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Recall

* A general ML approach:
e Collect data P\
 Choose hypothesis class

by minimizing training loss 1Satellite re:aolingx1

 Choose “good” hypothesis
+ regularizer

 Example: ridge regression
1 | |
F(©) = Jriage(6,60) = = » (672 + 65 — y)> + A|6]]> (A > 0)

n -
1=1

* “All models are wrong, but some are useful” -George Box

ollution level

P

e Limitations of a closed-torm solution for objective minimizer
* Other hypotheses or l0ss or L(g,a) =
regularizer: maybe no closed- { (9—a)?ifg>a
form solution, or difficult 5(g —a)?if g <a

2+ Can be too slow to run, even in ridge regression
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 Gradient Vg f = %,...,ai)f v
+ withe ¢ R™ 71 ml A

Gradient-Descent (O, n, [, Vo, €)
Initialize @(O> — @init |
Initialize t = 0

repeat

t =t + 1

Ol =t~ _ pvg f(eE-)
until [f(OW) — F(OU] < ¢
Return O
* Other possible stopping criteria:
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 Gradient Vg f = %,...,ai)f
¢ with® e R™ L7+ m
Gradient-Descent (Oiit,n, f, Vo, €)
Initialize O = @, '
Initialize t = 0

repeat
t =t + 1
Ol =t~ _ pvg f(eE-)
until |f(OW) — F(OU=D)| < ¢
Return O
» Other possible stopping criteria:
 Max number of iterations T
. |01 —elY| < ¢
s ¢+ [[Vef(OW)] <e
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* Gradient Vo f = %,...,ai)f
¢ with® e R™ L7 m ]
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Gradient descent properties

* A function fon R™is convex if any line segment
connecting two points of the graph of 7 lies above or
on the graph
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 Theorem: Gradient descent performance
 Assumptions: (Choose any € > 0)
e fis sufficiently “smooth” and convex
e fhas at least one global optimum
e 7 IS sufficiently small

* Conclusion: If run long enough, gradient ' ¢ B
descent will return a value within € of a N
5  global optimum © [
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Optimizing ridge regression

* (Gradient descent vs. analytical/closed-form/direct solution

"6, S
* Accuracy doesnt mean anything without running time
* Running time doesn't mean anything without accuracy

 Need to measure accuracy for the running time we have

Recall: closed- = (X'X4+n\)" XY

form solution (if —

adxd

N0 offset) Matrix inversion running time: O(d3)



Gradient descent for ridge regression

* Gradient descent with = ridge regression objective
* For the moment, assume no offset (can extend)

Gradient-Descent ( Oy, 1, [, Vol )
Initialize O = O,
Initialize t = 0
repeat

t =t + 1
o) =t~ _ pvgf(Ol—1)

until stoppling criterion
Return O
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Gradient descent for ridge regression

* Gradient descent with = ridge regression objective
* For the moment, assume no offset (can extend)
RidgeRegression-Gradient-Descent (6,1 )
Initialize (9(0) = Oinit
Initialize t = 0
repeat
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Return O

 No more matrix inversion! (see lab)
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Gradient descent for ridge regression

* Gradient descent with = ridge regression objective
* For the moment, assume no offset (can extend)
RidgeRegression-Gradient-Descent (6,1 )
Initialize (9(0) = Oinit
Initialize t = 0
repeat
t =t + 1 ;o Ly .
o) — gt—1) _ 77{— Z Q[Q(t_l)_rx(’i) _ y(i)}x(i) 1+ o2\
n 1=1

/

until stoppling criterion
Return O

 No more matrix inversion! (see lab)

 But have to look at all n data points
every step

 How to better handle large n?
8
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* Gradient descent with = ridge regression objective
* For the moment, assume no offset (can extend)

RidgeRegression-Gradient-Descent (6,1 )
Tnitialize 60 = 0; it

Initialize t = 0 . v
repeat — e CNEVT A
; EXGYG\S, e
t =t + 1 1 n P N
ot) — gt—1) _ 77{ - Z 9 [Q(t—l)Tx(@) _ y(@)]x(Z) + 22001
1=1 J
until stoppling criterion F>Jy o oo
Return 0% O o %g00®
- ‘f‘ ®q
» No more matrix inversion! (see lab) S, 0.:.0‘ °o®
* But have to look at all n data points = e
every step Y
* How to better handle large n?

, , L
8 Satellite reading !
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* Gradient descent with = ridge regression objective
* For the moment, assume no offset (can extend)
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1 @- 7;
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* A Common machine Iearnmg objective:

Z f,(© o Stay tuned for more examples

 Compare to training error defn.

Stochastic- Gradlent Descent (Oinit, N, 1)
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for t = 1 to T

randomly select 1 from {1,..,n}

O =0!'=Y —n(t)Ve fi(0Y)

(with equal
probability)
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Stochastic gradient descent

* Linear regression objective (with A = 0):

1 @- 7;
Jlinreg(@) — Jlinreg(e 90) — E Zl((g—ra?( ) —+ 90 — y( >)2
* A Common machine Iearnmg objective:

Z f,(© o Stay tuned for more examples
 Compare to training error defn.
Stochastic- Gradlent Descent (Oinit, N, 1)
Initialize ©W =@,
for t = 1 to T
randomly select 1 from {1,..,n}
O =01 —y(t)Ve fi(0V)
Return OW

(with equal
probability)

, * Commonly used with “minibatches’



Stochastic gradient descent (SGD) properties
0 J(%’ _

’ "6, R
 Theorem: SGD performance
. Assumptlons (Choose any € > 0)

. f|s nice” & convex, has a unique global minimizer

Zn Z

. e.g. n(t) = a(TO +t)""(k € (0.5,1])
* Conclusion: If run long enough, stochastic gradient

10 descent will return a value within € of the global minimizer



