Markov Decision Process

Prof. Tamara Broderick

Decision-Analytic Assessment of the Economic Value of Weather Forecasts: The Fallowing/Planting Problem

RICHARD W. KATZ

National Center for Atmospheric Research, U.S.A.

and

BARBARA G. BROWN* and ALLAN H. MURPHY Oregon State University, U.S.A.

State Machine

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- $f: \mathcal{S} \times \mathcal{X} \to \mathcal{S}$: transition function
- \mathcal{Y} : set of possible outputs
- $g: \mathcal{S} o \mathcal{Y}: ext{output}$ function
 - e.g. g(s) = s
 - e.g. g(s) = soilmoisture-sensor(s)

Example

$$s_0 = \text{rich}$$

 $s_1 = f(s_0, \text{plant}) = \text{poor};$
 $y_1 = g(s_1) = \text{poor}$
 $s_2 = f(s_1, \text{fallow}) = \text{rich};$
 $y_2 = g(s_2) = \text{rich}$

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

• Transition matrix for "plant" action:

end state

start state rich poor
$$0.1$$
 0.9 0.01 0.99

- S = set of possible states
- \mathcal{X} = set of possible inputs
- $s_0 \in \mathcal{S}$: initial state
- \bullet T transition model
- $R: \mathcal{S} \times \mathcal{X} \to \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels

- S = set of possiblestates
- A = set of possibleactions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

• S = set of possiblestates

- A = set of possibleactions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - •e.g. R(rich, plant) = 100 bushels; R(poor, plant) = 10 bushels; R(rich, fallow) = R(poor, fallow) = 0 bushels
- A discount factor

Markov Decision Process

- S = set of possible states
- A = set of possible actions
- $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$: transition model
- $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$: reward function
 - e.g. R(rich, plant) = 100
 bushels; R(poor, plant) = 10
 bushels; R(rich, fallow) =
 R(poor, fallow) = 0 bushels
- A discount factor

- Definition: A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ specifies which action to take in each state
- Question 1: what's the "value" of a policy?
- Question 2: what's the best policy?

Expectation

- Suppose a random variable R has m possible values:
 - r_1,\ldots,r_m
 - Example: a lottery pays $r_1 = 40*10^6$ USD if you win and $r_2 = -2$ USD if you lose.
 - Question: if I could play this lottery a limitless number of times, how much could I expect to make each time I play, on average?
- Suppose $R = r_i$ with probability p_i
 - So we always have $\sum_{i=1}^{m} p_i = 1$
 - Example continued: $p_1 = 3.4*10^{-9}$
- Then the *expectation* of R is $\mathbb{E}[R] = \sum_{i=1}^{m} p_i r_i$
 - Example: $\mathbb{E}[R] = 3.4*10^{-9} \times 40*10^{6} + (1 3.4*10^{-9}) \times -2$ = -1.86 USD

What's the value of a policy?

O.1

O.9

O.9

Fallow:

poor soil

O.9

O.9

O.1

O.9

O.9

O.1

R(rich,plant)=100
R(rich,fallow)=0

R(poor,fallow)=0

I'm renting a field for h growing seasons. Then it will be destroyed to make a strip mall.

h: horizon (e.g. how many growing seasons left)

- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s
- Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

value of the policy with *h* steps left

value of the policy on this time step

(expected) value of the policy across all future time steps

• $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = R(\text{rich}, \pi_{A}(\text{rich})) + T(\text{rich}, \pi_{A}(\text{rich}), \text{rich})V_{\pi_{A}}^{1}(\text{rich}) + T(\text{rich}, \pi_{A}(\text{rich}), \text{poor})V_{\pi_{A}}^{1}(\text{poor})$$

$$= 100 + (0.1)(100) + (0.9)(10)$$

$$= 119$$

- h: horizon (e.g. how many growing seasons left)
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins?

I.e. at least as good at all states and strictly better for at least one state

- h: horizon (e.g. how many growing seasons left) R(poor,fallow)=0
- $V_{\pi}^{h}(s)$: value (expected reward) with policy π starting at s

Dueling farmers! π_A : always plant; π_B : plant if rich, else fallow

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi(s)) + \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$

Who wins? $\pi_A >_{h=1} \pi_B; \pi_A <_{h=3} \pi_B;$ Neither policy wins for h=2

9 I.e. at least as good at all states and strictly better for at least one state

$$V_{\pi}^{0}(s) = 0; V_{\pi}^{h}(s) = R(s, \pi_{h}(s)) + \sum_{s'} T(s, \pi_{h}(s), s') \cdot V_{\pi}^{h-1}(s')$$

$$V_{\pi_{A}}^{1}(\text{rich}) = 100; V_{\pi_{A}}^{1}(\text{poor}) = 10; V_{\pi_{B}}^{1}(\text{rich}) = 100; V_{\pi_{B}}^{1}(\text{poor}) = 0$$

$$V_{\pi_{A}}^{2}(\text{rich}) = 119; V_{\pi_{A}}^{2}(\text{poor}) = 29; V_{\pi_{B}}^{2}(\text{rich}) = 110; V_{\pi_{B}}^{2}(\text{poor}) = 90$$

$$V_{\pi_{A}}^{3}(\text{rich}) = 138; V_{\pi_{A}}^{3}(\text{poor}) = 48; V_{\pi_{B}}^{3}(\text{rich}) = 192; V_{\pi_{B}}^{3}(\text{poor}) = 108$$
Who wins? $\pi_{A} >_{h=1} \pi_{B}; \pi_{A} <_{h=3} \pi_{B}$ value of delayed gratification

9 I.e. at least as good at all states and strictly better for at least one state

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$

value for all future

value value on after first first time time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V = 1 + \gamma + \gamma^2 + \dots = 1 + \gamma(1 + \gamma + \gamma^2 + \dots) = 1 + \gamma V$ $V=1/(1-\gamma)$ E.g. $\gamma=0.99\Rightarrow V=1/0.01=100$ bushels
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$ policy value policy value on first time step (expected) policy value after first time step

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns

- Problem: 1,000 bushels today > 1,000 bushels in ten years
 - A solution: discount factor $\gamma:0<\gamma<1$
 - Value of 1 bushel after t time steps: γ^t bushels
 - Example: What's the value of 1 bushel per year forever? $V=1+\gamma+\gamma^2+\cdots=1+\gamma(1+\gamma+\gamma^2+\cdots)=1+\gamma V$ $V=1/(1-\gamma) \quad \text{E.g.} \ \gamma=0.99 \Rightarrow V=1/0.01=100 \text{ bushels}$
 - $V_{\pi}(s)$: expected reward with policy π starting at state s $V_{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V_{\pi}(s')$
 - |S| linear equations in |S| unknowns

- Markov decision process: states \mathcal{S} , actions \mathcal{A} , transition model $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$, reward function $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, discount factor γ
- Policy $\pi: \mathcal{S} \to \mathcal{A}$: action to take in a state (nonstationary π_h)
- Value of a policy π if we start in state s horizon h (e.g. # planting seasons left)
 - Finite horizon (often assume discount factor γ equals 1) $V_\pi^0(s)=0; V_\pi^h(s)=R(s,\pi(s))+\gamma\sum_{s'}T(s,\pi(s),s')V_\pi^{h-1}(s')$
 - Infinite horizon (typically *need* to assume $0 < \gamma < 1$) $V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$

Reca rich soi

Exercise: what changes about the finite-horizon value formula when policy is non-stationary?

Exercise: why don't we consider non-stationary policies in the infinite horizon case?

- Poor soil

 R(rich,plant)=100
 R(poor,plant)=10
 R(rich,fallow)=0
 R(poor,fallow)=0
- Markov decision process: states \mathcal{S} , actions \mathcal{A} , transition model $T: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$, reward function $R: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, discount factor γ
- Policy $\pi: \mathcal{S} \to \mathcal{A}$: action to take in a state (nonstationary π_h)
- Value of a policy π if we start in state s horizon h (e.g. # planting seasons left)
 - Finite horizon (often assume discount factor γ equals 1) $V_\pi^0(s)=0; V_\pi^h(s)=R(s,\pi(s))+\gamma\sum_{s'}T(s,\pi(s),s')V_\pi^{h-1}(s')$
 - Infinite horizon (typically *need* to assume $0<\gamma<1$) $V_\pi(s)=R(s,\pi(s))+\gamma\sum_{s'}T(s,\pi(s),s')V_\pi(s')$
- 2 Next question: What's the best policy?

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find **an optimal policy**: $\pi_h^*(s) = \arg\max_a Q^h(s, a)$ $Q^0(s, a) = 0$; $Q^h(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \frac{\max_{a'} Q^{h-1}(s', a')}{\max_{a'} Q^{h-1}(s', a')}$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

- $Q^h(s,a)$: expected reward of sarting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find **an optimal** S licy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$ $Q^0(s,a) = 0$; $Q^h(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$

$$Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$$

 $Q^{1}(\text{poor, plant}) = 10; Q^{1}(\text{poor, fallow}) = 0$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

$$Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$$

 $Q^1(\text{poor}, \text{plant}) = 10; Q^1(\text{poor}, \text{fallow}) = 0$

 $Q^{2}(\text{rich, plant}) = \frac{R(\text{rich, plant}) + T(\text{rich, plant, rich}) \max_{a} Q^{1}(\text{rich, }a')}{+ T(\text{rich, plant, poor}) \max_{a} Q^{1}(\text{poor}, a')}$

What's best? Any s, $\pi_1^*(s) = \text{plant}$

- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^{0}(s, a) = 0; Q^{h}(s, a) = R(s, a) + \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

 $Q^{1}(\text{rich, plant}) = 100; Q^{1}(\text{rich, fallow}) = 0;$

 $Q^{1}(\text{poor}, \text{plant}) = 10; Q^{1}(\text{poor}, \text{fallow}) = 0$

$$Q^2(\text{rich}, \text{plant}) = 100 + (0.1)(100)$$

$$+(0.9)(10) = 119$$

What's best? Any s, $\pi_1^*(s) = \text{plant}$

The optimal policy can be non-stationary.

0.9

Compare $Q^n(s,a)$ to $V_{\pi}^h(s)$. How are they different? In what special cases will they return the same number?

There can be more than one optimal policy. Exercise: give a concrete example.

R(poor,plant)=10 R(rich,fallow)=0 R(poor,fallow)=0

- h: horizon (e.g. how many planting seasons)
- $Q^h(s,a)$: expected reward of starting at s, making action a, and then making the "best" action for the h-1 steps left
- With Q, can find an optimal policy: $\pi_h^*(s) = \arg\max_a Q^h(s,a)$

$$Q^0(s,a) = 0; Q^h(s,a) = R(s,a) + \sum_{s'} T(s,a,s') \max_{a'} Q^{h-1}(s',a')$$

 $Q^{1}(\text{rich}, \text{plant}) = 100; Q^{1}(\text{rich}, \text{fallow}) = 0;$

 $Q^{1}(poor, plant) = 10; Q^{1}(poor, fallow) = 0$

 $Q^2(\text{rich}, \text{plant}) = 119; Q^2(\text{rich}, \text{fallow}) = 91;$

 $Q^2(\text{poor}, \text{plant}) = 29; Q^2(\text{poor}, \text{fallow}) = 91$

"finite-horizon value iteration"

What's best? Any s, $\pi_1^*(s) = \text{plant}$; $\pi_2^*(\text{rich}) = \text{plant}$, $\pi_2^*(\text{poor}) = \text{fallow}$

What if I don't stop farming? Is there any optimal policy?

Recall farmer A and farmer B from last time

- What if I don't stop farming? Is there any optimal policy?
- **Theorem**. There exists a (stationary) optimal policy π^* . I.e., for every policy π and for every state $s \in \mathcal{S}$, $V_{\pi^*}(s) \geq V_{\pi}(s)$

Two (or more) policies can have the same (best) value for all states and all be optimal

- What if I don't stop farming? Is there any optimal policy?
- **Theorem**. There exists a (stationary) optimal policy π^* . I.e., for every policy π and for every state $s \in \mathcal{S}$, $V_{\pi^*}(s) \geq V_{\pi}(s)$
- $Q^*(s,a)$: expected reward if we make best actions in future
 - If we knew $Q^*(s,a)$, then: $\pi^*(s) = \arg\max_a Q^*(s,a)$
- Note: $Q^*(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q^*(s',a')$
 - Not linear in $Q^*(s,a)$, so not as easy to solve as $V_\pi(s)$

There can be more than one optimal policy. Exercise: give an infinite-horizon example.

Infinite-Horizon Value Iteration

Recall the finite-horizon case:

$$Q^{0}(s, a) = 0$$

$$Q^{1}(s, a) = R(s, a)$$

$$Q^{h}(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q^{h-1}(s', a')$$

A similar flavor for the infinite-horizon case:

Infinite-Horizon-Value-Iteration $(\mathcal{S}, \mathcal{A}, T, R, \gamma, \epsilon)$ for each state $s \in \mathcal{S}$ and each action $a \in \mathcal{A}$ Initialize $Q_{\mathrm{old}}(s, a) = 0$

while True In real code, always cap the # of iterations for each state $s \in \mathcal{S}$ and each action $a \in \mathcal{A}$ $Q_{\text{new}}(s,a) = R(s,a) + \gamma \sum_{s'} T(s,a,s') \max_{a'} Q_{\text{old}}(s',a')$ if $\max_{s,a} |Q_{\text{old}}(s,a) - Q_{\text{new}}(s,a)| < \epsilon$ return Q_{new}

$$Q_{\text{old}} = Q_{\text{new}}$$

- General goal: Make actions to maximize expected reward.
- Up to this point: Assume we know full Markov decision process (MDP).
 - We figure out best policy and use it from the start.
- But we often don't know the transition model T or reward function R before we start.

- General goal: Make actions to maximize expected reward.
- Up to this point: Assume we know full Markov decision process (MDP).
 - We figure out best policy and use it from the start.
- But we often don't know the transition model T or reward function R before we start.
- Next: Assume we do know the states, actions, and discount.
 But we don't know T or R.
 - Find a sequence of actions to maximize expected reward.