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State Machine

« S = set of possible
states

« X = set of possible
iINputs

e 55 € S:Initial state

c :SXX =S fallow
transition function

e )V :setof possible

plant

outputs
e g:S5 — ) :output
%nction " s1 = [(so, plant) = poor;
* © (S) =S 1= gls1) = poor
998 =s so = f(s1, fallow) = rich;
* e.g. g(s) = soil- Y2 = g(sz) = rich

Moisture-sensor(s)



0.99

S = set of possible
states

X = set of possible
iINputs

so € S initial state

r 0.1
transition model

R:SxX —R:

reward function

*c.g. R(rich, plant) = 100
oushelsi ?(poor, plant) = 10 01 09
pushels; R(rich, fallow) =

R(poor, fallow) = 0 bushels - 0.01 0.99

0OOr SOl

* [ransition matrix for “plant™ action:




0.99

S = set of possible
states

X = set of possible
iINputs

so € S initial state

r 0.1
transition model 0.05
R:Sx X —R: fallow:

reward function

*c.g. R(rich, plant) = 100
oushels; R(poor, plant) = 1C
pushels; R(rich, fallow) =
R(poor, fallow) = O bushels

0.98



Markov Decision Process (Pasically)

S = set of possible
states

A = set of possible
actions

e T:SxAXxS —R:
transition model

e R:SxA—R:
reward function
*c.g. R(rich, plant) = 100

bushels; R(poor, plant) = 1C

bushels; R(rich, fallow) =
R(poor, fallow) = 0 bushels

e A discount factor

0.1

fallow:

0.99

0.9

= P(St = poor | St.1 = rich, At1 = plant)
= T(rich, plant, poor)

0.05

0.98



Markov Decision Process

S = set of possible
states

A = set of possible
actions

T: SxAxS —R;
transition model

R:S§xA—R:
reward function
*c.g. R(rich, plant) = 100

bushels; R(poor, plant) = 1C

bushels; R(rich, fallow) =
R(poor, fallow) = 0 bushels

A discount factor

plant:

0.1

0.99

0.9

= P(St = poor | St.1 = rich, At1 = plant)
= T(rich, plant, poor)

0.05

fallow:

0.98



Markov Decision Process
plant:

0.99

0.9

= P(St = poor | St.1 = rich, At1 = plant)

e S = set of possible
states

A = set of possible
actions

e T:SxAxS —R:

transition model 0 - = T(rich, plant, poor)
* R: ng«“ — R: . Definition: A policy 7 : S — A 9
Eewalg | UﬂCl’[IO? o specifies which action to take
e.g. R(rich, plant) = in each state

bushels; R(poor, plant) = 1
bushels; R(rich, fallow) = \* Question 1: what'’s the “value”
R(poor, fallow) = 0 bushels of a policy?

* A discount factor « Question 2: what'’s the best
policy?




EXpectation

e Suppose a random variable R has m possible values:
™y.e-sTm

 Example: a lottery pays r1 = 40106 USD if you win
and ro = -2 USD if you lose.

e Question: if | could play this lottery a limitless number
of times, how much could | expect to make each time
| play, on average?

 Suppose R = r; with probability p;

» So we always have Y, pi =1

« Example continued: p1 =3.4"10-°
 Then the expectation of Ris E[R] = > ", p;r;
 Example: E|R| = 3.4*109x 40*106 + (1 - 3.4*109) x -2

=-1.86 USD




What's the value of a policy”?

rich soll pOOr SOl

0.9 0.1
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

0.9
R(rich,fallow)=0

fallow:
* h: horizon (e.g. how many growing seasons left) | R(poor,fallow)=0

| I'm renting a field for h |
I growing seasons. Then |
it will be destroyed to |
L make astripmall. |



What's the value of a policy”

0.9 0O 0.1
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

| . R(rich,fallow)=0
* h: horizon (e.g. how many growing seasons left) | R(poor,fallow)=0

» V.'(s): value (expected reward) with policy 7 starting at s

Dueling farmers! ma: always plant' TB: plant if rich, else tallow

VO(s) = 0; V(s (s, ) s') - Vh=L(s)
V! (rich) = 1R0; V1 pof '_ 10 V rlch - poor) = 0
value of the  value of the (expected) value of
policy with h policy on this the policy across
9 steps left time step all future time steps




What's the value of a policy”?

0.9 0O 0.1
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

| . R(rich,fallow)=0
* h: horizon (e.g. how many growing seasons left) | R(poor,fallow)=0

» V.'(s): value (expected reward) with policy 7 starting at s

Dueling farmers! ma : always plant; mg: plant it rich, else fallow
V2 (s) = 0; Vi (s) = R(s,m(s)) + 2o, T(s,m(s),8) - VE—H(s")
V7T1A (rich) = 100; leA (poor) = 10; VﬂlB (rich) = 100; VWlB (poor) = 0
V.2 (rich) = R(rich, 7 4(rich)) 4+ T'(rich, 74 (rich), rich)V,’, (rich)
+ T'(rich, 74 (rich), poor) V.’ (poor)
=100 + (0.1)(100) + (0.9)(10)
9 =119




What's the value of a policy”?

0.9 0O 0.1
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

| . R(rich,fallow)=0
* h: horizon (e.g. how many growing seasons left) | R(poor,fallow)=0

» V.'(s): value (expected reward) with policy 7 starting at s

Dueling farmers! ma : always plant; mg: plant it rich, else fallow
V2 (s) = 0; Vi (s) = R(s,m(s)) + 2o, T(s,m(s),8) - VE—H(s")

1 (0 100- 171 —10- VL (o) — 171 _
VWQA (I‘lC:fl) = 100; VZA (poor) = 10; VgB (rich) = 100; VgB (poor) =0
Ve, (rich) = 119; V7 (poor) = 29; V7 (rich) = 110; V7 (poor) = 90

V2 (rich) = 138; V.2 (poor) = 48; V> (rich) = 192; V.2 (poor) = 108

A
Who wins”
9 |.e.atleast as good at all states and strictly better for at least one state




What's the va\ue@gf a policy”?

0.1

* h: horizon (e.g. how many growing seasons left)

0.9
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
R(poor,tallow)=0

» V.'(s): value (expected reward) with policy 7 starting at s

Dueling farmers! ma : always plant; mg: plant it rich,

else fallow

Ve (s) = 0; Vi (s) = R(s, m(s)) + 22, T(s,m(s),s") - Ve~(s')

| . 100- /1 — 10- V1 (+3 __ .11 __
VWQA (I‘lC:fl) = 100; VZA (poor) = 10; VgB (rich) = 100; VgB (poor) = 0
V<, (rich) = 119; V7 (poor) = 29; V7 (rich) = 110; V

V.2 (rich) = 138;V,} (poor) = 48; V> (rich) = 192;V,}_

A

B

(poor) = 90
(poor) = 108

Who wins?| maA >n=1 m™B; Ta <p=3 TRB; Neither policy wins for h =2

9 |.e. atleast as good at all states and strictly better for at least one state



What'’s the va\ue@gf a policy? .

0.9

fallow:
rich soll pOOr SOl

R(rich,plant)=100

0. 9 ’ \\Q\N R(poor,plant)=10

oW\O 2" A\ R(rich,fallow)=0
e N hOI’IZOﬂ (e g. how many grag N \(0) oS 8?\0(\, R(poor,fallow)=0

« V"(s): value (expected rewar 90\\\0(\10“ ) (ng at s

Dueling farmers! 74 : always plar S\a“o rlch else fallow
Ve (s) = 0: Vi (s) = R(s,mn(s)) + 3y T(s,mn(s), ") - V2 = (s')

V. (rich) = 100; V,} (poor) = 10; V,}_(rich) = 100; V. (poor) = 0
V.2, (rich) = 119; V2 (poor) = 29; V2 (rich) = 110; V2 (poor) = 90
Ve (rlc n) = 138; V?’ (poor) = 48; V> (r1ch = 192; V3 A poor) —108

9 |.e. at Ieast as good at all states and strlctly better for at least one state




What if | don't stogp farming”?
2 0.0

0.1
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
R(poor,tallow)=0

* Problem: 1,000 bushels today > 1,000 bushels in ten years
e A solution: discount factor v: 0 < v <1
» Value of 1 bushel after ttime steps: 7" bushels

« Example: What's the value of 1 bushel Eer year forever?
V=14+y+7"+ - =1+71+7+7"+---)=1+7V

10



What if | don't stogp farming”?
2 0.0

0.1
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
R(poor,fallow)=0

* Problem: 1,000 bushels today > 1,000 bushels in ten years
e A solution: discount factor v: 0 < v <1
» Value of 1 bushel after ttime steps: 7" bushels

« Example: What's the value of 1 bushel Eer year forever?
V=14+y+y"+ - =1+71+7+7*+---)=14+7V
V=1/(1-v) E.g.vy=0.99=V =1/0.01 =100 bushels

» V:(s): expected reward with policy 7 starting at state s
Vi(s) = R(s,m(s)) +9 2o T(s,m(s),s")Va(s')

10



What if | don't stogp farming”?
2 0.0

0.1
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
R(poor,fallow)=0

* Problem: 1,000 bushels today > 1,000 bushels in ten years
A solution: discount factor +v: 0 < v < 1
» Value of 1 bushel after ttime steps: 7" bushels
« Example: What's the value of 1 bushel Eer year forever?
V=l4+7y+7" 4+ =1+71+7y+7*+-)=1+7V
V=1/(1-v) E.g.vy=0.99=V =1/0.01 =100 bushels
« Vi(s): expected reward with policy 7 starting at state s
Vi(s) = R(s,7(5)) + 730 T(s,7(s), 8 ) Vi (')
 |S|linear equations in |S| unknowns

10



0.1

What it | don't stoglo farmm

3ooorsoH

\ R(rich,plant)=100
* | R(poor,plant)=10
R(rich,fallow)=0
R(poor,tallow)=0

. Problem 1 000 bushels today> 1 000 bushels in ten years
e A solution: discount factor v: 0 < v <1
e Value of 1 bushel after ttime steps: 7" bushels

 Example: Whats the value of 1 bushel Eer year forever?
V_1+7+7 + =14+ vA+v+y"+--) =147V
V=1/(1-7) E.g.7:0.99:>V_1/O 01 = 100 bushels

« Vi(s): expected reward with policy 7 starting at state s

Vr(s) = R(s,m(s)) +v 2.y T(s,7(s),s)Vr(s)

 |S|linear equations in |S| unknowns

10



0.9 0.1

0.9
fallow:
rich soll poor soil
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
» Markov decision process: states S, actions A,  [H(poorfaliow)=0
transition model T: S x A xS — R,

reward function R : S x A — R, discount factor 7

e Policym:S — A: action to take in a state (nonstationary m)

. . . * horizon h(e.g. #
e Value of a policy 7 If we start in state s poar}wzt?nng S(e%ggns left)

* Finite horizon (often assume discount factor v equals 1)
V2(s) = 0; Vi (s) = R(s,m(s)) + v >, T(s,m(s),s" )Vt (s)

 Infinite horizon (typically need to assume 0 < v < 1)
Va(s) = R(s,m(s)) +v 2y T(s,m(s),8")Vr(s')




0.1

Exercise: what L4 Exercise: why |

| changes about | {don’t we consider §

 the finite-horizon {4 non-stationary |

value formula 3§} policies in the
when policy is infinite horizon ,

- non-stationary? - case? srionplany=1oy

e e e (poor,plant)=10

O ‘] ' e W N A T Siren falla=a
» Markov decision process: states S, actions 4, [F{Roonfaliow)=0
transition model T': S x A xS — R,

reward function R : S x A — R, discount factor 7y

» Policy m: § — A: action to take in a state (nonstationary 7s)

. . . ¢ h h #
e Value of a policy 7 If we start in state s p%}]z’[?nng S(e%gons left)

* Finite horizon (often assume discount factor v equals 1)
V2(s) = 0; Vi (s) = R(s,m(s)) + v 2y T(s,m(s), s )V~ (s)

 Infinite horizon (typically need to assume 0 < v < 1)
Vi(s) = R(s,m(s)) +v 2o T(s,m(s),s")Vr(s')

> » Next question: What's the best policy?

boor soil




What's the best gglicy? Finite hori%gn

0.9
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

| . R(rich,fallow)=0
* h: horizon (e.g. how many planting seasons) | R(poor,fallow)=0

« Q"(s,a): expected reward of starting at s, making action
a, and then making the “best” action for the h-1 steps left
« With @, can find an optimal policy: 7} (s) = arg max, Q" (s, a)
Q%(s,a) = 0;Q"(s,a) = R(s,a) + > .., T(s,a,s ) max, Q" (s, a’)
Q* (rich, plant) = 100; Q" (rich, fallow) = 0;
Q* (poor, plant) = 10; Q* (poor, fallow) = 0

What's best?|Any s, 77 (s) = plant




What's the best gollcy? Finite horlzon

0.9

fallow:|
poor Soil 1"« \rsoi
. ~ | ; )=1OO

{ (O ™ R(rich,fallow)=0
* h:horizon (e.g. how many plan**" Seasons) R(poorfallow)=0

« Q"(s,a): expected reward of g irting at s, making action
a, and then making the “best’ action for the h-1 steps left
« With @, can find an optimal | dlicy:7} (s) = arg max, Q" (s, a)
QO(S a) =0;Q"(s,a) = R(s,a) + >, T(s,a,s) max, Q" 1(s',a’)
Q" (rich, plant) = 100; Q' (rich, fallow) = 0;
Ql(poor plant) = 10; Ql(poor fallow) =0

What's best?|Any s, 77 (s) = plant




What's the best gglicy? Finite hori%gn

0.9
fallow:
rich soll LOOr SOl
0.9 0.1 R(poor,plant)=10

| . R(rich,fallow)=0
* h: horizon (e.g. how many planting seasons) | R(poor,fallow)=0

« Q"(s,a): expected reward of starting at s, making action
a, and then making the “best” action for the h-1 steps left
« With @, can find an optimal policy: 7} (s) = arg max, Q" (s, a)
Q"(s,a) = 0;Q"(s,a) = R(s,a) + >, T(s,a,s)max, Q" 1(s',a’)
Q* (rich, plant) = 100; Q" (rich, fallow) = 0;
Q* (poor, plant) = 10; Q* (poor, fallow) = 0
QQ*(rich, plant) = R(rich, plant) + T'(rich, plant, rich) max Q" (rich, a’)
+ T'(rich, plant, poor) ma/p?,Ql (poor, a’)

What's best?|Any s, 77 (s) = plant




What's the best gglicy? Finite hori%gn

0.9
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

| . R(rich,fallow)=0
* h: horizon (e.g. how many planting seasons) | R(poor,fallow)=0

» Q"(s,a): expected reward of starting at s, making action
a, and then making the “best” action for the h-1 steps left
e With Q, can find an optimal policy:7; (s) = arg max, Q" (s, a)
Q"(s,a) = 0;Q"(s,a) = R(s,a) + >, T(s,a,s)max, Q" 1(s',a’)
Q* (rich, plant) = 100; Q" (rich, fallow) = 0;
Q" (poor, plant) = 10; Q" (poor, fallow) = 0
@Q*(rich, plant) = 100 + (0.1)(100)
+(0.9)(10) = 119
What's best?|Any s, 77 (s) = plant




What's th hogi '
| Compare Q"(s,a) |
-low are i

| . The optl mal

e h: horizon (e.g. how many planting seasons)
a): expected reward of starting at s, making action

.« Q"(s,

. ,; L to V().

policy can be |}

| non-stationary. | I what special cases | pohcy Exercise: give |

===} Will they return the f

they different” In

same number?

/2 F|n|te homzon

There can be more 1/
than one optimal |

a Concrete example }
o ) STOOO! O [ant)=

R(rich, fallow

R(poor,fallow)

a, and then making the “best” action for the h-1 steps left
« With @, can find an optimal policy: 7} (s) = arg max, Q" (s, a)

QO(S a) =0;Q"(s,a) =

R(s,a)+ 2,

Q" (rich, plant) = 100; Q* (rich, fallow) = e
Ql(poor plant) = 10; Ql(poor fallow) — 0 | “fini ' |

(Q*(rich, plant) = 119; Q° (rlch, fallow) = 91;

T(s,a,s) max, Q" 1(s', a)

0;

QZ(pOOI, plant) = 29:; Q2 (p()()r7 faﬂow) — 9] e e

What's best?|Any s, 77 (s) = plant; 7, (rich) = plant, 7 (poor)

= fallow



What's the best %g\icy? INfinite hori%?n

0.9
fallow:
rich soll LOOr SOl
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
R(poor,fallow)=0

 What if | don't stop farming? |s there any optimal policy”?




R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

What's the best pohcy’P Infinite homzon
R(rich,fallow)=0

0.9
DOOr SOl
R(poor,tallow)=0

fallow:
rich soll pOOr SOl
 What if | don't stop farming? |s there any optimal policy”?
 Theorem. There exists a (stationary) optimal policy 7" |.e.,
for every pollcy T anad forevery sta e s € 8 Vies(s) > Vi(s)

. “Two (or more) policies |
ican have the same (best)]

value for all states and all]
be optimal |




R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

What's the best pohcy’P Infinite homzon
R(rich,fallow)=0

0.9
DOOr SOl
R(poor,fallow)=0

fallow:
rich soll pOOr SOl

 What if | don't stop farming? |s there any optimal policy”?
 Theorem. There exists a (stationary) optimal policy 7" |.e.,

for every policy m and for every state s € S, Vi« (s) > Vi (s)
* Q*(s,a): expected reward if we make best actions in future

o |f we knew Q*(s,a), then: 7*(s) = argmax, Q*(s, a)
* Note: Q*(s,a) = R(s,a)+v)>..,T(s,a,s")maxy Q*(s',a’)

* Not linear in Q*(s,a), so not as easy to solve as V5 (s)

i Ihere can be more than one optlmal pollcy
4 | Exercise: give an infinite-horizon example. |




INnfinite-Horizon Value lteration

* Recall the finite-horizon case:
QR%(s,a) =0
Ql(sv CL) — R(Sv a)
Q"(s,a) = R(s,a) +~ >, T(s,a,s") maxy Q" 1(s',a")

o A similar flavor for the infinite-horizon case:
Infinite-Horizon-Value-Iteration (S, AT, R, ~,c¢)
for each state s S and each action a€e A

for each state s€ S8 and each ac ae A

Qnew(s,a) = R(s,a) +v>_ .. T(s,a,s")maxy Qola(s’,a’)
if IHaXs q |Qold(87 CL) T Qnew(sa CL)‘ < €
return Qpew

Qold — Qnew



But what do we ggwovv at the start?m

0.9
fallow:
rich soll poor soil
R(rich,plant)=100
0.9 0.1 R(poor,plant)=10

R(rich,fallow)=0
R(poor,fallow)=0

* (General goal: Make actions to maximize expected reward.

* Up to this point: Assume we know full Markov decision
orocess (MDP).
* We figure out best policy and use it from the start.

 But we often don’t know the transition model T or reward
function R before we start.



But what do we k?now at the start”? i

?
fallow:
pOOr SOl rich soill LOOr SOl
R(rich,plant)="
2 ? R(poor,plant)="
' R(rich,fallow)="
R(poor,fallow)="

* (General goal: Make actions to maximize expected reward.
* Up to this point: Assume we know full Markov decision
orocess (MDP).
* We figure out best policy and use it from the start.
 But we often don’t know the transition model T or reward
function R before we start.
 Next: Assume we do know the states, actions, and discount.
BSut we don't know T or R.
* Find a sequence of actions to maximize expected reward.




