
6.390: Final Exam, Fall 2022

Solutions

• This is a closed book exam. Two pages (8 1/2 in. by 11 in) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 3 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 12

2 10

3 10

4 8

5 14

6 18

7 18

8 10

Total: 100

1

Name:

Mountain Ascent

1. (12 points) Randy got back from hiking his favorite mountain. At various points of time x (in
hours relative to before and after reaching the summit) he recorded his altitude y (in miles) to
form a dataset Dn = {(x(i), y(i))}ni=1. The dataset is plotted below.

1

1-1
x

y

(a) Having learned about linear regression, he wonders if he can fit a piecewise linear function
to the data. For each of the following ranges, give the formula for a linear function which
perfectly fits the data in the range.

Solution:

y =

0 , x < −1,

x + 1 , −1 ≤ x < 0,
1 - x , 0 ≤ x < 1,

0 , 1 ≤ x.

(b) Randy wonders whether it might be possible to fit the following two-layer neural network
with ReLU activations to perfectly predict his altitude.

With our notation, e.g., w2
2 denotes the second weight of the second layer, and multiplies

the first layer activation from the bottom ReLU, a12. Here w1
2, w1

4 and w2
0 are constant

offsets.

ReLU

ReLU

∑ ReLU

∑

∑

w1
1

w1
2

w1
3

w1
4

w2
1

w2
0

w2
2

x = a0

a1
1

a1
2

ŷ = a2

z1
1

z1
2

z2

Is it possible to find weights to fit the dataset? If so, specify the weights as they appear
in the diagram above. If not, explain why it is not possible using the provided neural
network architecture.

Page 2

Name:

Solution:
√

Possible © Impossible

w1
1 = 1 w1

2 = 0

w1
3 = −1 w1

4 = 0

w2
0 = 1 w2

1 = −1 w2
2 = −1

Note that given the symmetry of the network, there are other correct solutions. For
example, students may swap the top and bottom paths.

(c) Randy wants to see whether PyTorch can find a good fit to the data. Can you help him
remember how to express this neural network architecture in PyTorch? Select one of the
following.

Solution: © [Linear(in features=1, out features=2, bias=True), ReLU(),

Linear(in features=2, out features=2, bias=True),

Softmax(dim=-1)]

© [Linear(in features=1, out features=1, bias=True),

Linear(in features=1, out features=1, bias=True), ReLU(), ReLU(),

Linear(in features=2, out features=1, bias=True), ReLU()]

© [Linear(in features=1, out features=2, bias=False), ReLU(),

Linear(in features=2, out features=1, bias=False), ReLU()]

√
[Linear(in features=1, out features=2, bias=True), ReLU(),

Linear(in features=2, out features=1, bias=True), ReLU()]

© [Linear(in features=1, out features=1, bias=True), ReLU(),

Linear(in features=2, out features=1, bias=True), ReLU()]

(d) Randy wants to understand what PyTorch is doing behind the scenes, so he decides to
manually derive gradient descent updates for each of the weight parameters. He chooses
the squared-error loss function, L(y, ŷ) = (y − ŷ)2.

He initializes the weights of the neural network as:

w1
1 = 1, w1

2 = 0, w1
3 = 0, w1

4 = 1, w2
0 = 1, w2

1 = 1, w2
2 = 1.

These initial weights are shown on the figure below, in italics.

Page 3

Name:

ReLU

ReLU

∑ ReLU

∑

∑

w1
1

w1
2

w1
3

w1
4

w2
1

w2
0

w2
2

x = a0

a1
1

a1
2

ŷ = a2

z1
1

z1
2

z2

(=1)

(=0)

(=0)
(=1)

(=1)

(=1) (=1)

With these initialized weights, what does the network predict for each of the following
data points? What is the value of the loss function evaluated at each data point?

Solution:

(x = 0, y = 1) : ŷ = 2 loss= 1.

(x = 1, y = 0) : ŷ = 3 loss= 9.

(e) What is the gradient of the loss function with respect to the weight w1
1? Derive the

gradient in symbolic form (i.e., as a function of x, z’s, etc.) using backpropagation. Then,
compute the value of the gradient at the datapoint (x, y) = (1, 0). Show all of your work.

Solution:

∂L(y, ŷ)

∂w1
1

=
∂L(y, ŷ)

∂ŷ

∂ŷ

∂z2
∂z2

∂a11

∂a11
∂z11

∂z11
∂w1

1

= −2(y − ŷ)1[z2 > 0]w2
11[z11 > 0]x.

Evaluated at data point (x, y) = (1, 0):

∂L(y, ŷ)

∂w1
1

(1, 0) = −2(0− 3) · 1 · 1 · 1 · 1

= 6

(f) With a step size η = 1, what is the new value of w1
1 after one iteration of stochastic

gradient descent with respect to the data point (x, y) = (1, 0)?

Solution:

w1
1 ← w1

1 − η
∂L(y, ŷ)

∂w1
1

= 1− 6

= −5

Page 4

Name:

Grey Matter

2. (10 points) Grey Matter, Inc. wants to build a neural network to convert 2×2 RGB color images
into greyscale. The color images have three channels: channel 0 is red, channel 1 is green, and
channel 2 is blue. For each pixel, Grey Matter use the following RGB2Grey conversion:

grey = 0.30 red + 0.59 green + 0.11 blue.

Each pixel value (in both greyscale images and color image channels) is a real number in the
range [0, 1].

(a) Consider the following pixel values for a 2× 2 color image:

Channel 0 (red) Channel 1 (green) Channel 2 (blue)

1 1

0 0

0 1

0 1

0 1

1 0

What are the corresponding pixel values in the greyscale image?

Solution:

0.30 1.0

0.11 0.59

(b) Blake is charged with building a convolutional neural network (CNN) to implement the
RGB2Grey conversion. They heard a rumor that 1×1 convolutional tensor filters are useful
in CNNs. They try the following architecture, where the input RGB color images have
shape 2× 2× 3, the tensor filter has shape 1× 1× 3 with bias term w0 = 0 and stride 1,
a Linear activation function is used, and the output greyscale image has shape 2× 2× 1:

Input

2× 2× 3

Tensor Filter

1× 1× 3

Output

2× 2× 1

Linear
Channel 0

Channel 1

Channel 2

w1

w2

w3

0

1

0

1

0

1

1

0

0

1

Page 5

Name:

With hundreds of different training samples, can this CNN learn the greyscale conversion?
If so, provide a set of values for the weight parameters w1, w2, and w3 that implements
the converter. If not, explain why the converter cannot be learned with this CNN.

Solution: Yes:
w1 = 0.30, w2 = 0.59, w3 = 0.11.

With sufficient training examples and gradient descent with a squared error loss func-
tion, we can converge to this linear combination across channels.

(c) Cade believes that the architecture above needs more capacity to deal with a large variety
of images. He replaces the 1 × 1 convolutional filter with a 3 × 3 × 3 tensor filter with
offset term w0 = 0, and replaces the Linear activation with a ReLU:

Input

2× 2× 3

Tensor Filter

3× 3× 3

Output

2× 2× 1

ReLU

0

1

0

1
Channel 0

Channel 1

Channel 2

0

1

1

0

0

1

Assume the filter is applied with stride 1. In order to obtain a 2×2×1 output, is padding
of the input necessary? If so, describe where padding values are needed, and what the
padding values should be.

Solution: Zero-padding is needed, adding one pixel of zeros in both the horizontal
and vertical dimensions around each channel of the input. (That requires 12 zero-
values surrounding each channel of the 2 x 2 input image, or 36 total zero-values for
padding for all three channels.)

(d) With hundreds of different training samples, can Cade’s CNN from part (c) learn the
greyscale conversion, assuming that zero-padding has been applied if or as necessary? If
so, fill in a set of weights for the 3 × 3 × 3 tensor filter above. If not, explain why the
grey-scale converter cannot be learned with this CNN.

Solution:

Yes, this tensor filter can be learned, e.g., with gradient descent and squared error
loss.

Channel 0 Channel 1 Channel 2

0 0 0

0 0.30 0

0 0 0

0 0 0

0 0.59 0

0 0 0

0 0 0

0 0.11 0

0 0 0

Page 6

Name:

Rainbow Matter

3. (10 points) Grey Matter, Inc., is hoping to learn beyond just filters to spin-off a new company,
now called Rainbow Matter, Ltd.!

(a) They task Cade to consult with Dana (a photographer) to conduct some market research.
Cade asks Dana, “What are some of your ‘go-to’ moves when you edit photos? We’d like
to try machine learning a model to achieve those moves!” Dana replies, “Hmm. I often
need to rotate my photos.”

Cade believes that a convolutional filter can be learned to rotate photos, i.e., to move the
pixel values by one-quarter turn (90 degrees) clockwise in the image matrix:

Input Desired output (after convolution)

1 2

4 3

4 1

3 2

As a “proof-of-concept,” Cade tries to hand-design a two-dimensional convolutional filter
to achieve the goal. To his delight, Cade finds that the following filter (with offset 0)
succeeds in rotating the image above, using zero-padding of size 1 on the input, and an
(unusual!) stride of 2.

a b

d c
=

2
3

3
4

1
2 c

What is the missing filter weight c?

Solution: c=4.

With the zero-padding of size 1, the original image would be padded as

0 0 0 0

0 1 2 0

0 4 3 0

0 0 0 0

,

and with a stride of 2, after applying the filter once, the output will be
c 2d

4b 3a
.

So we need
c 2d

4b 3a
=

4 1

3 2
.

Indeed, equality conditions on a, b, and d are satisfied by Cade’s filter. And we just
need c=4.

(b) Cade is super excited; he believes he has found this magical rotational filter. Dana has
serious doubts though. She says that Cade’s filter is a one-time wonder, believing that
it can only rotate that particular original image. She challenges Cade to demonstrate his
success again, by rotating the previous output another 90 degrees using his filter.

Page 7

Name:

Keeping the zero-padding and stride scheme the same as before, when the filter Cade
found in part (a) is applied to the new input image, will it produce the desired output
below?

New Input Desired output (after convolution)

4 1

3 2

3 4

2 1

Solution: © Yes
√

No

To get this input output relationship, we need to have
4c 1d

3b 2a
=

3 4

2 1
.

Recall from part (a) that c = 4; this contradicts 4c = 3.

(c) Dana’s influencer friend Emily heard about the collaboration. She suggests: “the more
business-savvy choice might be to learn a detector that can predict whether a filtered
photo will get any ‘Like’s or not!” Dana was like, yeah, cool idea! She collected 1000 of
her recent photos posted on social media, and extracted the Like counts.

The goal is now to predict whether a post will receive any Likes or not, (i.e., more than
zero), and we need to help Cade design a complete CNN architecture.

i. What output encoding could Cade use on top of Dana’s Like counts as the output?
Specifically, describe how Cade should transform Dana’s Like counts to obtain the
labels used for training, the number of output units, and the loss function that should
be used.

Solution: It should be a single output unit. Cade should construct a single binary
output which is 1 if a post has >= 1 Likes, and 0 otherwise, e.g., by thresholding
on a sigmoidal output. We can use the NLL loss.

ii. Suppose that Cade has access to these six layer and activation types:

• Convolutional Layer

• Fully Connected Layer

• Max Pooling Layer

• ReLU Activation

• Sigmoid Activation

• tanh Activation

Fill in the blanks below with the preferable layer or activation to help Cade complete
the architecture for his model (preferable in the computational-cost sense):

Solution: (input image) → Convolution layer → max pool → ReLU → convolu-
tional → max pool → ReLU→ Fully connected → Sigmoid → (binary output)

Or alternatively (swapping order or RelU and max pooling layers):
(input image) → Convolution layer → ReLU → max pool → convolutional →
ReLU → max pool → Fully connected → Sigmoid → (binary output)

Page 8

Name:

(d) Cade grew unsatisfied with just predicting if a photo will get any Likes. He thought,
wouldn’t it be more fun to predict [p1, p10, p100], i.e., the probability that the image would
receive at least one like, at least 10 likes, and at least 100 likes? He believes a simple
change of his network architecture to use a softmax activation at the output layer would
achieve this new goal.

Is he correct? If not, please explain what activation function would be more appropriate.

Solution: No. p1 + p10 + p100 6= 1. Alternatively, Cade could use three sigmoid
activation functions.

(e) Cade’s friend Fish raises another question to Cade: regardless of whether the softmax is
a valid idea, your CNN couldn’t possibly have accurate predictions out in the real world.
Specifically, it isn’t possible to accurately to predict whether an image will have at least
100 likes by only looking at the image. You need more features to make the prediction!

Do you agree with Fish? What could be such a real-world feature that’s missing as input,
in addition to the photo itself?

(This is an open-ended question. We’re only expecting you to identify a feature; you do
not need to specify how to encode this feature or how to construct a model taking in this
feature.)

Solution: Whether the poster is likely to even have 100 visitors?

Page 9

Name:

Decisions, Decisions

4. (8 points) You have 16 data points in your training set, plotted below. These data points in
the plot just below are located exactly where gridlines intersect; for instance, there is a point
at (x1, x2) = (1, 1). There are two classes: circles and dashes. You are interested in building a
decision tree for classification.

(a) What is the entropy for the entire data set? Your final answer should be a single numeric
value (not an equation).

Solution: Let Im denote the indices of all our data points.

H(Im) = −P̂m,circle log2 P̂m,circle − P̂m,dash log2 P̂m,dash

= −
(

0.5 · log2
1

2

)
−
(

0.5 · log2
1

2

)
= − log2

1

2
= 1

(b) First, we think about making a decision tree with a single split. What is the weighted
average entropy of the split in dimension 1 at location 0 for this data set? Your final
answer should be a single numeric value (not an equation).

Solution: This split has 50% of each class in the two subsets of the split, so the average
weighted entropy is still Ĥ = 1. Mathematically, the average weighted entropy Ĥ is
now

Ĥ =
8

16
H(I−) +

8

16
H(I+)

Page 10

Name:

where

H(I+) = −P̂+,circle log2 P̂+,circle − P̂+,dash log2 P̂+,dash

= −(0.5 · −1)− (0.5 · −1) = 1

and similarly H(I−) = 1, giving

Ĥ =
1

2
H(I−) +

1

2
H(I+) = 1.

(c) What is the weighted average entropy of the split in dimension 1 at location 1.5 for this
data set? Your final answer should be a single numeric value (not an equation).

Solution: As in the previous part, this split also has 50% of each class in the two
leaves, so the average weighted entropy is still 1. The details change, but the end
result works out the same:

Ĥ =
10

16
H(I−) +

6

16
H(I+)

but H(I+) = H(I−) = 1 as before, so that

Ĥ =
10

16
H(I−) +

6

16
H(I+) = 1.

(d) Now consider any possible split, on dimension j at location s. Which such split of this
data set has the smallest weighted average entropy? If there are ties, describe all the splits
with smallest weighted average entropy.

Solution: All single-feature splits on this data set have average weighted entropy of
1, because all such splits will have an equal number of each class in both subsets of
the split. It’s not until we do a second split on this data that we start getting regions
with more of one class than the other in split regions.

(e) More generally, suppose we take a greedy approach to growing a tree of the form depicted
just below on any data set. That is, we first choose an optimal split for the root node
(according to weighted average entropy). Second, we choose optimal splits for the left and
right children of the root node. Is this procedure guaranteed to find the tree of the form
drawn below that has the highest accuracy on the training data? Be sure to justify your
answer.

Page 11

Name:

split

split

leaf leaf

split

leaf leaf

Solution: No, it is not guaranteed to find the tree with this structure that gives the
highest accuracy on training data.

The data set above is a counterexample. With only the information from the possible
first splits, we can’t guarantee that we choose the central split. (They all have the
same weighted average entropy.) While there is a tree with one root node and two
child splits that gets perfect accuracy on this training data, we can’t guarantee we’ll
find it with this greedy procedure.

(f) Now suppose a little noise is added to our data; see the plot just below. So no two data
points share the exact same feature value anymore. Will the value of the smallest weighted
average entropy across possible splits change from part d? Will the split with smallest
weighted average entropy change? Why or why not? (Note: you do not need to report
any numeric values for weighted average of the new, noisy data in your answer.)

Solution: Yes; a single split is able to have a different number of classes across some
of the single feature splits, so the average weighted entropy for those splits will be
less than 1. For example, a split at x1 ≥ 4 will enable the entropy H(I+) to be 0,
which will reduce the averaged weighted entropy for the split to be less than 1. It’s
not clear what the best split (or lowest average entry) will be, because that depends
on the particular noisy locations of the data.

(g) Now let’s return to the original data. Draw the decision boundary and predicted classes

Page 12

Name:

for 1-nearest neighbors on the plot in the box below. (The plot is duplicated from the plot
at the start.)

Solution:

Page 13

Name:

Game, Set, Match

5. (14 points) Rowan has been trying out various different classifiers on her data, but she forgot
which is which. She hopes you can help her remember. Rowan’s data has two classes: circles
and dashes. Each picture below represents a binary classifier, where the decision boundary is
in black. The region shaded gray predicts the dash class; the region shaded white predicts the
circle class.

In the questions below, Rowan is curious which of the pictured classifiers, if any, might belong
to a stated hypothesis class. You can choose one picture, multiple pictures, or no pictures.
Assume the features x1 and x2 are used directly; there are no feature transformations prior to
applying the predictor.

Unless the question refers specifically to the pictured data, you can assume Rowan
is asking about any member of the hypothesis class, not just the optimal hypothesis
with respect to the data.

(A) (B)

(C) (D)

Page 14

Name:

(a) Rowan thinks she might have tried a linear classifier. Identify all of the plots above which
could represent such a predictor; mark with an X all that apply.

Solution:

© (A)
√

(B) © (C) © (D) © None

(b) For every linear classifier (A) through (D) that you identified in the previous part, provide
the decision boundary (i.e., the separator) in the form 0 = θ>x + θ0. Identify θ and
θ0. Additionally, write the normal vector for the classifier that points to the half-space
classified as positive (+1), where we think of the circle class as corresponding to a positive
(+1) prediction.

Solution:

Note that student answers can vary by constants c1, c2 in the answers below. We must
have c1 6= 0 and c1 must agree between θ and θ0. We must have c2 > 0.

(B) θ = c1[1,−5]>, θ0 = 20c1, normal vector = c2[1,−5]>

(Note: c2[−1, 5]> is incorrect.)

(c) Rowan thinks she might have tried a decision tree with two splits of the form xj ≥ s.
Identify all of the plots above which could represent such a predictor; mark with an X all
that apply.

Solution:

© (A) © (B)
√

(C) © (D) © None

(d) For every classifier you identified in the previous part, fill in the corresponding tree. In
particular, we’ve set up the tree structure for you below. You will need to fill in the splits
of the form xj ≥ s, fill in the leaf values, and choose “yes” or “no” as appropriate. As a
reminder, you only need to specify a tree that produces the decision boundary (if any),
without worrying about whether any particular learning algorithm would find it.

Solution:

(C) There are two possible answers.

Answer 1: The top split is x1 ≥ 3. No ⇒ dash class. Yes ⇒ lower split x2 ≥ 6. Yes
⇒ dash class; No ⇒ circle class.

Answer 2: The top split is x2 ≥ 6. Yes ⇒ dash class. No ⇒ lower split x1 ≥ 3. Yes
⇒ circle class; No ⇒ dash class.

We won’t take off for using > instead of ≥ since the boundary behavior isn’t obvious
from the picture. And using < or ≤ is fine as long as they get the yeses and nos right.

(e) Rowan thinks she might have tried a decision tree with an unconstrained number of splits
of the form xj ≥ s. Identify all of the plots above which could represent such a predictor;
mark with an X all that apply.

Page 15

Name:

Solution: © (A) © (B)
√

(C)
√

(D) © None

(f) Rowan thinks she might have tried a 2-layer neural network with two hidden neurons and
one output neuron, where each neuron uses the ReLU activation function. That is, the
first layer takes the two features (x1 and x2) as inputs and has two outputs; the second
layer takes the two outputs from the first layer as inputs and has one output (the final
predicted class). Identify all of the plots above which could represent such a predictor;
mark with an X all that apply.

Solution:

© (A)
√

(B)
√

(C) © (D) © None

(g) Rowan thinks she might have tried a 2-layer neural network with an unconstrained number
of hidden neurons and one output neuron, where each neuron uses the ReLU activation
function. Identify all of the plots above which could represent such a predictor; mark with
an X all that apply.

Solution:
√

(A)
√

(B)
√

(C)
√

(D) © None

(h) Rowan thinks she might have tried a 1-nearest neighbors classifier using Euclidean distance
on the full set of pictured data. (Unlike the previous questions, this question really does
depend on Rowan’s full data set, shown in the picture.) Identify all of the plots above
which could represent such a predictor; mark with an X all that apply.

Solution:

© (A) © (B) © (C) © (D)
√

None

Page 16

Name:

Word

6. (18 points) “Word” is a word game where one tries to guess a three-letter word in four guesses,
where each guess must be a three-letter word. In our game, we will use five common letters in
the English language {A,E,R, S, T}.
(a) We will consider all valid three-letter English words as character sequences c = [c0, c1, c2].

For the letters {A,E,R, S, T}, we will use the following encoding function φ:

φ(A) = [1, 0, 0, 0, 0],

φ(E) = [0, 1, 0, 0, 0],

φ(R) = [0, 0, 1, 0, 0],

φ(S) = [0, 0, 0, 1, 0],

φ(T) = [0, 0, 0, 0, 1].

Consider the character sequence [E,A,R]. Provide the encoding of this sequence, i.e.,
[φ(E), φ(A), φ(R)].

Solution: We can encode the full word as an ordered list of our one-hot encodings
for each position in the word, in sequence. Thus our encoding for EAR would be:

[φ(E), φ(A), φ(R)] = [[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 0, 1, 0, 0]].

Similar to a list of list representation, would could alternatively represent the output
as a matrix, where the first row is the vector for φ(E), second for φ(A), and third row
for φ(R).

(b) We want to build a model to help us play the game better. We want the model to take
a game state (which we will encode later in the problem) as input, and to predict the
probability of all letters at all positions in the word. How should we encode the output
and what is the dimension of the output?

Solution: A reasonable encoding is to output five real values (between 0 and 1), one
for each possible letter, for each of the three letters (positions) in the word. E.g., a
probability matrix P as a 5 by 3 matrix, with 15 total probabilities. We can use the
same ordering down the column, for the probabilities in order of A, E, R, S, and T ,
where the column corresponds to the position in the word.

(c) Which (potentially nonlinear) output function should we use to build this output, and
which sets of dimensions should this output be applied to?

Solution: Because we want probabilities across multiple classes, we should use a soft-
max function to output the probabilities of our possible letters, for each letter position
in the word. Softmax should be applied independently for each letter position. So
building on our result from (c), our encoding would be a 2D matrix P of probabilities,
where column 0 in P will have the first softmax outputs for the first letter (position)

Page 17

Name:

in the word, column 1 in P for the second letter (position) in the word, and column 2
in P for the third letter (position) in the word.

(d) We indicate the probability for letter i in position j as a
(i)
j , where j ∈ {1, 2, 3}. Give an

example output for the word ERA with the probability for the first position a
(E)
1 = 1; for

the second position a
(R)
2 = 0.9 and a

(T)
2 = 0.1; and for the third position a

(A)
3 = 0.9 and

a
(T)
3 = 0.1.

Solution: Using our definition of probability matrix P (where column j indicates
position j in the word), and the probabilities down each column uses our same A, E,
R, S, and T row ordering, we would get:

0.0 0.0 0.9
1.0 0.0 0.0
0.0 0.9 0.0
0.0 0.0 0.0
0.0 0.1 0.1

Alternatively, if one is using row i to correspond to position i in the word, and the
ordering of probabilities along the row uses our same A, E, R, S, and T ordering, then
the resulting probability matrix output is a transpose of the matrix above.0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.9 0.0 0.1
0.9 0.0 0.0 0.0 0.1

(e) Suppose we know that the first letter is an E, the last two letters are not an E, S, or
T , and we want the output to indicate 80% probability that the word is EAR and 20%
probability that the word is ERA (and zero probability that it is any other word, like
ERR). Can we represent that output with the representation above? If so, show the
output. If not, explain why not.

Solution: We cannot represent this output with the encoding above, because our
output encoding does not encode the probability of a whole word; it only encodes
probabilities of letters in positions.

For example, if we attempted to encode (80% EAR and 20% ERA) using our prob-
ability representation as below, then that would still allow ERR (and even other
non-valid words like EAA) to be consistent with the resulting letter probabilities:

0.0 0.8 0.2
1.0 0.0 0.0
0.0 0.2 0.8
0.0 0.0 0.0
0.0 0.0 0.0

 .

Page 18

Name:

(f) Rather than having our model making predictions for all the letters at once, we instead
decide to use a recurrent neural network (RNN) to output its prediction as a sequence of
letters. We will use the all-zeros encoding φ(′−′) = [0, 0, 0, 0, 0] for the token ′−′ (dash),
a special character that indicates no letter. Our RNN has the following design made of
three identical blocks:

1. The RNN first takes as input the game state s and x0 = [φ(′−′), φ(′−′)] and outputs
the probability that each letter appears in the first position, a1. We then sample the
first letter with the likelihood given by the probabilities a1 to produce our guess of
the first letter, g1.

2. To the second block, we pass in the same game state s from before and x1 =
[φ(g1), φ(′−′)], with the guess g1 from the previous block and a blank second let-
ter. The second block outputs the probability that each letter appears in the second
position, a2. We then sample the second letter with the likelihood given by the prob-
abilities a2 to produce our guess g2.

3. Finally we pass the same game state s and x2 = [φ(g1), φ(g2)] to the final block. The
third block predicts g3, the third letter, with the likelihood given by the probabilities
a3.

Our final prediction is the sequence of letters [g1, g2, g3]. Note that while in the diagram
we are using the letters as input, we actually would use the encoding φ from part (a).

i. For every guess, the game will return the game state s, which reflects what we know
about the word based on our previous guesses. For each position j ∈ {1, 2, 3} in the
word, we use the following encoding for game state at that position, sj :
1. [0, 0] for when the letter is not in this position in the word (including not in the

word at all),

Page 19

Name:

2. [0, 1] for when we don’t know if the letter is in this position or not,

3. [1, 1] for when the letter is in the word in this position.

What is the name for this type of encoding?

Solution: Thermometer encoding

ii. The game has given us the following information from our previous guesses:
1. A is not the second letter (not in the second position in the word);

2. E is the first letter (the first position in the word);

3. R is not the third letter (not in the third position in the word);

4. S is not in the word;

5. and our guesses have not generated additional information about T .

The encoding of the game state for the first position (first letter) in the word is

s1 = [[0, 0], [1, 1], [0, 0], [0, 0], [0, 0]]

where each element in the list is the encoding corresponding to knowledge about letter
A, E, R, S, and T , in sequence. The game state for the second letter in the word is:

s2 = [[0, 0], [0, 1], [0, 1], [0, 0], [0, 1]] .

Using the encoding above, give the encoding of the game state for the third position
in the word:

Solution: The game state for the third position in the word is:

s3 = [[0, 1], [0, 1], [0, 0], [0, 0], [0, 1]

Again, other encodings are possible, such as a 2D matrix where a row or column
corresponds to the encoding for our knowledge about a particular letter in the
position of interest.

iii. Recall the output activation function from part (c). If we want the predicted proba-
bility of a given letter to be (very close to) zero, what value should the pre-activated
input to the output activation function be?

Solution: Since the output activation in (c) is the softmax function, if we want
the probability to be close to zero, the pre-activated number going into the softmax
should be very negative, i.e., much less than the values for other letters.

iv. We want to guarantee that the model will not predict letters that we know from the
game state s cannot be at the given position. To do this, we will apply the following
neural network to the pre-activations zj of the output aj , where j indicates the jth

position. The pre-activations take into consideration xj−1, and this neural network
accounts for s.

Page 20

Name:

s_j : game state at position j shape [5, 2] -> [letter, encoding]

z_j : pre-activation of a_j, shape [5]

w : shape [1], b : shape [1]

s_j_summed = s_j.sum(axis=1) # shape [5]

condition, if_true, if_false = s_j_summed < 1, s_j_summed, 1

s_where = np.where(condition, if_true, if_false) # shape [5]

c_j = f_1(w * s_where + b)

a_j = f_2(z_j - c_j)

Assume w and b are forced to be values between -10 and 10, and f 2 is the output
activation function. Specify what the function f 1 should be, and values for w and b,
such that c j is nonzero when s j[i] == [0, 0] (the state for the ith letter in the
jth position) for all i but zero when s j[i] is [0, 1], or [1, 1] for any i. Note that
the value c j is subtracted from z j and keep in mind your answer to part (iii).

Solution: We want the argument of f 2 to be very negative and therefore c j

to be very positive. We can make f 1 a ReLU or linear and w and b equal in
magnitude with opposite sign, arriving at w = -10 and b = +10.

Page 21

Name:

Markovian Spins

7. (18 points) Pauli is in the lab measuring the direction of the spin of a qubit. We’re going to
help Pauli model their observations. The spin of the qubit can be in the state up ↑ or down ↓
along specific directions x or z, denoted as ↑ x, ↓ x, ↑ z, and ↓ z.
Pauli can apply one of two measurements, Mx or Mz, to observe the spin along the directions
x or z.

Pauli knows that qubits obey the following physics. If Pauli applies measurement...

1. Mx on ↑ x or ↓ x, they get back the same state, ↑ x or ↓ x, respectively.

2. Mz on ↑ z or ↓ z, they get back the same state, ↑ z or ↓ z, respectively.

3. Mx on state ↑ z or ↓ z, they observe a transition to ↑ x with 50% likelihood or to ↓ x with
50% likelihood.

4. Mz on state ↑ x or ↓ x, they observe a transition to ↑ z with 50% likelihood or ↓ z with
50% likelihood.

We would like to model Pauli’s measurements of the qubit as a Markov Decision Process. To
do this, we must define our states, actions, and transitions between states for each action.

(a) What are the state space S and action space A?

Solution: S = {↑ x, ↓ x, ↑ z, ↓ z}, and A = {Mx,Mz}

(b) Draw a diagram showing the transitions between states via actions Mx. Be sure to write
the probability of transitioning between states.

Solution:

(c) Draw a diagram showing the transitions between states via actions Mz. Be sure to write
the probability of transitioning between states.

Page 22

Name:

Solution:

(d) We want to calculate the value of the following policy π0:

• π0(↑ x) = π0(↓ x) = π0(↑ z) = Mz

• π0(↓ z) = Mx

Suppose we get a reward of 100 for measuring the state ↑ z with Mz, R(↑ z,Mz) = 100,
and the reward of all other state-action pairs is 0. Calculate the value of the policy π0
for horizon of 0 and horizon of 1 starting in ↑ z or ↓ z. Where appropriate, first express
your answer in terms reward function R(s, a) for the appropriate state s and action a
determined by the policy π0, before reducing the answer to the numerical values.

Solution:

V 0
π0(↑ z) = 0
V 1
π0(↑ z) = R(↑ z,Mz) + 0 = 100
V 0
π0(↓ z) = 0
V 1
π0(↓ z) = R(↓ z,Mx) + 0 = 0

(e) Calculate the value of the policy for horizon of 2, starting from ↑ x. Assume a discount
factor of γ, meaning leave your answers in terms of γ. Where appropriate, first express your
answer in terms reward function R(s, a) and transition model T (s, a, s′) for the appropriate
state s and s′ and action a determined by the policy π0, before reducing the answer to the
numerical values.

Solution:

V 2
π0(↑ x) = R(↑ x,Mz) + γ

∑
s′

T (↑ x,Mz, s
′)V 1

π0(s′)

= R(↑ x,Mz) + γ · 0.5 · V 1
π0(↑ z) + γ · 0.5 · V 1

π0(↓ z)
= 0 + γ · 0.5 · 100 + γ · 0.5 · 0 = 50γ

(f) We turn on a magnetic field pointing along the ↑ x direction, and this changes what
transitions occur when we make a measurement, in the following ways.

1. If we are in state ↑ z or ↓ z and measure with Mx, we are 80% likely to transition to
↑ x and 20% likely to transition to ↓ x.

Page 23

Name:

2. If we are in state ↓ x and measure with Mx, we are 30% likely to stay ↓ x and 70%
likely to transition to ↑ x.

3. All other transitions stay the same.

Draw a diagram showing the new transitions between states via actions Mx. Be sure to
write the probability of transitioning between states.

Solution:

(g) We continue with the magnetic field turned on. Suppose we get a reward of 100 for
measuring the state ↑ z with Mz and now we also get a reward of 10 for measuring the
state ↑ x with Mx, i.e., R(↑ z,Mz) = 100 and R(↑ x,Mx) = 10, respectively. Does the
value of the policy π0 for horizon of 2 starting in ↑ x change from part (e)? Why or why
not? If it does change, please calculate it. Assume a discount factor of γ, meaning leave
your answer in terms of γ. Where appropriate, first express your answer in terms reward
function R(s, a) for the appropriate state s and action a determined by the policy π0,
before reducing the answer to the numerical values.

Solution: V 2
π0(↑ x) remains unchanged under the new magnetic field.

V 2
π0(↑ x) = R(↑ x,Mz) + γ

∑
s′

T (↑ x,Mz, s
′)V 1

π0(s′)

= R(↑ x,Mz) + γ · 0.5 · V 1
π0(↑ z) + γ · 0.5 · V 1

π0(↓ z)
= 0 + γ · 0.5 · 100 + γ · 0.5 · 0 = 50γ

(h) We want to calculate the value of a new policy π1:

• π1(↑ x) = π1(↓ x) = π1(↓ z) = Mx

• π1(↑ z) = Mz

We continue with the rewards and transition probabilities from part (g) above.

If we start in ↑ x, what is value of new policy π1 with a horizon of 2? Again, assume a
discount factor of γ, meaning leave your answer in terms of γ. Where appropriate, first
express your answer in terms reward function R(s, a) for the appropriate state s and action
a determined by the policy π1, before reducing the answer to the numerical values.

Page 24

Name:

Solution:

V 2
π1(↑ x) = R(↑ x,Mx) + γ

∑
s′

T (↑ x,Mx, s
′)V 1

π1(s′)

= 10 + γ
(
R(↑ x,Mx) + γV 0

π1(↑ x)
)

= 10 + γ(10 + γ · 0) = 10 + 10γ

(i) To maximize expected reward, for what range of discount factors γ should Pauli choose
policy π1 instead of π0, for horizon 2 measurement of state ↑ x?

Solution:

Choose π1 when: V 2
π0(↑ x) < V 2

π1(↑ x)

50γ < 10 + 10γ

γ <
1

4

Page 25

Name:

Griddy-Greedy World

8. (10 points) We’re riding a bike in a 5-by-5 grid-world. We always start at the square with our
bicycle, (0,1). The shaded squares (1,2), (1,3), and (3,2) are pillars. Four possible actions,
North, South, East and West, allow us to navigate this world (the transitions will be detailed
in the parts below).

The state’s rewards are written on the squares, regardless of the action taken. For instance,
we receive a reward of −10 for any action taken in state (0,0). Those squares without numbers
written on them all incur 0 reward for any actions taken in them.

Squares (2,2) and (4,2) are special. When we reach either square, we get to make one final
action, collect a 1 reward if we were in (2,2), or a 10 reward if we were in (4,2), and the game
terminates. Our goal is to maximize the total reward we collect along the path we choose.

Page 26

Name:

(a) In this part, we assume a discount factor of 1.0 and deterministic transitions. If our action
would take us out of this world or into a pillar, we stay where we are. For instance, in
state (0, 1), a North action takes us to state (0,2); whereas in state (1,1), a North action
leaves us in state (1,1).

Suppose we run the value iteration algorithm for 1000 iterations. What would be the
optimal value of our initial state (0,1)? Is the corresponding best path unique (unique up
to but not including the last action chosen)? Draw out the actions as arrows taken at the
states along your best (or one of the best) path(s).

Solution: Best value is 10. The best path is not unique.

One possibility: East, East, East, East, North, Any.

Another possibility: North, North, North, East, East, East, East, South, South, Any
(recall that there’s no discounting, we get to “procrastinate” all we want).

(b) In this part, we keep all of the setup from the previous part, except that we change the
discount factor to 0.1.

Suppose we run the value iteration algorithm for 1000 iterations. What would be the
optimal value of our initial state (0,1)? Is the best path unique (unique up to but not
including the last action chosen)? Draw out the actions as arrows taken at the states along
your best (or one of the best) path(s).

Page 27

Name:

Solution: Best value is (0.1)3 · 1 = 0.001, and the path is unique this time: East,
East, North, Any.

To see this, we can work backwards:

V ∗(2, 2) = 1

V ∗(2, 1) = 0 + γ · V ∗(2, 2) = γ · 1
V ∗(1, 1) = γ2

V ∗(0, 1) = γ3 .

Because of strong discounting, it is better to go for the reward 1 square, than for the
reward 10 square (where V ∗ with discount would be γ5 · 10 = 0.0001).

(c) In this part, we now assume a discount factor of 0.99 (close to 1). As before, if our action
would take us out of this world or into a pillar, we deterministically stay where we are.

However, now all other transitions are no longer deterministic; instead, they all have a
“noisy transition” probability. Specifically, with probability 0.5, the next state is the “in-
tended” target state (i.e, the state in the direction indicated by the action). However, with
probability 0.5, the next state will instead be one of the horizontal or vertical reachable
neighbors of the target state (with equal probability).

As a concrete example, in state (0, 1), an East action takes us to state (1, 1) with probability
0.5, or to one of the other three reachable immediate neighbors of (1, 1) (which are (0, 1),
(1, 0), and (2, 1) but not (1, 2) because that is a pillar), each with probability 0.5 · 13 .

Would we still be able to run the value iteration algorithm? If yes, suppose we run the
value iteration algorithm for 1000 iterations. What would be the best path (or one of the
best paths) with respect to the expected value? Draw out the path.

If we cannot run the value iteration algorithm, explain what variable(s) might be missing
that prevents us from running value iteration in this part.

Solution: Yes, we’d still be able to run value iteration. This is because we still
have full access to both the transition and reward models (despite the fact that the
transition model is more complicated now).

Page 28

Name:

The path with the best expected value is now unique: North, North, North, East,
East, East, East, East, South, South, Any.

This avoids moving along row 1, where there is a substantial chance we will noisily
transition to the bottom row and get one or more -10 rewards as part of our overall
path reward. Similarly, we want to stay as far away as possible from the (2,2) square,
as we might noisily transition there and only get reward of 1.

(d) In this part, we keep all of the setup from part (c), including noisy transitions. We will try
reinforcement learning using Q-learning. We use a learning rate of 0.2 and “greedy” action
selection (that is, we always pick action with best Q value). In case of action selection
ties, we randomly select from the tied actions.

We run the Q-learning algorithm for 10000 episodes. Each episode starts in the square
(0,1), and we take actions until the game in that episode terminates.

Draw out the best path learned by our Q-learning algorithm.

Solution: All solutions are the same as part (c). Even though we are running a
purely greedy strategy, the random action tie-breaks as well as the noisy transitions
will “nudge” us off any particular path – as long as we run the algorithm long enough.
Indeed, since we run one-thousand episodes we’re highly likely to thoroughly explore
and learn near-optimal Q values on this small board.

Page 29

