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1. Wobot is learning how to navigate a 1-D grid world with three locations, l1, l2, l3.
Location l1 is directly to the left of l2, which is directly to the left of l3. Wobot is in
state s1 when it is in location l1, s2 in l2, and s3 in l3.

At each time step, Wobot takes an action a ∈ {aleft, aright}: it will either attempt to
move left, aleft, or to move right, aright. At far left (from state s1) there is a wall with a
power outlet; when the Wobot takes action aleft from s1, it earns a reward r1 = 50 and
stays in state s1. Similarly, at far right is a wall with a stronger power output; when
Wobot takes action aright from s3, it earns r3 = 200, and stays in s3. Other state-action
pairs (s, a) in this world earn reward r0.

Note: Wobot does not earn a reward for transitioning or staying in a state. The reward
comes from taking an action while in a state; e.g., the reward r1 is a result of the
state-action pair (s1, aleft), not whether or not a specific transition actually occurs.
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(a) For this part, assume that the MDP is deterministic with a finite-horizon, and that
r0 = 0. There are non-zero immediate rewards associated with only two state-action
pairs: R(s1, aleft) = 50 and R(s3, aright) = 200 (denoted by r1 and r3 in the diagram,
respectively.)

i. A policy is a function π : S 7→ A that specifies what action to take in each
state. Describe (in words) what the optimal policy π∗ would be for the MDP
in the diagram above, for the case of initializing in each of the three possible
states. How does the horizon h affect the policy π?

ii. For each combination of initial state and horizon h, determine the horizon-h
value obtained by the optimal policy, V h

π∗(s).

h = 0 h = 1 h = 2 h = 3 h = 4
s1 0
s2 0
s3 0
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(b) For this part, assume that the MDP is deterministic with an infinite horizon, and
that r0 = 0.

i. Suppose that the discount factor γ = 0.8. Describe in words what actions the
optimal policy π∗ will take in each of the three states.

ii. For each state s ∈ {s1, s2, s3}, for the optimal policy π∗ discovered in part (b)
i. write the value for V ∞π∗ (s) with discount factor γ = 0.8. Recall the expanded
form of the geometric series:

∞∑
k=0

aρk =
a

1− ρ
, for |ρ| < 1.

V ∞π∗ (s3) =

V ∞π∗ (s2) =

V ∞π∗ (s1) =

iii. For each state-action pair, compute two iterations of infinite-horizon value it-
eration with γ = 0.8. Do not assume a particular policy. Assume that all value
estimates start at 0 and that on each value iteration, you only use values that
were computed on the previous iteration.

First iteration, Q1(s, a):

aleft aright
s1

s2

s3

Second iteration, Q2(s, a):

aleft aright
s1

s2

s3
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(c) For this part, assume that the MDP is deterministic with an infinite horizon, and
that actions which transition between states will accumulate a negative reward,
r0 = −25.

i. Suppose that the discount factor γ = 0.8. Imagine a policy, πleft, that has
Wobot take action aleft for all states. What is V ∞πleft(s) for starting in each state
s ∈ {s1, s2, s3}?

V ∞πleft(s
1) =

V ∞πleft(s
2) =

V ∞πleft(s
3) =

Now, imagine a policy, πright, that has Wobot take action aright for all states.
What is V ∞πright(s) for starting in each state s ∈ {s1, s2, s3}?

V ∞πright(s
3) =

V ∞πright(s
2) =

V ∞πright(s
1) =
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2. The season has changed in grid world, from summer to winter. Taking action aleft in
s1 will continue to yield reward r1 = 50 with probability 1. However, now slippery,
frictionless ice has formed around the stronger power supply and the third location l3.
These new weather conditions change one of the state transitions to be non-deterministic.
When Wobot is in s3, taking action aright will always allow Wobot to access the stronger
power supply and earn a reward r3 = R(s3, aright) = 200, but now Wobot will only stay
in s3 with probability 0.7. With probability 0.3, Wobot will slip back to location l2 and
transition into state s2.

The diagram below defines state transitions under action aleft :

s1 s2 s3

The diagram below defines state transitions under action aright :

s1 s2 s3

w.p. 0.3

w.p. 0.7

Unlabeled arcs correspond to probability 1 transitions. We will consider the infinite-
horizon value iteration algorithm for states s2, s3 with a discount factor of γ = 0.9. Do
not assume a particular policy. Assume that all value estimates start at 0 and that on
each value iteration, you only use values that were computed on the previous iteration.

(a) In the first value iteration, what are Q1(s3, aleft) and Q1(s3, aright)?

Q1(s3, aleft) =

Q1(s3, aright) =

(b) In the first value iteration, what are Q1(s2, aleft) and Q1(s2, aright)?

Q1(s3, aleft) =

Q1(s3, aright) =

(c) Now, at the second value iteration, what are Q2(s3, aleft) and Q2(s3, aright)?

Q2(s3, aleft) =

Q2(s3, aright) =
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