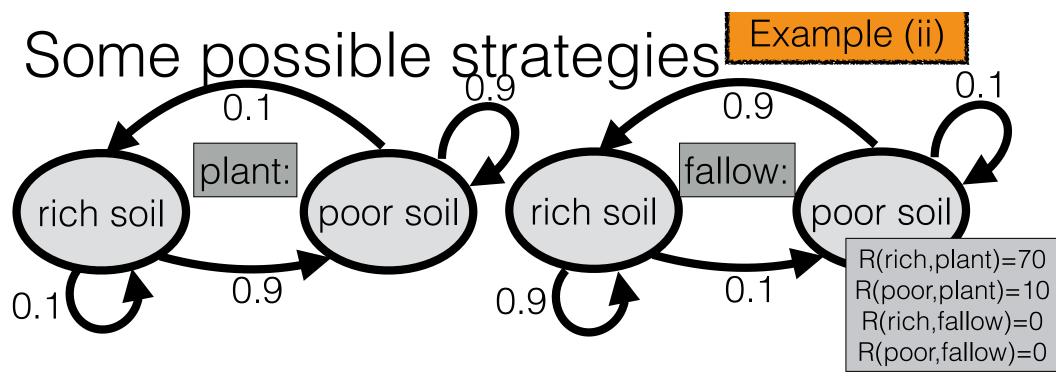
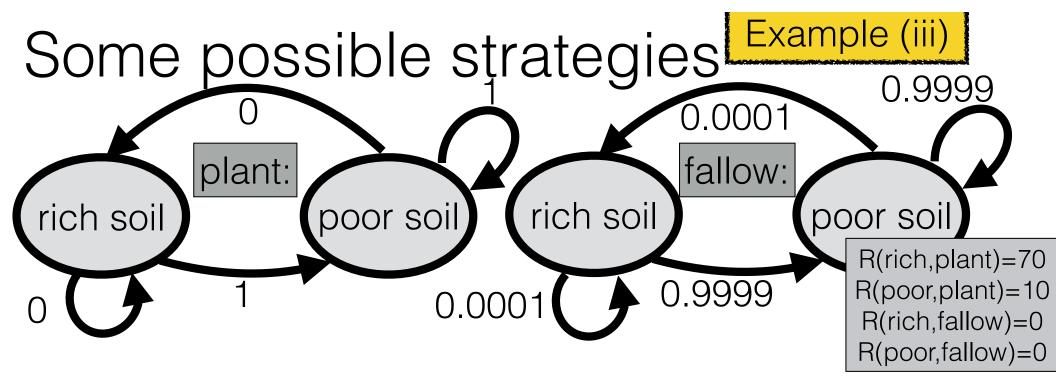
Reinforcement Learning

Prof. Tamara Broderick

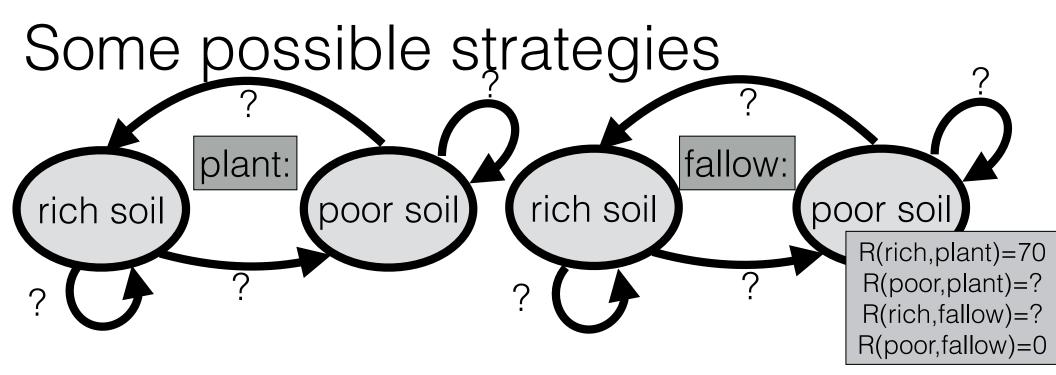
Edited From 6.036 Fall21 Offering



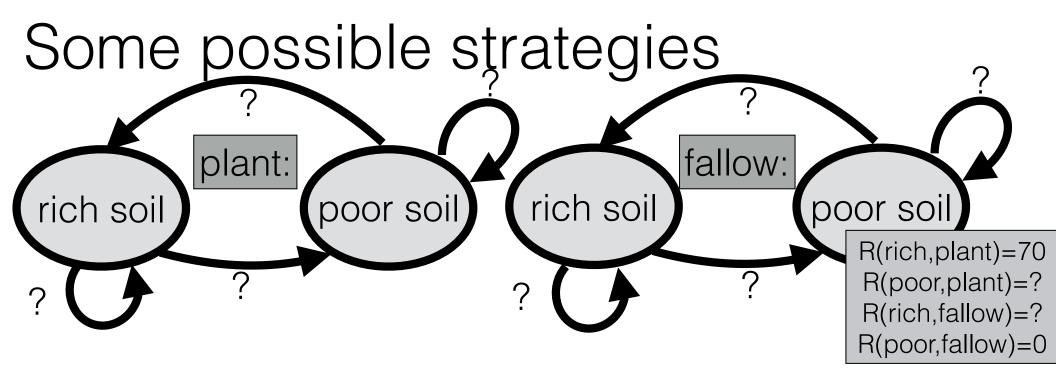
- Strategy A: always try actions uniformly at random
 - E.g. s = poor a = fallow, s = rich, r = 0a = plant, s = poor, r = 70
- Strategy B: after a few moves, choose a policy (e.g. whatever seems best so far) and commit to it
 - E.g. from here: if rich, plant & if poor, fallow
- What could go wrong with each strategy?



- Strategy A: always try actions uniformly at random
 - E.g. s = poor a = fallow, s = rich, r = 0a = plant, s = poor, r = 70
- Strategy B: after a few moves, choose a policy (e.g. whatever seems best so far) and commit to it
 - E.g. from here: if rich, plant & if poor, fallow
- What could go wrong with each strategy?



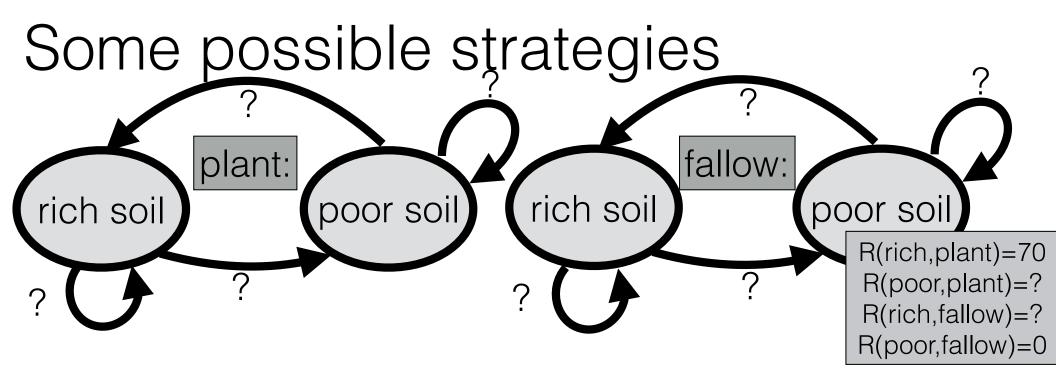
- Strategy A: always try actions uniformly at random
 - E.g. s = poor a = fallow, s = rich, r = 0 a = plant, s = poor, r = 70
- Strategy B: after a few moves, choose a policy (e.g. whatever seems best so far) and commit to it
 - E.g. from here: if rich, plant & if poor, fallow
- What could go wrong with each strategy?
- What are the benefits of each strategy?



- Strategy A: always try actions uniformly at random
 - E.g. s = poor a = fallow, s = rich, r = 0 a = plant, s = poor, r = 70

Focused on exploring

- Strategy B: after a few moves, choose a policy (e.g. whatever seems best so far) and commit to it
 - E.g. from here: if rich, plant & if poor, fallow
- What could go wrong with each strategy?
- What are the benefits of each strategy?

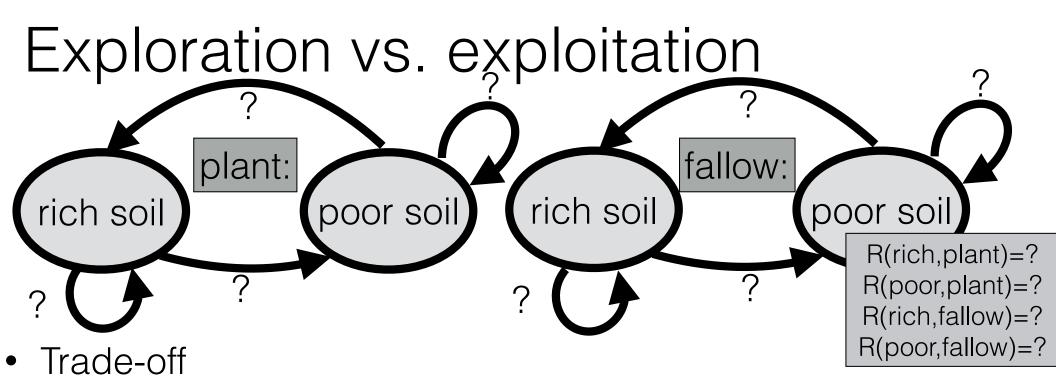


- Strategy A: always try actions uniformly at random
 - E.g. s = poor a = fallow, s = rich, r = 0 a = plant, s = poor, r = 70

Focused on exploring

- Strategy B: after a few moves, choose a policy (e.g. whatever seems best so far) and commit to it focus
 - E.g. from here: if rich, plant & if poor, fallow
- What could go wrong with each strategy?
- What are the benefits of each strategy?

Focused on exploiting



- **Exploration**: the more we explore, the better we understand the world (e.g. *T* and *R*)
- **Exploitation**: based on what we know about the world, we can take actions with the aim to get highest reward
- One option (not the only one!): ϵ -greedy strategy
 - With probability $1-\epsilon$, exploit
 - With probability ϵ , choose an action uniformly at random

Exploration vs. exploitation
?
plant:
poor soil
rich soil
?
R(rich,plant)=?
R(poor,plant)=?
R(rich,fallow)=?
R(poor,fallow)=?

- **Exploration**: the more we explore, the better we understand the world (e.g. *T* and *R*)
- **Exploitation**: based on what we know about the world, we can take actions with the aim to get highest reward
- One option (not the only one!): ε-greedy strategy
 - With probability 1- ϵ , exploit Need to specify how!
 - With probability ϵ , choose an action uniformly at random
- Consider infinite horizon. If we had Q*, we could exploit.
 - Idea: estimate Q* from the observations ("data") so far.

Can we approximate Q*? fallow: plant: rich soil poor soil poor soil rich soil R(rich,plant)=? R(poor,plant)=? R(rich,fallow)=? R(poor,fallow)=? Option 1: Estimate transition model T and

reward function R

Initialize $s^{(1)} = s_0$

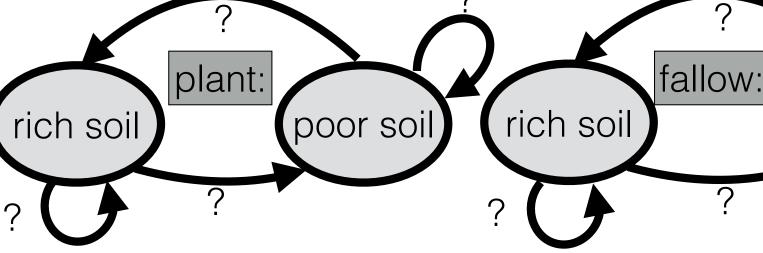
Initialize: any s,a,s': $\hat{T}(s,a,s')=\frac{1}{|\mathcal{S}|};\hat{R}(s,a)=0;Q$

for t = 1, 2, 3, ...

 $a^{(t)} = \text{select_action}(s^{(t)}, Q)$ | E.g. ϵ -greedy

Data at step t: $s^{(t)}, a^{(t)}, r^{(t)}, s^{(t+1)}$

Can we approximate Q*?



poor soil

R(rich,plant)=? R(poor,plant)=? R(rich,fallow)=?

R(poor,fallow)=?

Option 1: Estimate transition model T and

reward function R

Initialize $s^{(1)} = s_0$

Data at step $t: s^{(t)}, a^{(t)}, r^{(t)}, s^{(t+1)}$

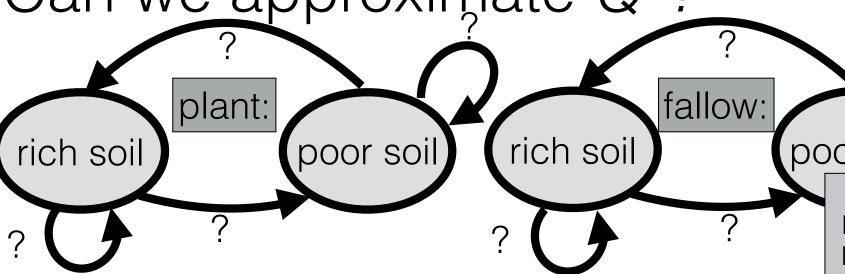
Initialize: any s,a,s': $\hat{T}(s,a,s')=\frac{1}{|\mathcal{S}|};\hat{R}(s,a)=0;Q$

$$for t = 1, 2, 3, ...$$

$$a^{(t)} = \text{select_action}(s^{(t)}, Q)$$
 E.g. ϵ -greedy $r^{(t)}, s^{(t+1)} = \text{execute}(a^{(t)})$

$$\hat{R}(s^{(t)}, a^{(t)}) = r^{(t)}$$
 Each s,a,s' : $\hat{T}(s, a, s') = \frac{1 + \sum_{i=1}^{t} \mathbf{1}\{s^{(i)} = s, a^{(i)} = a, s^{(i+1)} = s'\}}{|\mathcal{S}| + \sum_{i=1}^{t} \mathbf{1}\{s^{(i)} = s, a^{(i)} = a, s^{(i)} = a\}}$

Can we approximate Q*?



poor soil R(rich,plant)=? R(poor,plant)=?

R(rich,fallow)=?

R(poor,fallow)=?

Option 1: Estimate transition model T and

reward function R

Initialize $s^{(1)} = s_0$

Initialize: any s,a,s': $\hat{T}(s,a,s')=\frac{1}{|\mathcal{S}|};\hat{R}(s,a)=0;Q$

for t = 1, 2, 3, ...

 $a^{(t)} = \text{select_action}(s^{(t)}, Q)$ E.g. ϵ -greedy $r^{(t)}, s^{(t+1)} = \bar{\text{execute}}(a^{(t)})$

 $\hat{R}(s^{(t)}, a^{(t)}) = r^{(t)}$

Data at step $t: s^{(t)}, a^{(t)}, r^{(t)}, s^{(t+1)}$

$$R(s^{(t)}, a^{(t)}) = r^{(t)}$$
 Each s, a, s' :
$$\hat{T}(s, a, s') = \frac{1 + \sum_{i=1}^{t} \mathbf{1}\{s^{(i)} = s, a^{(i)} = a, s^{(i+1)} = s'\}}{|\mathcal{S}| + \sum_{i=1}^{t} \mathbf{1}\{s^{(i)} = s, a^{(i)} = a, s^{(i+1)} = s'\}}$$

Can we approximate Q*? plant: rich soil poor soil rich soil poor soil R(rich,plant)=? R(poor,plant)=?

Option 1: Estimate transition model T and

reward function R

Initialize $s^{(1)} = s_0$

Initialize: any s,a,s': $\hat{T}(s,a,s')=\frac{1}{|\mathcal{S}|};\hat{R}(s,a)=0;Q$

for t = 1, 2, 3, ...

$$a^{(t)} = \text{select_action}(s^{(t)}, Q)$$
 E.g. ϵ -greedy $r^{(t)}, s^{(t+1)} = \text{execute}(a^{(t)})$

 $\hat{R}(s^{(t)}, a^{(t)}) = r^{(t)}$

$$R(s^{(t)}, a^{(t)}) = r^{(t)}$$
 Each s,a,s' : $\hat{T}(s, a, s') = \frac{1 + \sum_{i=1}^{t} \mathbf{1}\{s^{(i)} = s, a^{(i)} = a, s^{(i+1)} = s'\}}{|\mathcal{S}| + \sum_{i=1}^{t} \mathbf{1}\{s^{(i)} = s, a^{(i)} = a, s^{(i+1)} = s'\}}$

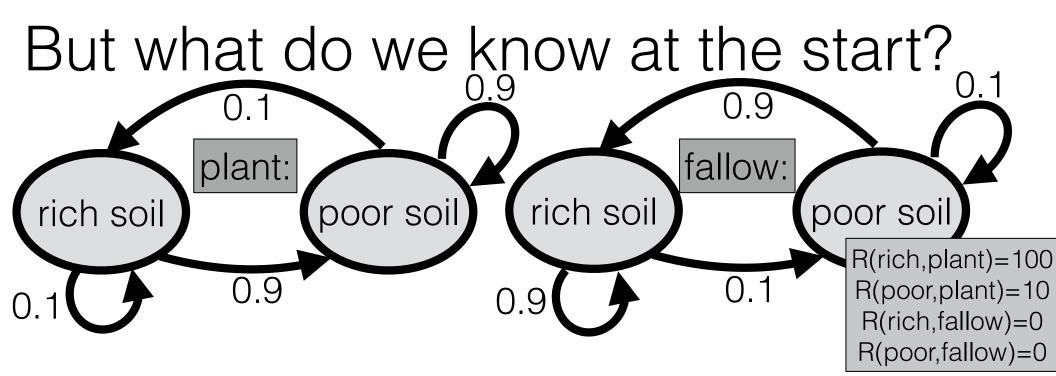
= infinite-horizon-value-iteration (\hat{R}, \hat{T})

Data at step
$$t: s^{(t)}, a^{(t)}, r^{(t)}, s^{(t+1)}$$

R(rich,fallow)=?

R(poor,fallow)=?

$$\hat{T}(s,a,s') = rac{1}{|\mathcal{S}|}; \hat{R}(s,a) = 0; Q$$



- General goal: Find a policy to maximize expected reward.
- Up to this point: Assume we know full Markov decision process (MDP).
 - We figure out best policy and use it from the start.
- But we often *don't* know the transition model *T* or reward function *R* before we start.
- Next: Assume we do know the states, actions, and discount.
 But we don't know T or R.
 - Find a sequence of actions to maximize expected reward.