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Transformers

® Three key ideas
e Tokens
¢ Attention
e Positional encoding

e Examples of architectures and applications



Deep nets are data transformers

Layer L
* Deep nets transform datapoints, layer by layer

 Each layer is a different representation of the data

* We call these representations embeddings

Input




ldea #1: tokens



A new data structure: Tokens

e A token is just transformer lingo for a vector of neurons

* But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

array of neurons array of tokens
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A new data structure: Tokens

e A token is just transformer lingo for a vector of neurons

* But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons
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Tokenizing the input data

tokens ‘ H H
b

H H e.g., linear projection

patches _

* When operating over neurons, we represent
the input as an array of scalar-valued
measurements (e.g., pixels)

* \When operating over tokens, we represent

input the input as an array of vector-valued

measurements




Tokenizing the input data

You can tokenize anything.
General strategy: chop the input up into chunks, project each chunk to a vector.
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Tokenizing the input data
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Linear combination of tokens

Linear combination of neurons Linear combination of tokens
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Token-wise nonlinearity

Xout = |relu(zy),...,relu(xy)]

tows = [Fy(t1.2), ..., Fo(tn.2)]

F is typically an Multilayer Perceptron
(MLP)
(aka. fully-connected neural network)

Equivalent to a CNN with 1x1 kernels
run over token sequence



Token-wise nonlinearity

Xout = |relu(zy),...,relu(xy)]

tows = [Fy(t1.2), ..., Fo(tn.2)]

F is typically an MLP

Equivalent to a CNN with 1x1
kernels run over token sequence
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Token nets

Neural net
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Neural net
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ldea #2: attention



A limitation of CNNs

How many birds are in this image?

s the top right bird the same species
as the bottom left bird?

CNNs are built around the idea of locality, and are not well-suited to
modeling long distance relationships



What is attention?

5
How many birds are in this image?
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What is attention?

5

s the top right bird the same species
as the bottom left bird?



What is attention?

What's the color of the sky?



Different ways of aggregating information over space




fc layer

conv pyramid

conv w overlap

conv w/o overlap




Attention layer
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fc layer attn layer

tout |:| |:| A= f( : ) < attention
Zout — AZin

W is free parameters.

is a function of some input data. The data tells us which tokens to
attend to (assign high weight in weighted sum)



tout

What
color is the
bird’s head?
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Notation reminder
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query-key-value

tout
attention
A = softmax(s)
Zout — AVin
af ki vi
Qin = : Ki, = Vin =
dy ki vy
tin
T T
S = [qquestionkh e qquestionkN] .................
tquestion

What color
is the
bird’s head

query key value

11

q = t.query() = W,z
k =t.key() = Wiz
v = t.value() = W,z

} value



Self-attention

attention



Attention maps in a trained transformer

[“DINO”, Caron et all. 2021]
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Self-attention
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Example of attention if
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identity function
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—> just a Gram matrix (similarity matrix) over tokens!
Essentially: clusters similar tokens
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self attn layer
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self attn layer (expanded)
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A = f(tin) = softmax( ) < attention matrix
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Transformer
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[“Attention is All You Need”, Vaswani et al. 2017]
[“Vision Transformer”, Dosovitskiy et al. 2020]




MLP Transformer (vanilla)
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Multihead self-attention (MSH)

Rather than having just one way of attending, why not have k?

Each gets its own parameterized query(), key(), value() functions.

Run them all in parallel, then (weighted) sum the output token code vectors

attng(tiy).z7
= :
attng (tin).z7

tour.z = WZ a4 W ¢ RMz2xkM



Permutation equivariance
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attn(permute(t;,)) = permute(attn(tiy,))

MLP
(token-wise)

attn

tokenMLP(permute(t;,)) = tokenMLP(attn(t;iy,))

|

transformer(permute(t;,)) = permute(transformer(tiy,))
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|dea #3: positional encoding



What if you don’t want to be shift invariant?

1. Use an architecture that is not shift invariant (e.g., MLP)

2. Add location information to the input to the convolutional filters — this is
called positional encoding
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What if you don’t want to be permutation invariant?

1. Use an architecture that is not permutation invariant (e.g., MLP)

2. Add location information to the token code vectors — this is called

positional encoding
tout |:| |:| |:|

Y




Neural Fields

Coordinates




Neural Fields — SIREN

Conv net applied per-pixel to map from a coordinate grid to a color

Coordinates Field

l=®(z,y)

Can take continuous coordinates as input!
Continuous version of a convnet! [“SIREN", Sitzmann, Martel et al. 2020]



Some tancy architectures and applications



Published as a conference paper at ICLR 2021

AN IMAGE 1S WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* T, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*:t
*equal technical contribution, fequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!

1 INTRODUCTION

Self-attention-based architectures, in particular Transformers (Vaswani et al., 2017), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al., 2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters (Brown et al., 2020; Lepikhin et al., 2020). With the
models and datasets growing, there is still no sign of saturating performance.

https://arxiv.org/abs/2010.11929
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lucidrains offer way for extractor to return latents without detaching them
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sponsor button

fix transforms for val an test process

add EsViT, by popular request, an alternative to Dino that is compati...

add some tests

offer way for extractor to return latents without detaching them
Initial commit

Initial commit

include tests in package for conda

make extractor flexible for layers that output multiple tensors, show...
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About

Implementation of Vision Transformer, a
simple way to achieve SOTA in vision
classification with only a single
transformer encoder, in Pytorch
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Attention Is All You Need

1lion@google.com

Niki Parmar™
Google Research

Noam Shazeer*
Google Brain

Ashish Vaswani*
Google Brain

Lukasz Kaiser*
Google Brain

Aidan N. Gomez* T
University of Toronto
aidan@cs.toronto.edu

Llion Jones*
Google Research

Illia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

Jakob Uszkoreit*
Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

lukaszkaiser@google.com
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Autoregressive models
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GPT (and many other related models)




GPT training (and many other related models)

Colorless green ideas sleep furiously
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¥ master ~ ¥ 3 branches © 0tags Go to file Add file ~

@ karpathy Merge pull request #84 from ericjang/master ... 7218bcf on Aug 4 & 93 commits
8 mingpt Use XOR operator ~ for checking assertion “type_given XOR param... 2 months ago
0 projects refactor sequence generation into the model and match the huggingf... 3 months ago
n tests add a refactored BPE encoder from openai. Basically | dont super tru... 3 months ago
[ .gitignore tiny tweaks to printing and some function apis 4 months ago
[ LICENSE mit license file 2 years ago
README.md Add setup.py to allow mingpt to be used as a third-party library 2 months ago
[ demo.ipynb refactor sequence generation into the model and match the huggingf... 3 months ago
[ generate.ipynb add a refactored BPE encoder from openai. Basically | dont super tru... 3 months ago
[ mingpt.jpg first commit, able to multigpu train fp32 GPTs on math and character... 2 years ago
[ setup.py Add setup.py to allow mingpt to be used as a third-party library 2 months ago
:= README.md
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