfrak{v} \times \mathfrak{m}$
	$W^{\mathbf{o}}_0: \mathbf{v} imes 1$

- State machine with learnable parameters

$$s_{t} = f_{1} (W^{sx} x_{t} + W^{ss} s_{t-1} + W_{0}^{ss})$$
$$y_{t} = f_{2} (W^{o} s_{t} + W_{0}^{o})$$



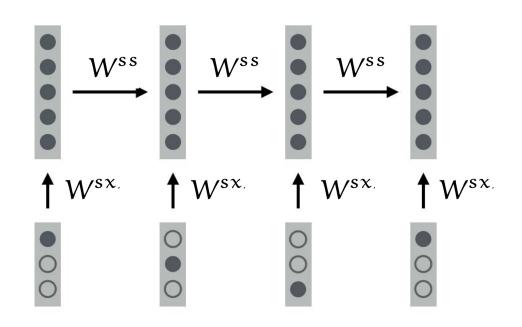
0 1	$W^{sx}:\mathfrak{m} imes\ell$
$\mathbf{x}_{t}: \boldsymbol{\ell} \times 1$	$W^{ss}:\mathfrak{m} imes\mathfrak{m}$
$s_t: m \times 1$	$W_0^{ss}:\mathfrak{m} imes 1$
$y_t: v \times 1$	$W^{o}: v imes m$
	$W^{\mathbf{o}}_0: \mathbf{v} imes 1$

f1: non-linear function (e.g., tanh)

f2: depends on output (e.g., softmax if predicting something at each time step)

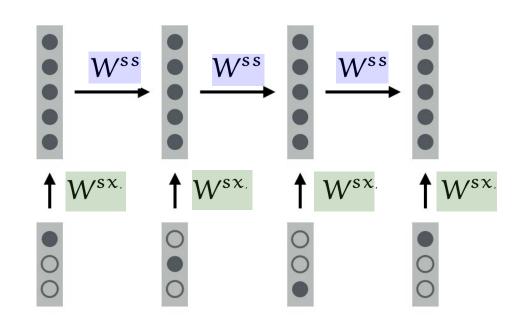
$$s_{t} = f_{1} (W^{sx} x_{t} + W^{ss} s_{t-1} + W_{0}^{ss})$$

 Hidden state is a function of previous hidden state and current input.

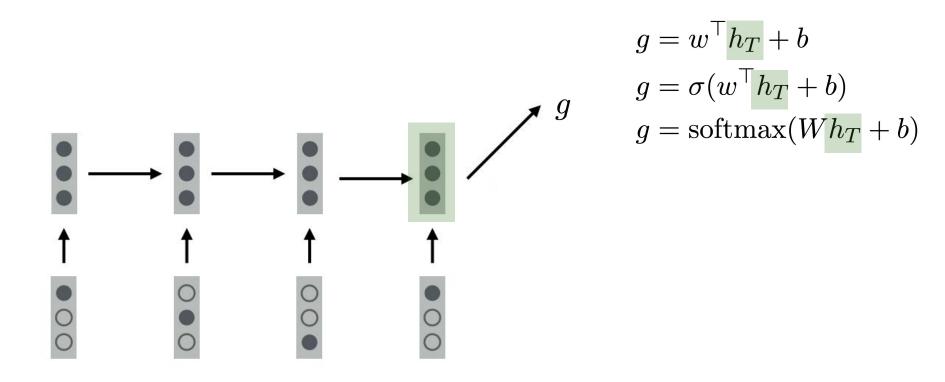


$$\mathbf{s}_{t} = \mathbf{f}_{1} \left(\mathbf{W}^{sx} \mathbf{x}_{t} + \mathbf{W}^{ss} \mathbf{s}_{t-1} + \mathbf{W}^{ss}_{0} \right)$$

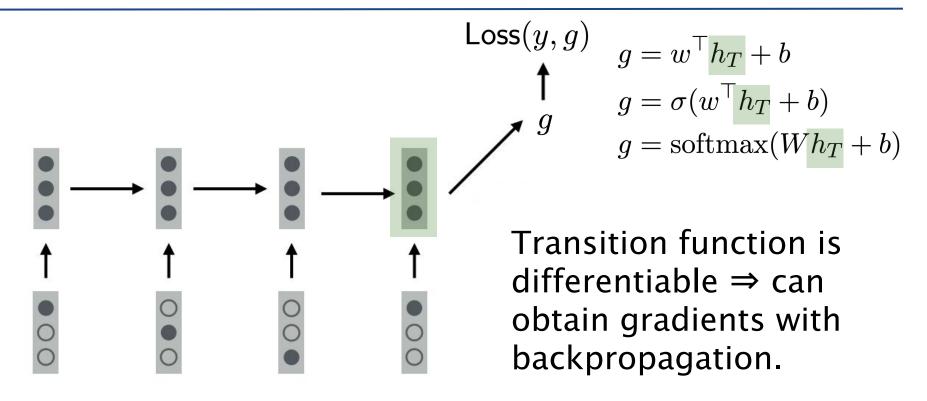
- Hidden state is a function of previous hidden state and current input.
- Same weights at each state ⇒ parameter sharing!



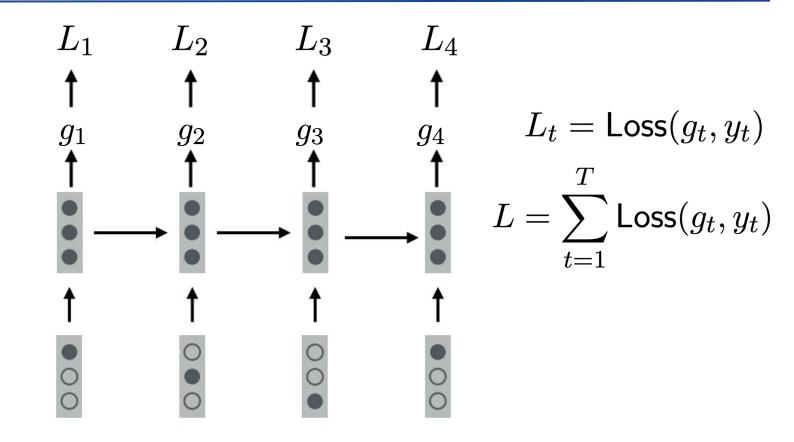
RNNs for Sequence Classification

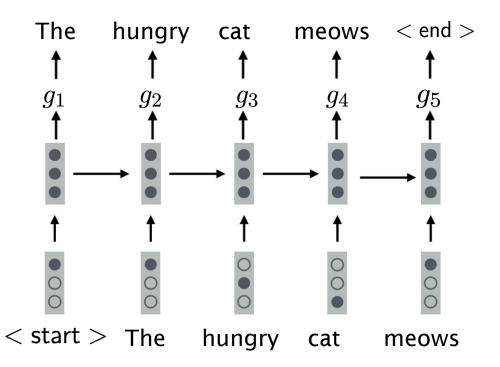


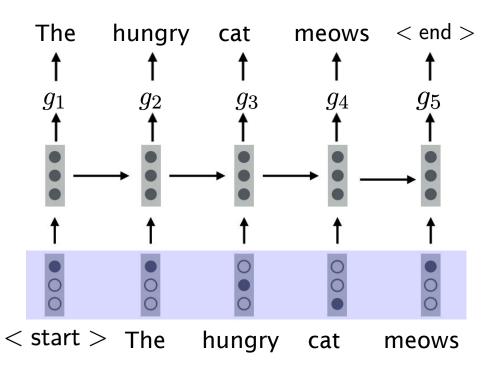
RNNs for Sequence Classification



RNNs for Sequence Tagging







$$s_t = \tanh(W^{sx}x_t + W^{ss}s_{t-1} + W^{ss}_0)$$

One-hot vector with dimension = Vocab size (10K-100K)

Distribution over

words in the vocab

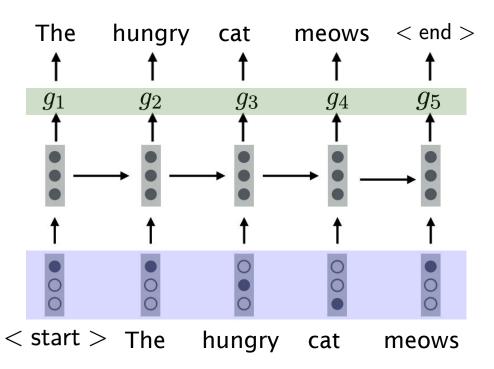
 $s_t = tanh(W^{sx}x_t + W^{ss}s_{t-1} + W^{ss}_0)$

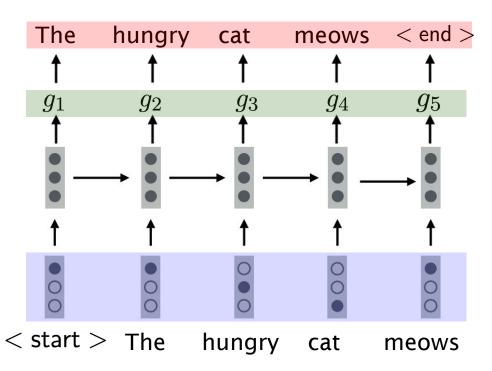
One-hot vector with dimension

 $g_t = \operatorname{softmax}(W^0 s_t + W_1^0)$

= Vocab size

(10K-100K)



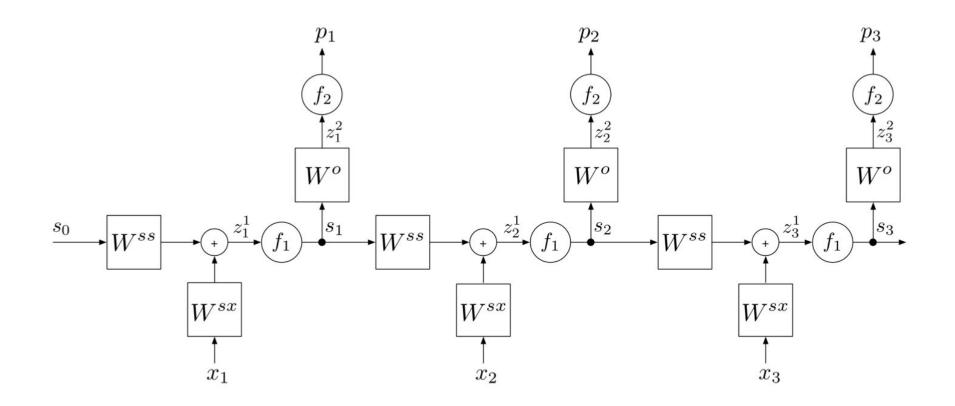


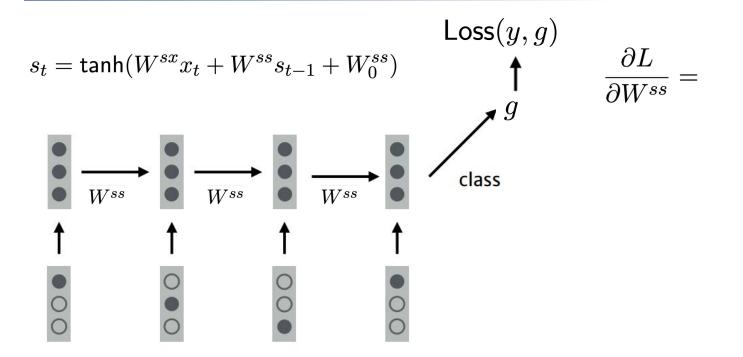
$$L = \sum_{t=1}^{T} \text{Loss}(g_t, x_{t+1})$$
 Total loss = sum over log likelihood

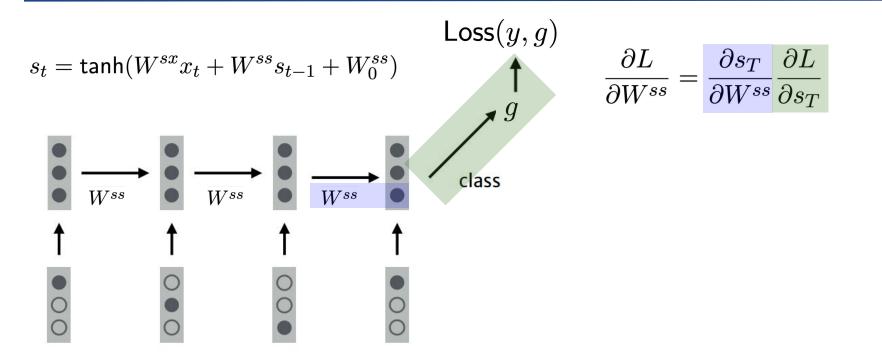
Distribution over

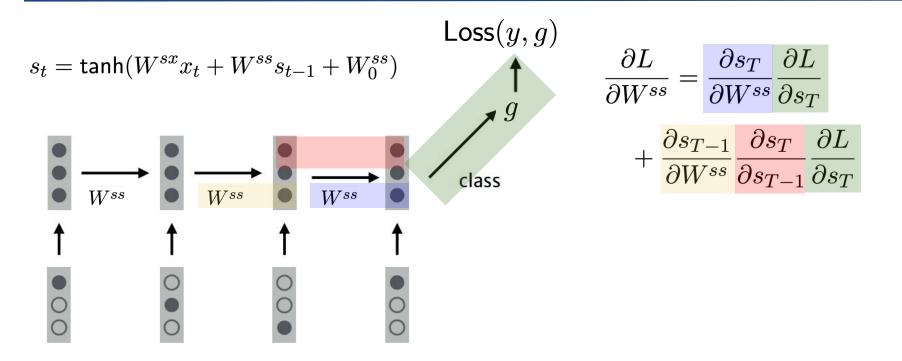
 $g_t = \operatorname{softmax}(W^0 s_t + W_1^0)$ $s_t = tanh(W^{sx}x_t + W^{ss}s_{t-1} + W^{ss}_0)$

One-hot vector with dimension = Vocab size (10K-100K)

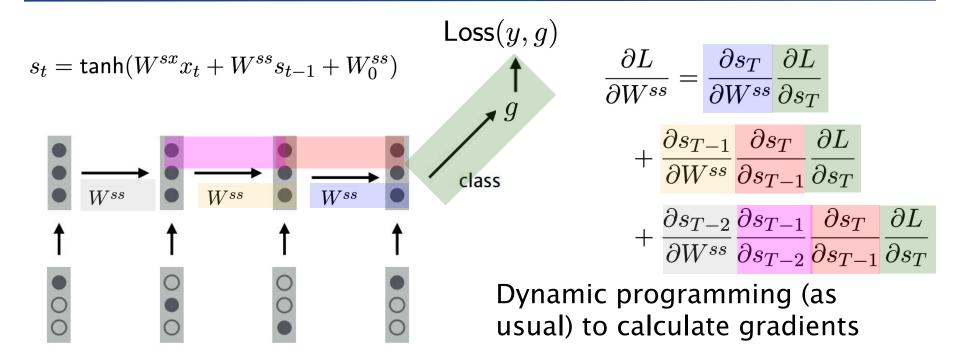




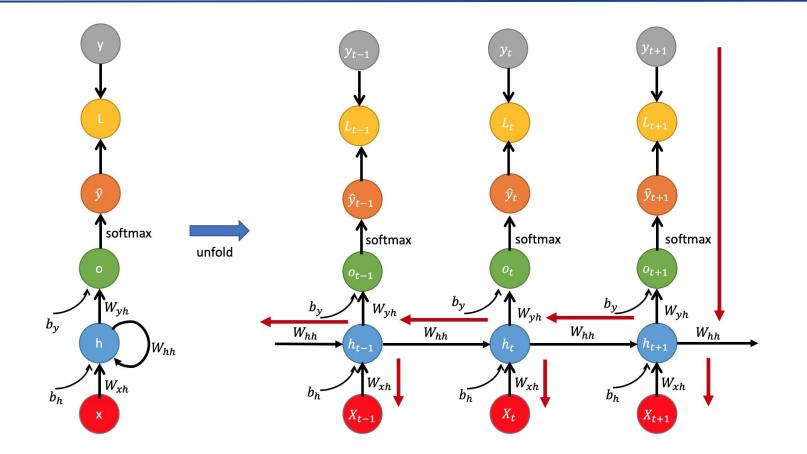




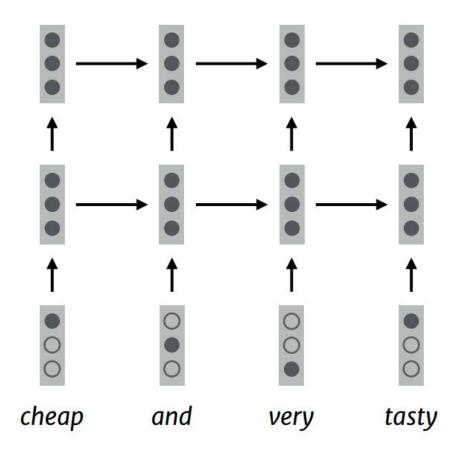




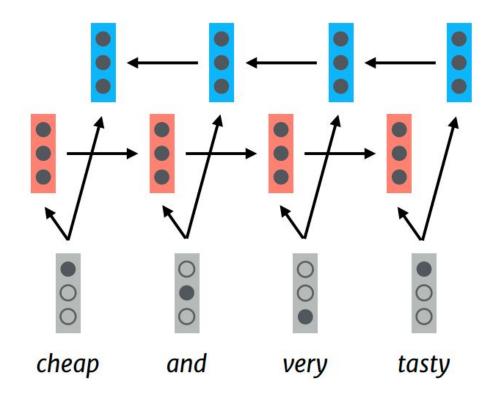
Intuition: like a regular neural network "unrolled" in time



Deeper RNNs

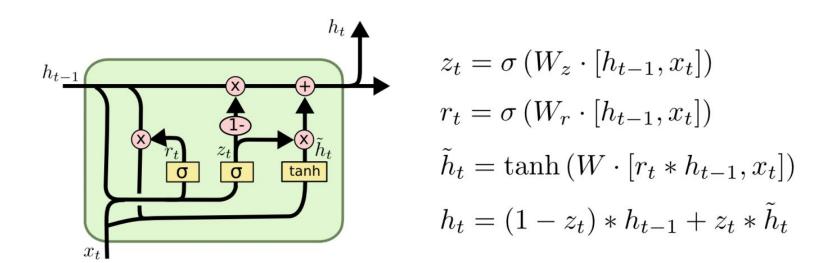


Bidirectional RNNs



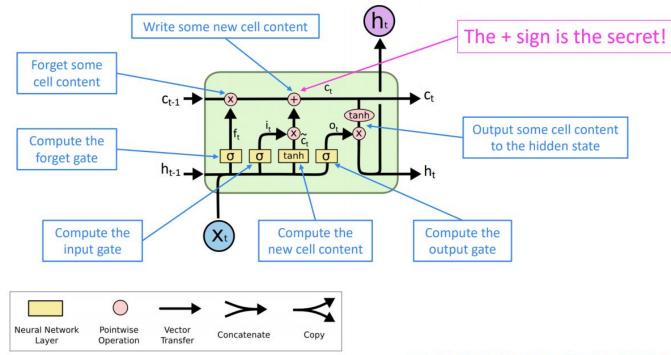
Gated RNNs

Gated Recurrent Unit (GRU) [Chung et al. 2014, Cho et al. 2014]



Gated RNNs

Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber 1997]



Summary

- Recurrent Neural Networks: tailored for processing sequential data
- RNN Applications:
 - Sequence Classification
 - Language Modeling (GPT3 is language model!)
- RNN Variants
 - Deeper / Bi-directional RNNs
 - Gated RNNs