
6.036: Final Exam: Spring 2022

Solutions

• This is a closed book exam. Calculators not permitted.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on the back of the page. Show your work neatly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption. Try not to ask for clarification.

• Write your initials on every piece of paper.

Name: MIT email:

Question Points Score

1 6

2 8

3 12

4 18

5 18

6 10

7 8

8 10

9 10

Total: 100
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1 A single sigmoid

1. (6 points) Consider the simplest of all neural networks, consisting of a single unit with a sigmoid
activation function:

h(x;w) = σ(w0 + w1x)

where σ(z) = (1 + exp(−z))−1 is the sigmoid function.

(a) Let’s start with a classifier defined by w0 = 0 and w1 = 1. Which range of input values x
are classified as positive? Which as negative?

Solution: Positive if x > 0; negative otherwise.

(b) If you change w1 to have value 2, which range of input values x are classified as positive?
If the answer is the same as in part 1, what, if anything, about the output of the network
has changed?

Solution: Positive if x > 0; negative otherwise. The difference is that output curve
will be “steeper” near 0; output values of this model will be closer to -1 and +1 than
those of the previous model.

(c) If you leave w1 = 1 and set w0 = −1, which range of input values x are classified as
positive? If the answer is the same as in part 1, what, if anything, about the output of
the classification model has changed?

Solution: Positive if x > 1; negative otherwise.
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2 A DARC and stormy night

2. (8 points) A recent paper gives us reason to think that, rather than regularizing the weights
used in a deep network that is used for classification, it is good to regularize the z values, before
the activation function is applied, in the last layer.

Consider a neural network with one hidden layer and a single output unit where the activation
function f is a sigmoid, as shown below.

We can specify the darc objective function J(θ, λ), where the parameters θ = (w11, w12, w21, w22, v1, v2),
which depends on data set D = {(x(i), y(i))}Ni=1 as

J(θ, λ) =
∑
i

Lnll(f(z(i)), y(i)) + λ
∑
i

(z(i))2

where z(i) is the value of the output unit on example i before it goes into the activation function.

(a) What is the partial derivative of this unusual regularization term with respect to the
weight w11, for a single (x, y) training point?

∂

∂w11
λ (z)2

Write it in terms of x, y, z1, z2, z, w and v values. You can use f ′ for derivative of f .

Solution:
2λzv1x1f

′(z1)

(b) What is the derivative with respect to w11 of the typical regularization term, which pe-
nalizes the squares of the weights? How do these two regularizers differ?

Solution: 2λw11. One depends on the input.

(c) Describe a situation in which it is possible for w11 to be extremely large, but for z to have
small magnitude.
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Solution: Maybe v1 is very small.

(d) Would the darc strategy of regularizing z be good if we were, instead, doing regression
and f(x) = x? Explain why or why not.

Solution: No, because we need the output to be able to attain its target value, which
will be made impossible by penalizing the magnitude of the output.
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3 Kopy Kat

3. (12 points) Consider the following data. Clearly, the points are not linearly separable, so we
will try three alternative approaches to solving the problem.

-4 -2 2 4

-4

-2

2

4

Approach 1: Nested linear classifiers

Let w =

[
+1
−1

]
and

a1 = sign(wTx+ 4)

a2 = sign(wTx− 4)

h(x; v0, v1, v2) = sign(v1a1 + v2a2 + v0)

where

sign(x) =

{
+1 if x > 0

−1 otherwise

(a) Draw the classifiers corresponding to a1 and a2 on the axes above. Label them clearly,
including their normal vectors.

(b) Select values of the following parameters so that the nested classifier correctly predicts the
values in the data set.

i. v1 -1

ii. v2 1

iii. v0 .5
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-4 -2 2 4

-4

-2

2

4

Approach 2: Data-driven features

We’ll define a new feature transformation φ that maps a point x ∈ R2 into a four-dimensional
vector:

(K(x, (−4, 4)),K(x, (−1,−1)),K(x, (1, 1)),K(x, (4,−4)))

where K is a function of two points: K(x, x′) = e−‖x−x
′‖2 . Intuitively, feature i of φ(x) has

value 1 if x is equal to point pi and its value decreases as x moves away from pi.

(c) We find a classifier in the transformed space with parameters θ = (1,−1,−1, 1)

h(x; θ) = sign(θTφ(x))

i. What fraction of the training data does this classifier predict correctly?

Solution: 100%

ii. What prediction does it make for point (0, 0)?

Solution: -1

Page 6



Name:

-4 -2 2 4

-4

-2

2

4

Approach 3: Neural nets

Suppose we use a neural network with one hidden layer to classify the points.

(d) We can classify the points correctly if f (in both layers) is sigmoid. Provide the weights
so this network will correctly classify the given points.

• w11 -10
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• w21 10

• w01 -40

• w12 10

• w22 -10

• w02 -40

• v1 1

• v2 1

• v0 -.5
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4 Regression residuals

4. (18 points) We’re given a data set D = {(x(i), y(i))}ni=1, where x(i) ∈ Rd and y(i) ∈ R. Let X
be a d× n matrix in which the x(i) are the columns and let Y be a 1× n vector containing the
values of y(i). Using the analytical regression (ordinary least-squares) formula, we can compute

Wols = (XXT )−1XY T

Using ridge regression, we can compute

Wridge = (XXT + λI)−1XY T

We decide to try to use these methods to initialize a single-unit “neural network” with a linear
activation function and no offset:

h(x;W ) = W Tx .

Assume that XXT is invertible and not equal to the identity matrix, and that neither Wols nor
Wridge is equal to (0, 0, . . . , 0). Note also that we are not using an explicit offset/bias term.

(a) If we initialized our unit with Wols and did batch gradient descent (summing the error
over all the data points) with squared loss, no regularization, and a fixed small step size,
which of the following would most typically happen:

© The weights would change substantially at the beginning, but then converge
back to the values we initialized it with.

√
The weights would not change.

© The weights would make small oscillations around the initial weights.

© The weights would converge to a different value.

© Something else would happen.

(b) Explain why.

Solution: These weights are an optimum of the objective and the gradient will be
(nearly) zero.

(c) If we initialized our unit with Wols and did stochastic gradient descent (one data point at
a time) with squared loss, no regularization, and a fixed small step size, many different
things could happen. For each of the results below, explain briefly the circumstances in
which it might occur, or explain why it is unlikely.

i. The weights would not change.

Solution: If the OLS solution had 0 error on all training examples, then SGD
will not result in any changes.

ii. The weights would make small oscillations around the initial weights.

Solution: If there was error, and the gradients are not too big, then in expectation
the steps should be small motions around the optimum.
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iii. The weights would converge to a different value.

Solution: It’s possible that it will bounce out of the current optimum and end
up in another one.

(d) Consider a neural-network unit initialized with Wridge . Provide an objective function
J(W ) that depends on the data, such that batch gradient descent to minimize J will have
no effect on the weights, or argue that one does not exist.

Solution: J(W ) = (W TX − Y )2 + λ‖W‖2

(e) Rory has solved many problems from this particular domain before and the solution has
typically been close to W ∗ = (1, ..., 1)T . Define an objective function J(W ) that we could
minimize in order to obtain good estimates for Rory’s next problem, even with very little
data.

Solution: J(W ) = (W TX − Y )2 + λ‖W − 1‖2
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(f) Ryo thinks they can get a better hypothesis by using knowledge about neural networks,
and considers the hypothesis class

g = waσ(wbx+ wc) + wd

Assume that the inputs x are 1-dimensional and recall σ(z) = 1/(1 + e−z).

Provide a data set with 3 points for which Ryo’s hypothesis class can reach a lower MSE
than the original OLS solution or argue that one does not exist.

Solution: (0, 0), (1, 1), (2, 1)

(g) Provide a data set with 3 points for which the original OLS hypothesis class can reach a
substantially lower MSE than Ryo’s hypothesis class or argue that one does not exist.

Solution: Does not exist: You can stretch out the
sigmoid so that the linear part of it is pretty linear
and goes wherever you want it to.
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(h) Ryu thinks getting initial parameters from Ryo’s hypothesis might be a good way to
initialize a two-layer neural network. Consider the case where we have a simple neural
network with

• Two units in the hidden layer

• Sigmoid activation function in the hidden layer

• Linear activation function on the output unit

So, the hypothesis is:

g = waσ(wbx+ wc) + weσ(wfx+ wg) + wd

If Ryu first trained Ryo’s hypothesis to reach a local optimum using gradient descent to
obtain wa, wb, wc, wd, then initialized the more complex network above using we = wa,
wf = wb, and wg = wc, with wd as before, and did batch gradient descent with squared
loss and a fixed small step size, which of the following would most typically happen:

© The weights would change substantially at the beginning, but then converge
back to the original values.

© The weights would not change.

© The weights would make small oscillations around the initial weights.

© The weights would converge to a different value, with a lower loss than we could
achieve with Ryo’s hypothesis class.

√
The weights would converge to a different value, with the same loss
as we would obtain with Ryo’s hypothesis class.

(i) Explain why.

Solution: Because the two units are initialized exactly the same, the gradients for
both of them will be the same. So, it is as if we had a single linear unit, ran it through
a sigmoid, and then added an offset.

(j) Does your answer to the previous question change if we set we, wf , and wg randomly
instead? Why or why not?

Solution: Yes! Now the second unit has the freedom to change its weights and we
might expect a solution with lower training loss.
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5 A Concerted Effort

5. (18 points) You are hired by an event-planning company to build some machine-learning pre-
dictors. One of them, for predicting the number of attendees of a concert, takes as input x,
a vector of aspects of the event (day of the week, start time, city size, music genre (classical,
folk, rock, pop, rap), number of attendees at last concert, if known).

(a) What would be a good encoding strategy for each attribute of concert? Select a choice,
and explain your choice very briefly. If you think more than one are reasonable it’s fine
to pick them and explain. By discretized numeric we mean dividing a numeric range into
bins and using one-hot encoding on the bins.

• music genre
© numeric (standardized)

√
one-hot © discretized numeric © other

Explain briefly.

Solution: The different genres are not ordered in a useful way so it’s just a
discrete choice.

• number of attendees at last concert, if known√
numeric (standardized) © one-hot © discretized numeric © other

Explain briefly.

Solution: This is sensible to interpret as a continuous value.

• start time
© numeric (standardized) © one-hot

√
discretized numeric © other

Explain briefly.

Solution: Numeric or discretized numeric could be okay. Because time wraps
around awkwardly, discretizing into bins might be good.
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(b) If you didn’t know anything more about this problem, what would be a reasonable loss
function to use?

Solution: Squared loss

It turns out that the losses in this problem might be asymmetric, in that it might be worse to
over-estimate the crowd size than to under-estimate the crowd size, or vice versa. Cody decides
to use a loss function of the following form

Lcody(g, a) =

{
λ(g − a)2 if g > a

(g − a)2 otherwise

where g is the guessed value and a is the actual value, and λ is an adjustable parameter.

(c) Jody thinks this loss function is not sufficiently general and suggests that we should use a
version with two parameters:

Ljody(g, a) =

{
λ1(g − a)2 if g > a

λ2(g − a)2 otherwise

Assuming that λ, λ1 and λ2 are all constrained to be strictly greater than 0, is Jody’s loss
function actually able to capture a larger class of losses? Either

1. Show that for any λ1 and λ2 there is a value of λ such that choosing g to minimize
Ljody with λ1, λ2 yields the same result as choosing g to minimize Lcody with λ.

2. Give a counterexample: provide values of λ1, λ2 such that there is no value of λ such
that choosing g to minimize Ljody with λ1, λ2 is equivalent to choosing g to minimize
Lcody with λ.

Solution: Setting λ = λ1/λ2 lets Cody do anything Jody could do. If we multiply by
λ2 this becomes Jody’s objective, and multiplying by a constant doesn’t change the g
value that optimizes it.

We talk to Bodie, who really knows the concert business and says a better model for the total
loss is:

Lbodie(g, a) = αg + βmax(0, a− g) .

This loss has two terms. The first part of the loss comes from the cost of renting a venue: if
we guess that there will be g attendees, we have to rent a place with g seats, and we assume
that such a rental costs α per seat. The second part of the loss comes from the loss of potential
ticket sales: if a people really wanted to attend but we can only seat g, then we lose β for each
of the g− a people we have to turn away. Note that it is safe to assume that α < β (otherwise,
we should not bother holding the concert!).

(d) We would like to train a linear regression model to minimize this loss. Let g = θTx be the
prediction given input x and parameters θ, and let y be the target training value for that
x. Provide an expression for ∂Lbodie(g, y)/∂θ.

Note that this loss is not everywhere differentiable, which we have seen before with ReLU
units. Don’t worry about the what the value should be at that one point.
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Please write your answer in terms of x, y, α, β, and θ.

Solution:
∂Lbodie(g, y)

∂g

∂g

∂θ(
α+ β

{
0 if y < θTx

−1 otherwise

)
x
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But Bodie isn’t really sure how to set the α and β parameters, so we still have a problem!
However, they are able to find a set of data of the form (s, p, l) where s describes the number
of seats in the venue rented, p describes the actual number of people who attempted to attend
(including the number of people who were turned away) and l describes the actual loss value.

(e) Bodie wants to use this data to estimate α and β in Lbodie by finding values of these
parameters that predict the loss the most accurately in the mean-squared-error sense.
Describe how to use the (s, p, l) data to formulate a linear regression problem that will
recover good estimates of α and β.

i. What are the inputs, x?

Solution: Vectors of (s,max(0, p− s))

ii. What are the target outputs, y?

Solution: Values l
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Roadie decides Bodie’s strategy is too complicated.

Roadie has a very complicated economic simulator that can be used to evaluate the quality of
a prediction, but it is too complicated to differentiate and use directly as a loss in a gradient
optimization approach.

Instead, Roadie wants to adopt Cody’s original simple loss function

Lcody(g, a) =

{
λ(g − a)2 if g > a

(g − a)2 otherwise

which captures asymmetric loss and has free parameter λ.

(f) Given a true loss function Ltrue, which is not differentiable, how could you use it to find
a good value of λ so that you can use Lcody with that λ to construct a good predictive
hypothesis? Assume you have a dataset D and that you are given a set lambdas of plausible
values for λ. Let’s write out a strategy in very abstract pseudo-code, using the following
basic procedures:

• train(data, lossfn) : trains a regression model to minimize lossfn on data, re-
turns parameters theta

• subpart(data, j, K) : divides data into K equal parts and returns the jth subpart

• allbutsubpart(data, j, K) : divides data into K equal parts and returns all except
the jth subpart

• eval(theta, data, lossfn) : returns average loss of hypothesis with weights theta
on data according to lossfn

• L true : the true loss function that maps a guess and an actual value into a cost

• L cody(lambda) : returns Lcody for this value of lambda, which is itself a loss function
that maps a guess and an actual value into a cost

Fill in the blanks in the code below, for a process in which we perform 10-fold cross-
validation to find the best lambda value.

best lambda = None; best loss = None

for lambda in lambdas do

for k in range( 10 ) do

hypoth = train(allbutsubpart(data, k, 10), L cody(lambda) )

loss = eval( hypoth , subpart(data, k, 10) ,

L true )

if best lambda is None or loss < best loss then

best lambda = lambda

best loss = loss

return best lambda
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6 ABBA!

6. (10 points)

S0

S2

S1

S5

S4

S3

S6

B / 1.0

A/0.9

A/0.1

B/1.0

A/1.0

A/1.0

B/0.5

B/0.5

{A,B}/1.0

{A,B}/1.0

{A,B}/1.0
{A,B}/1.0

R = 0

R = 10

R = 2

R = 1

R = 0

R = 0 R = 0

Consider the MDP shown above. It has states S0, . . . , S6 and actions A,B. Each arrow is
labeled with one or more actions, and a probability value: this means that if any of those
actions is chosen from the state at the start of the arrow, then it will make a transition to the
state at the end of the arrow with the associated probability.

Rewards are associated with states, and independent, in this example, from the action that
is taken in that state. Remember that with horizon H = 1, the agent can collect the reward
associated with the state it is in, and then terminates.

(a) Consider the policy π that takes action B in S0 and action A in S2. If the system starts
in S0 or S2, then under that policy, only those two states (S0 and S2) are reachable.

Recall that, for a fixed policy π,

Vπ(s) = R(s, π(s)) + γ
∑
s′

P (St+1 = s′ | St = s,At = π(s))Vπ(s′) .

Assuming the discount factor γ = 0.8, what are the infinite-horizon values Vπ(S0) and
Vπ(S2)? It is sufficient to write out a small system of linear equations involving just those
two variables; you do not have to take the time to solve them numerically.

Solution:

Vπ(S0) = 0 + 0.8 · Vπ(S2)

Vπ(S2) = 1 + 0.8 · (0.9Vπ(S2) + 0.1Vπ(S0))
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(b) What is the optimal value Vh=1(s) = maxaQh=1(s, a) for each state for horizon H = 1
with no discounting?

i. Vh=1(S0) 0

ii. Vh=1(S1) 0

iii. Vh=1(S2) 1

(c) What is the optimal action and value Vh=2(s) for each state for horizon H = 2 with no
discounting? (If the actions are tied in value, list both).

i. S0 : A: B Vh=2: 1

ii. S1 : A: B Vh=2: 5

iii. S2 : A: A Vh=2: 1 + .9

(d) What is the optimal action and value V (s) for each state for horizon H = 3 with no
discounting? (If the actions are tied in value, list both).

i. S0 : A: A Vh=3: 5

ii. S1 : A: B Vh=3: 5

iii. S2 : A: A Vh=3: 1 + .9 · 1.9 + .1 · 1
(e) If we increase the horizon beyond 3, will the optimal action in state S0 ever change?

Explain.

Solution: Yes. With a longer horizon, it’s worth taking action B in S0 and going
around and around that loop.
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7 ABCs of RL

7. (8 points) Consider an MDP with four states, called A, B, C, and D, and with two actions
called Move and Stay, but you don’t know anything about what these actions really do. The
discount factor γ = 0.9.

Here is a reminder of the Q-learning update formula, based on experience tuple (st, at, rt, st+1):

Q(st, at) := (1− α)Q(st, at) + α

(
rt + γmax

a′
Q(st+1, a

′)

)
.

In the following, let α = 1.

Assume we see the following state-action-reward sequence:
A, Move, 0
B, Move, 0
C, Move, 1
A, Move, 0
B, Move, 0
C

With Q-values all starting at 0, we run the Q-learning algorithm on that state-action sequence.

(a) Specify each of the five updates to the Q table by saying which entry or entries are updated,
and with which values. Please include an update even if the value is 0.

i. Q( A , Move ) = 0

ii. Q( B , Move ) = 0

iii. Q( C , Move ) = 1

iv. Q( A , Move ) = 0

v. Q( B , Move ) = 0.9
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(b) This example illustrates a key weakness of Q-learning that would be even worse if the
problem had 103 states, A, B1, . . . , B100, C, D, and the state-action-reward sequence
were

(A,Move, 0), (B1,Move, 0), (B2,Move, 0), . . . , (B100,Move, 0), (C,Move, 1), (A,Move, 0) .

Very briefly describe the weakness and a strategy for overcoming this weakness.

Solution: It doesn’t propagate the value all the way back the chain. Do the updates
backward along the trajectory; or save your experience and replay it.

(c) Suppose, for the original 4-state (A,B,C,D), that we continue acting (using the Q func-
tion we arrived at, at the end of the part (a), and with α = 1) and receive the following
additional state-action-reward sequence:
A, Move, 0
B, Move, 0
D

What additional updates would occur?

i. Q( A , Move ) = .81

ii. Q( B , Move ) = 0

(d) What problem with our choice of parameters for the learning method is revealed by this
example? Very briefly explain a small change that will solve this problem.

Solution: Use a smaller learning rate.
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8 The deep end of the pool

8. (10 points) We are going to consider two different simple convolutional networks over one
dimensional (vector) inputs. Each network has a single convolutional layer with a single filter
of size 3 and stride 1. Let (z1, . . . , zd) be the output of this convolutional layer, so that
zj = wT [xj−1;xj ;xj+1] where w are the filter parameters. Our two networks differ in terms of
how the feature map values are pooled to a single output value. Assume zero-padding of size
1 at each end of the image.

Network A has a single max-pooling layer with input size d, so that the output of the network
g = σ(max(z1, . . . , zd)) where σ(·) is the sigmoid function.

Network B has a single min-pooling layer with input size d, so that the output of the network
g = σ(min(z1, . . . , zd)).

When the filter’s output value is high it represents a positive detection of some pattern of
interest.

(a) For which network does a high output value correspond, qualitatively, to “every location
in x corresponds to an instance of the desired pattern”?

© A
√

B © None

(b) For which network does a high output value correspond, qualitatively, to “at least half of
the locations in x correspond to an instance of the desired pattern”?

© A © B
√

None

(c) For which network does a high output value correspond, qualitatively, to “there is at least
one instance of the desired pattern in this image”?
√

A © B © None

(d) Assume for simplicity that all z1, . . . , zd have distinct values (we can ignore the corner
cases where some of the values are equal). What is ∂g/∂zi for network A? Feel free to
make use of the fact that ∂σ(z)/∂z = σ(z)(1− σ(z)).

Solution: σ(zi)(1− σ(zi)) if zi = max(z1, . . . , zd), and 0 otherwise.
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(e) Now, suppose we are just given a single training pair (x, y) where the target y is binary
0/1. The loss that we are minimizing is again just

Lnll(g, y) = −y log g − (1− y) log(1− g)

which is minimized when g matches the target y. We are interested in understanding
qualitatively how the filter parameters w get updated in the two networks if we use simple
gradient descent to minimize Lnll(y, g). For each of the four qualitative behaviors of this
process described below, specify the situation in which it would occur:

• Which network (A, B, or it doesn’t matter)

• Target y (1, 0, or it doesn’t matter)

The behaviors are:

1. After each step of gradient descent, the filter weights w change so that their dot prod-
uct with the values of one particular sub-region [xj−1;xj ;xj+1] of the image increases.

i. Network:
√

A © B © irrelevant

ii. Target y:
√

1 © 0 © irrelevant

2. After each step of gradient descent, the filter weights w change so that their dot prod-
uct with the values of one particular sub-region [xj−1;xj ;xj+1] of the image decreases.

i. Network: © A
√

B © irrelevant

ii. Target y: © 1
√

0 © irrelevant

3. After each step of gradient descent, the filter weights w change so that their dot
product with the values of some image sub-region increases, but the specific region
may change from one step to another.

i. Network: © A
√

B © irrelevant

ii. Target y:
√

1 © 0 © irrelevant

4. After each step of gradient descent, the filter weights w change so that their dot
product with the values of some image sub-region decreases, but the specific region
may change from one step to another.

i. Network:
√

A © B © irrelevant

ii. Target y: © 1
√

0 © irrelevant
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9 RNN

9. (10 points) Consider three RNN variants:

1. The basic RNN architecture we studied was

st = f(W ssst−1 +W sxxt)

yt = W ost

where W ss is m×m, W sx is m× d, and f is an activation function to be specified later.
We omit the offset parameters for simplicity (set them to zero).

2. Nora thinks the basic RNN is representationally weak, and it would be better not to
decompose the state update in this way. Nora’s proposal is to instead

st = f(W ssxconcat(st−1, xt))

yt = W ost

where concat(st−1, xt) is a vector of length m+ d obtained by concatenating st−1 and xt,
so W ssx has dimensions m× (m+ d).

3. Rina wants to try yet another model, of the form:

st = f(W ssst−1) + f(W sxxt)

yt = W ost

Lets try to understand these models a bit better, and how they might relate.

(a) Select the correct claim and answer the associated question.

(1) Claim: The three models are all equivalent when f(z) = z. In this case, define W ssx

in terms of W ss and W sx so that the equivalence holds.

(2) Claim: The three models are not all equivalent when f(z) = z. In this case, assume
m = d = 1 and provide one setting of W ssx in Nora’s model such that W ss and W sx

cannot be chosen to make the basic model and Rina’s model the same as Nora’s.

Solution: Claim 1 W ssx = hstack(W ss,W sx)
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(b) Here is Rina’s model again:

st = f(W ssst−1) + f(W sxxt)

yt = W ost

Something interesting might happen with this model when f(z) is not the identity. Specif-
ically, it supposedly corresponds to the architecture shown in the figure below, which
includes an additional hidden layer. Specify what W , W ′, and m′ are so that this archi-
tecture indeed corresponds to Rina’s model. Specify your answers in terms of m, W ss,
W sx, and WO.

i. m′

Solution: 2m

ii. W

Solution: A block-diagonal matrix of the form[
W ss 0

0 W sx

]

iii. W ′

Solution: hstack(I(m); I(m))
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Scratch paper
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Scratch paper
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