Analytical Regression

Prof. Tamara Broderick

Edited From 6.036 Fall21 Offering

Getting started: regression

Example: predict pollution level

What do we have? (Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector $x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{\top} \in \mathbb{R}^d$
 - Label $y^{(i)} \in \mathbb{R}$

Satellite reading

• Training data
$$\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

What do we want? A good way to label new points

• How to label? Hypothesis $h: \mathbb{R}^d \to \mathbb{R}$

$$x \longrightarrow h \longrightarrow y$$

Is this a **good** hypothesis?

• Example h: For any x, h(x) = 1,000,000

Linear regressors

- Hypothesis class \mathcal{H} : set of h
 - Example: all constant functions
- A linear regression hypothesis parameters when d=1

$$h(x; \theta, \overline{\theta_0}) = \theta x + \theta_0$$

• A linear reg. hypothesis when $d \ge 1$:

 $h(x; \theta, \theta_0) = \theta_1 x_1 + \dots + \theta_d x_d + \theta_0$ $= \theta^{\top} x + \theta_0$

$$h(x;\theta) = \theta_1 x_1 + \dots + \theta_d x_d + (\theta_0)(1)$$

$$= \theta^\top x$$
1x3,3x1
Notational

Our hypothesis class in linear regression will be

the set of all such h

Notational trick: not the same 0 & x!

Hypothesis is a "hyperplane"

 x_1

How good is a regression hypothesis?

- Should predict well on future data
- How good is a regressor at one point? Loss L(g,a) g: guess,
 - Ex: squared loss a: actual

$$L(g,a) = (g-a)^2$$

• Example: asymmetric loss

$$L(g, a) = \begin{cases} (g - a)^2 & \text{if } g > a \\ 2(g - a)^2 & \text{if } g \le a \end{cases}$$

Satellite reading

• Test error (
$$n$$
' new points): $\mathcal{E}(h) = \frac{1}{n'} \sum_{i=n+1}^{n+n'} L(h(x^{(i)}), y^{(i)})$

- Training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- One idea: prefer h to \tilde{h} if $\mathcal{E}_n(h) < \mathcal{E}_n(\tilde{h})$

Learning a regressor

- Have data; have hypothesis class
- Want to choose a good regressor
 - Recall: $x \longrightarrow h \longrightarrow y$
 - New: $\mathcal{D}_n \longrightarrow \text{learning algorithm} \longrightarrow h$

- Example:
 - Suppose someone already generated 1 trillion hypotheses, e.g. at random, indexed by j:

$$h^{(j)}(x) = h(x; \theta^{(j)}, \theta_0^{(j)})$$

Ex_learning_alg(\mathcal{D}_n ; k

Set $j^* =$ the $j \in \{1, \dots, k\}$ with lowest $\mathcal{E}_n(h^{(j)})$ Return $h^{(j^*)}$

• How does training error of Ex_learning_alg(\mathcal{D}_n ;1), compare to the training error of Ex_learning_alg(\mathcal{D}_n ;2)?

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!
- Recall: training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^{2}$$

Define
$$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!
- Recall: training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^{2}$$

Define
$$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!
- Recall: training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^{2}$$

Define
$$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

$$\tilde{Y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

$$ilde{Y} = egin{bmatrix} y^{(1)} \ dots \ y^{(n)} \end{bmatrix}$$

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!
- Recall: training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^2 = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$$

Define
$$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

$$\tilde{Y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
 - We'll see: not typically straightforward
 - But for linear regression with square loss: can do it!
- Recall: training error: $\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$
- Training error: square loss, linear regr., extra "1" feature

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} - y^{(i)})^2 = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$$

Define
$$\tilde{X} = \begin{bmatrix} x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix}$$

$$\tilde{Y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

• Goal: minimize $J(\theta) = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y})$

- Goal: minimize $J(\theta) = \frac{1}{n} (\tilde{X}\theta \tilde{Y})^{\top} (\tilde{X}\theta \tilde{Y})$
- Uniquely minimized at a point if gradient at that point is zero and function "curves up" [see linear algebra]

- Goal: minimize $J(\theta) = \frac{1}{n} (\tilde{X}\theta \tilde{Y})^{\top} (\tilde{X}\theta \tilde{Y})$
- Uniquely minimized at a point if gradient at that point is zero and function "curves up" [see linear algebra]
- Gradient $\nabla_{\theta}^{\text{dx1}}(\theta) \stackrel{\text{set}}{=} \mathbf{0}$

- Goal: minimize $J(\theta) = \frac{1}{n} (\tilde{X}\theta \tilde{Y})^{\top} (\tilde{X}\theta \tilde{Y})$
- Uniquely minimized at a point if gradient at that point is zero and function "curves up" [see linear algebra].

• Gradient $\nabla_{\theta}^{\text{CIX1}}(\theta) \stackrel{\text{Set}}{=} 0 \Rightarrow \theta = (\tilde{X}^{\top} \tilde{X})^{-1} \tilde{X}^{\top} \tilde{Y}$

- Goal: minimize $J(\theta) = \frac{1}{n} (\tilde{X}\theta \tilde{Y})^{\top} (\tilde{X}\theta \tilde{Y})$
- Uniquely minimized at a point if gradient at that point is zero and function "curves up" [see linear algebra].

• Gradient $\nabla_{\theta}^{\text{dx1}}(\theta) \stackrel{\text{set}}{=} 0 \Rightarrow \theta = (\tilde{X}^{\top} \tilde{X})^{-1} \tilde{X}^{\top} \tilde{Y}$ Exercise.

- Goal: minimize $J(\theta) = \frac{1}{2} (\tilde{X}\theta \tilde{Y})^{\top} (\tilde{X}\theta \tilde{Y})$
- Uniquely minimized at a point if gradient at that point is zero and function "curves up" [see linear algebra]

• Gradient $\nabla_{\theta}^{\text{dx1}}(\theta) \stackrel{\text{set}}{=} 0 \Rightarrow \theta = (\tilde{X}^{\top} \tilde{X})^{-1} \tilde{X}^{\top} \tilde{Y}$

What can go wrong in practice?

- Does the linear regr. objective always "curve up"? No!
- Sometimes there isn't a unique best hyperplane
 - Then $X^{\top}X$ not invertible

- Sometimes there's technically a unique best hyperplane, but just because of noise
- Practical: real-life features often have this issue
- How to choose among hyperplanes? Preference for θ components being near zero

Linear regression with square penalty: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2$$

Linear regression with square penalty: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2$$

Linear regression with square penalty: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$$

Linear regression with square penalty: ridge regression

$$J_{\text{ridge}}(\theta, \theta_0) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\top} x^{(i)} + \theta_0 - y^{(i)})^2 + \lambda \|\theta\|^2 \quad (\lambda > 0)$$

Special case: ridge regression with no offset

$$J_{\mathrm{ridge}}(\theta) = \frac{1}{n} (\tilde{X}\theta - \tilde{Y})^{\top} (\tilde{X}\theta - \tilde{Y}) + \lambda \|\theta\|^2 \qquad \text{happens if } \lambda < 0 ?$$

What

• Min at: $\nabla_{\theta} J_{\mathrm{ridge}}(\theta) = 0$

$$\Rightarrow \theta = (\tilde{X}^{\top} \tilde{X} + n \lambda I)^{-1} \tilde{X}^{\top} \tilde{Y}$$

$$\operatorname{dxn,nxd} + n \lambda I)^{-1} \tilde{X}^{\top} \tilde{Y}$$

- When $\lambda > 0$, always "curves up" & can invert
- Can also solve with an offset
- ullet Can think of λ as hyperparameter of a learning algorithm
- How to choose λ ? One option: cross validation (see HW!)

Exercise: write out the learning algorithm