
6.036: Final Exam, Spring 2021

• This is an open-book exam. You may use any materials you want (electronic or otherwise, including
notes, calculators, the 6.036 online material, Python, and Wikipedia) during the exam, but you are
not allowed to converse with other humans (including through text message, email, etc.) from the
time you start the exam until 24 hours afterward.

• It was designed to be a 3-hour exam, but you have an extra hour to help account for upload/download
time.

• You may complete it by: (a) printing the pdf, writing on it, and uploading photos or scans; (b) writing
on the pdf using a tablet and uploading the pdf; (c) writing answers on blank paper and uploading
scans or photos.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, indicate that you
are continuing your answer, write on a blank page and mark clearly what question is being continued.

• If a question seems vague or under-specified to you, make an assumption, write it down, and solve the
problem given your assumption.

• We will not be answering questions about the exam via email or Piazza. An exception is if you
are *very sure* there is a significant error, in which case, please make a private Piazza post. Any
information we provide in response will be emailed to the entire class.

Question: 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

Points: 1 8 8 10 10 6 8 8 5 10 8 12 6 100

Score:
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1 Name

1. (1 point) (a) Name:

(b) Kerberos (MIT username):

(c) I acknowledge that I am taking this examination without proctoring. I will not discuss
the contents or characteristics of this examination with any person other than the 6.036
instructors before Wednesday, May 26, 2021.

Signature:
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2 Transformative experience

2. (8 points) For each of the datasets below, find a transformation from the original data into a
single new feature φ((x1, x2)) such that the data is linearly separable in the new space, and
specify the parameters θ and θ0 of the separator in the transformed space.
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3 Feature encoding

3. (8 points) You are trying to predict whether start-up companies will succeed or fail, based on
the name of the company. You have the following data set:

x y

"Aardvarkia" +1

"Fro" +1

"Rodotopo" -1

"Whoodo" -1

You consider two different encodings of the features:

• One-hot encoding, with the first feature corresponding to “Aardvarkia,” the second to
“Fro,” third to “Rodotopo,” and fourth to “Whoodo.”

• Numerical encoding, using the numerical place of the first letter of the name in the
English alphabet (so ’A’ is 0 and ’Z’ is 25).

(a) Provide parameters of a 0-error linear separator using one-hot encoding.

(b) Provide parameters of a 0-error linear separator using the numeric encoding.

(c) You add a new company with name “Zzyyzygy” and class +1. If you extend the one-hot
encoding to add another feature corresponding to this company name, will this new data
set be linearly separable using the one-hot encoding? Explain briefly.
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(d) If you add this company to your data set but use the numeric encoding, is the new data
set linearly separable? Explain briefly.
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4 Off-balance logistic regression

4. (10 points) It is common in classification problems for the cost of a false positive (predicting
positive when the true answer is negative) to be different from the cost of a false negative
(predicting negative when the true answer is positive). This might happen, for example, when
the task is to predict the presence of a serious disease.

Let’s say that the cost of a correct classification is 0, the cost of a false positive is 1, and the
cost of a false negative (that is, you predict 0 when the correct answer was +1) is α.

Recall that the usual logistic regression loss is:

Lnll(g, y) = − (y · log g + (1− y) · log(1− g)) .

(a) What is the usual loss, as a function of guess g, when the true label y = 0?

(b) What is the usual loss, as a function of guess g, when the true label y = 1?

(c) Jon suggests using a simple modification of the usual logistic regression loss function. Write
down a loss function that penalizes false negatives α times more than false positives.
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(d) Jun proposes that we can find a classifier that optimizes the classification cost without
changing our logistic regression loss function, by rebalancing the training data, that is,
adding multiple copies of each of the points in one of the classes. For α = 3, explain
briefly how you would change the data.

(e) Would Jun’s approach result in a classifier that optimizes the classification cost when using
the Perceptron algorithm when the data are linearly separable? Explain briefly why or
why not.

(f) Would Jun’s approach result in a classifier that optimizes the classification cost when using
the Perceptron algorithm when the data are not linearly separable? Explain briefly why
or why not.
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(g) Usually, in logistic regression, we predict class +1 when a > 0.5 and -1 otherwise. Jin
proposes that we can use the standard logistic regression loss function and the same data
set, but change the threshold of 0.5 that we use to select a prediction. Would you increase
or decrease the threshold when α = 3?

© Increase © Decrease

(h) Suggest a strategy that Jin can use for picking a new threshold that minimizes our average
asymmetric cost of classification.
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5 Hyper active

5. (10 points) We have looked at many machine-learning algorithms with hyper-parameters. Vary-
ing each of them has an effect on the loss on both the training data and on unseen testing data.
Here are some plots of plausible ways that training or testing error might depend on the value
of a hyperparameter.

hyperparam
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L

hyperparam
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hyperparam
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L

E

For each of the following hyper-parameters, indicate which one of the plots above would be
the most typical behavior, for both training and testing error. If none of them is appropriate,
explain.

(a) λ: the weight on the regularization term in logistic regression

i. Training: © A © B © C © D © E © None
If None, explain briefly.

ii. Testing: © A © B © C © D © E © None
If None, explain briefly.

(b) η: the step-size in gradient descent for neural networks (assuming a fixed number of
iterations)

i. Training: © A © B © C © D © E © None If None, explain briefly.

ii. Testing: © A © B © C © D © E © None
If None, explain briefly.
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(c) D: the maximum depth of a decision tree

i. Training: © A © B © C © D © E © None
If None, explain briefly.

ii. Testing: © A © B © C © D © E © None
If None, explain briefly.

(d) k: the number of neighbors in nearest-neighbor classification

i. Training: © A © B © C © D © E © None
If None, explain briefly.

ii. Testing: © A © B © C © D © E © None
If None, explain briefly.

(e) T : the number of epochs of gradient-descent to perform

i. Training: © A © B © C © D © E © None
If None, explain briefly.

ii. Testing: © A © B © C © D © E © None
If None, explain briefly.
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6 HairNet and PairNet

6. (6 points) In this question, we’ll look at two neural-network structures and compare and con-
trast to convolutional neural networks. The PairNet is the same as from NQ4, but you don’t
need to remember it.

PairNet definition: The PairNet is parameterized by (a) the weights W of a small network
NN and (b) one more scalar w0. If there are a total of d features in the input, it has the final
form of:

y = σ(w0 +
∑

j∈{1,...,d},k∈{1,...,d},j 6=k

NN([xj , xk];W ))

The small neural network, parameterized by weights W , takes a two-dimensional vector as input
and generates a scalar output. We write it as NN([xi, xj ];W ). If this smaller neural network
has multiple layers, then W includes all the weights of all the layers, including offsets. We
apply PairNet to an image by letting xi and xj be pairs of pixel values drawn from throughout
the input image, and d is the total number of pixels.

HairNet definition: A hairnet has hairy layers and max pooling layers. A hairy layer is a
lot like a convolutional layer, but it uses a different set of weights on each image patch.

Define the local 3 x 3 region of the (zero-padded) input image I around pixel i, j:

R(I, i, j) = (Ii−1,j−1, Ii−1,j , Ii−1,j+1,

Ii,j−1, Ii,j , Ii,j+1,

Ii+1,j−1, Ii+1,j , Ii+1,j+1)

where Ii,j is the pixel i, j of I. Pixel i, j of the output image is computed as the dot product

of R(I, i, j) and a weight vector and offset for each image location, W i,j and W i,j
0 . So output

pixel Oi,j = W i,jTR(I, i, j) +W i,j
0 .

(a) Consider the number of parameters in a HairNet. Is it bigger or smaller than a fully
connected network on an image of size 100 x 100? Explain briefly.
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(b) For a 100 x 100 image, is the number of parameters in a HairNet bigger or smaller than
a CNN with a single convolutional layer with a 3 x 3 filter? Explain briefly.

CNNs are often described as exploiting spatial locality and translation invariance.

(c) PairNets exploit © spatial locality © translation invariance © both © neither
Explain your answer briefly.

(d) HairNets exploit © spatial locality © translation invariance © both © neither
Explain your answer briefly.
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The parameters of a CNN trained on images of one size can often be applied successfully to
images of another size.

(e) Is this true of PairNet? © Yes © No Explain your answer briefly.

(f) Is this true of HairNet? © Yes © No Explain your answer briefly.
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7 Snakes and ladders

7. (8 points) You are playing a simplified version of a classic game, sometimes called “Snakes and
Ladders” in English.

• You are moving up a 1-dimensional track with squares s1, s2, s4, s5, s7, as shown above.

• You have two actions: climb and quit.

• If you climb from state si then with probability 0.5 you go up one square, and with
probability 0.5 you go up two squares.

• However! if the square you land on has a ladder going up from it, then you automatically,
instantaneously, with probability 1 move to the square the ladder goes to.

• And! if the square you land on has a snake going down from it, then you automatically,
instantaneously, with probability 1 move to the square the snake goes to.

• So: for example, in our case, if you start in state s5 and climb there is a .5 chance you’ll
end up in square s2 (because you move up one but hit a snake and fall back down) and a
.5 chance you’ll end up in square s7. If you climb from s7 then you will go back to square
1 with probability 1.0.

• If you quit then the game is over and you get to take no further actions.

• Each new episode starts in state s1.

• The reward for choosing climb in any state is 0.

• The reward for choosing quit in state si is i.

In the following, you need to supply actions or Q-values for the states s1, s2, s4, s5 and s7.
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(a) What is the optimal horizon 1 policy?
s1 s2 s4 s5 s7

(b) If you initialize the Q values of all the states to 0, and do one iteration of undiscounted
(γ = 1) value iteration, what is the resulting Q value function?

s1 s2 s4 s5 s7

Q(s,quit)

Q(s, climb)

(c) If γ = 1 (that is, there is no discounting) what is the optimal infinite-horizon policy?
s1 s2 s4 s5 s7

(d) Now let’s consider discounting. State an inequality involving numeric values, γ, Q(s2, climb),
and Q(s7, climb), specifying the condition under which the optimal action in s5 is to quit.
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8 Sneaking snakes and lurking ladders

8. (8 points) Note that this is a continuation of question 7. The answers are independent, but the
problem set-up is shared.

What if we have to play snakes and ladders, but we don’t know where the snakes and ladders
actually are? Assume we know the rewards, but not the transition model. We’ll use Q learning
to address this problem.

During learning, after executing the quit action and getting a reward, a new learning episode
is initialized, after we go back to square 1. We will use a discount factor of γ = 1 throughout.

(a) Why is value iteration not a good choice of algorithm for this problem?

(b) If we do purely greedy action selection during Q-learning (that is ε = 0), starting from all
0’s in our Q table and where ties are broken in favor of the climb action, what (roughly)
will the Q function be after 1000 steps?

(c) If we do purely greedy action selection during Q-learning (that is ε = 0), starting from all
0’s in our Q table and where ties are broken in favor of the quit action, what (roughly)
will the Q function be after 1000 steps?
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(d) Assume we start with a tabular Q function on states s1, s2, s4, s5 and s7, initialized to all
0’s. Then we get the following experience, consisting of three trajectories, shown below as
(state, action, reward) tuples.

Using learning rate α = 0.5, what is the Q function after each of these trajectories? (You
only need to fill in the non-zero entries). Do not reset all your Q values back to 0 after
each trajectory—assume this is all a single execution of the Q learning algorithm on 3
episodes of experience.

Trajectory 1: ((s1, climb, 0), (s2, climb, 0), (s5, climb, 0), (s7,quit, 7))

s1 s2 s4 s5 s7

Q(s,quit)

Q(s, climb)

Trajectory 2: ((s1,quit, 1))

s1 s2 s4 s5 s7

Q(s,quit)

Q(s, climb)

Trajectory 3: ((s1, climb, 0), (s2, climb, 0), (s5, climb, 0), (s7,quit, 7))

s1 s2 s4 s5 s7

Q(s,quit)

Q(s, climb)
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9 Grid bug?

9. (5 points) Kim is running Q learning on a simple 2D grid-world problem and visualizes the
current Q value estimates and greedy policy with respect to the current Q value estimates
at each location. States correspond to squares in the grid, actions are north, south, east,
and west, and there is a single state with non-zero reward. Assume the transition model is
deterministic and action north moves you one square up, etc., except at the boundaries of the
domain. Diagonal moves are not possible.

(a) Define the following in terms of the current estimated action-value function, Q̂.

i. The greedy policy with respect to Q̂ for state s:

π(s) =

ii. The estimated value of state s: V̂ (s)

V̂ (s) =

(b) Kim sees the situation below while their algorithm is running. The numbers in the boxes
correspond to the estimated V̂ values for the states neighboring state s, and the arrow
indicates the greedy action with respect to Q̂ for state s. All of the states shown have 0
reward values.

2.2

0.9

3.1

1.7 <latexit sha1_base64="EqyAXjgAHq+CAmQCpGvW6LnX5nQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpu6XK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9y2qteVGp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4O+M/g==</latexit>s

Explain briefly why this situation might be concerning.
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(c) Does this situation mean that there is a bug in Kim’s Q-learning implementation? Explain
briefly why or why not.
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10 Heavy neighbors

10. (10 points) Given a set of data Dtrain = {(x(i), y(i))}, a weighted nearest neighbor regressor
has the form

h(x; θ) =

∑
(x(i),y(i))∈Dtrain

f(x, x(i); θ)y(i)∑
(x(i),y(i))∈Dtrain

f(x, x(i); θ)
.

A typical choice for f is
f(x, x′; θ) = e−θ‖x−x

′‖2

where θ is a scalar and ‖x − x′‖2 =
∑d

j=1(xj − x′j)2. One way to think about this is that the
prediction at a new point x is a weighted combination of the outputs at all the training points,
with training points closer to x having more influence than those that are far away.

(a) Assume our training data Dtrain = ((1, 1), (2, 2), (3, 6)). What is h(10; 0)? That is, letting
θ = 0, what is our prediction for x = 10?

(b) On this same data set, approximately what is h(10; 1)?
Just give us the closest integer—calculator should not be required.
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(c) How does this prediction (for θ = 1) compare (qualitatively) to the prediction that would
result from linear regression on this same model? Why might we prefer one over the other?

(d) If we were only ever going to have to make predictions on the training data, what value
of θ would tend to minimize our prediction error?

(e) Dino thinks the denominator in the definition of h is not useful and it would be fine to
remove it. Is Dino right? Explain briefly.
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11 DeepRNN

11. (8 points) Ronnie makes a simple RNN with state dimension 1 and a step function for f1, so
that

st = step(w1xt + w2st−1 + b)

where step(z) = 1 if z > 0.0 and equals 0 otherwise, and where the output

yt = st .

(a) Assuming s0 = 0, what values of w1, w2 and b would generate output sequence

[0, 0, 0, 1, 1, 1, 1]

given input sequence
[0, 0, 0, 1, 0, 1, 0]

w1 =

w2 =

b =

(b) Now Ronnie wants to make their machine generate output sequence

[1, 1, 1, 0, 0, 0, 1, 1]

given input sequence
[0, 0, 0, 1, 0, 0, 1, 0]

Assuming s0 = 1, provide the desired st value for each possible combination of xt and st−1
values, for this example sequence.

xt st−1

0 0

0 1

1 0

1 1
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(c) Rennie thinks this is not possible using Ronnie’s architecture. Rennie makes an argument
based on the relationships in the table above. Is Rennie right?
© This is not possible © This is possible

If you answered not possible, explain why and describe a change to this architecture that
can implement this mapping. If you answered possible, provide parameters w1, w2, and
b that implement this mapping.
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12 Trees that bend

12. (12 points) Here is a standard regression tree of a fixed size. It has 5 scalar parameters
(s1, s2, v1, v2, v3) and two discrete choices of feature to split on, denoted by integers j and
k.

<latexit sha1_base64="SbBBGwRlApiWod4UvJzcZjb1RD8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Vqg+X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAK7o2l</latexit>v1
<latexit sha1_base64="nF/hKKw2bC3IpKmy2JJXQTjgqP4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB8uy7XbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEMco2m</latexit>v2

<latexit sha1_base64="cmnRYxtJfp1amkjOcdmpTyRQ7I8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedIslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlSsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADfaNpw==</latexit>v3

no yes

no yes

<latexit sha1_base64="POO8mPn4PEeBlwfMKLPF79NgDPU=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrtF1JMUvXisYD+kXZZsmm1jk+ySZMWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YcKZNq777Swtr6yurRc2iptb2zu7pb39po5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh8Hritx6p0iyWd2aUUF/gvmQRI9hY6f4peECXSAdeUCq7FXcKtEi8nJQhRz0ofXV7MUkFlYZwrHXHcxPjZ1gZRjgdF7uppgkmQ9ynHUslFlT72fTgMTq2Sg9FsbIlDZqqvycyLLQeidB2CmwGet6biP95ndREF37GZJIaKslsUZRyZGI0+R71mKLE8JElmChmb0VkgBUmxmZUtCF48y8vkma14p1Vqren5dpVHkcBDuEITsCDc6jBDdShAQQEPMMrvDnKeXHenY9Z65KTzxzAHzifP5Rgj50=</latexit>

xj > s1

<latexit sha1_base64="OlurbT8Ilwn93WLl7zAQA6aXFjU=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktop6k6MVjBfsh7bJk02wbmmSXJCuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2Ho5up336kSrNY3ptxQn2BB5JFjGBjpYenYISukA5qQbniVt0Z0DLxclKBHI2g/NXrxyQVVBrCsdZdz02Mn2FlGOF0UuqlmiaYjPCAdi2VWFDtZ7ODJ+jEKn0UxcqWNGim/p7IsNB6LELbKbAZ6kVvKv7ndVMTXfoZk0lqqCTzRVHKkYnR9HvUZ4oSw8eWYKKYvRWRIVaYGJtRyYbgLb68TFq1qnderd2dVerXeRxFOIJjOAUPLqAOt9CAJhAQ8Ayv8OYo58V5dz7mrQUnnzmEP3A+fwCXbo+f</latexit>

xk > s2

We are given a training data set Dtrain = {(x(j), y(j))} where the dimension of x(j) is d.

(a) Explain briefly why we cannot use gradient descent on a squared loss to optimize all the
parameters of this predictor.
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Terry would like to make a “smoother” tree by replacing the tests at the nodes with neural-
network logistic classifiers and by combining predictions from the branches, so that we can
think of the tree as a parametric model and optimize the parameters using gradient descent.
More concretely, at each internal node, the test will be replaced by NN(x; θ), a neural network
that takes an entire input vector x, of dimension d, as input and generates an output in the
range [0, 1] by using a sigmoid unit on the output.

You can think of any node Ti of a tree as producing an output value as follows:

• If Ti is a leaf, then the output on input x, Ti(x), is a constant vi.

• If Ti is an internal node with children Tno (corresponding to the “no” branch) and Tyes
(corresponding to “yes” branch), then the output on input x is

Ti(x) = (1−NN(x; θ(i)))Tno(x) + NN(x; θ(i))Tyes(x) .

That is, it is a weighted combination of the results of the children, where the neural network
at the parent node, with parameters θ(i), modulates the combination of the results of the
children.

We will consider the specific case where NN is a single unit with a sigmoidal activation function,
so that

NN(x;W (i),W
(i)
0 ) = σ(W (i)Tx+W

(i)
0 )

where W (i) is a vector of length d and W
(i)
0 is a scalar and σ is the sigmoid function.
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(b) Consider the dataset shown in the plot below right, where d = 2. Each integer value on
the plot (one of 5, -2, or 8) corresponds to a datapoint whose input x features are the
coordinates of the point on the plot and whose output y value is the printed number.

<latexit sha1_base64="H49+bj9fUQcutGEddlX0EQX8jdM=">AAACCXicbZDLSgMxFIYzXmu9VV26CRahBSkzRVRwU3TjqlSwF2jrkEnTNjSTGZIz0jJ068ZXceNCEbe+gTvfxrSdhbb+EPj4zzmcnN8LBddg29/W0vLK6tp6aiO9ubW9s5vZ26/pIFKUVWkgAtXwiGaCS1YFDoI1QsWI7wlW9wbXk3r9gSnNA3kHo5C1fdKTvMspAWO5GdwCNoS4XB7nhpe4fh/nnPz4BNdde4Z5N5O1C/ZUeBGcBLIoUcXNfLU6AY18JoEKonXTsUNox0QBp4KN061Is5DQAemxpkFJfKbb8fSSMT42Tgd3A2WeBDx1f0/ExNd65Hum0yfQ1/O1iflfrRlB96IdcxlGwCSdLepGAkOAJ7HgDleMghgZIFRx81dM+0QRCia8tAnBmT95EWrFgnNWKN6eZktXSRwpdIiOUA456ByV0A2qoCqi6BE9o1f0Zj1ZL9a79TFrXbKSmQP0R9bnDxa3mAQ=</latexit>

NN(x; W (1), W
(1)
0 )

<latexit sha1_base64="YNXXbE1LKoOWEZDQ9poeS7MCxuU=">AAACCXicbZC7SgNBFIZnvcZ4W7W0GQxCAhJ2g6hgE7SxChFMNpCsy+xkkgyZvTBzVhKWtDa+io2FIra+gZ1v4+RSaOIPAx//OYcz5/djwRVY1rextLyyurae2chubm3v7Jp7+3UVJZKyGo1EJBs+UUzwkNWAg2CNWDIS+II5fv96XHcemFQ8Cu9gGDM3IN2QdzgloC3PxC1gA0grlVF+cImd+zRfKoxOsONZUyx4Zs4qWhPhRbBnkEMzVT3zq9WOaBKwEKggSjVtKwY3JRI4FWyUbSWKxYT2SZc1NYYkYMpNJ5eM8LF22rgTSf1CwBP390RKAqWGga87AwI9NV8bm//Vmgl0LtyUh3ECLKTTRZ1EYIjwOBbc5pJREEMNhEqu/4ppj0hCQYeX1SHY8ycvQr1UtM+KpdvTXPlqFkcGHaIjlEc2OkdldIOqqIYoekTP6BW9GU/Gi/FufExbl4zZzAH6I+PzBxnQmAY=</latexit>

NN(x; W (2), W
(2)
0 )

<latexit sha1_base64="SbBBGwRlApiWod4UvJzcZjb1RD8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Vqg+X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAK7o2l</latexit>v1
<latexit sha1_base64="nF/hKKw2bC3IpKmy2JJXQTjgqP4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB8uy7XbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEMco2m</latexit>v2

<latexit sha1_base64="cmnRYxtJfp1amkjOcdmpTyRQ7I8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedIslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlSsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADfaNpw==</latexit>v3
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Provide the parameters of a tree-predictor, corresponding to the model shown above left,
that make accurate predictions on the dataset.

W (1) =

W
(1)
0 =

W (2) =

W
(2)
0 =

v1 =

v2 =

v3 =
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(c) What is ∂T1(x)/∂W (1) in this particular model? Please use the following shorthand:

• T = T1(x)

• O = NN(x;W (1),W
(1)
0 )

• Tno = the output of the “no” branch of T1

• Tyes = the output of the “yes” branch of T1

Express your answer in terms of these quantities, x, and parameters (W (1),W (2),W
(1)
0 ,W

(2)
0 , v1, v2, v3),

as needed, but do not leave any derivatives in it.

(d) Tori thinks that since regression trees have repeated structure, similar to a CNN, that we
should use the same weight vector W and offset W0 at all the internal nodes. Explain the
hypothesis class that results.
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13 Discretization

13. (6 points) Sam wants to build a neural network that takes in a scalar value x in the range [0, 1]
and generates a one-hot output vector y of dimension K, where, for k ∈ {0, 1, . . . ,K−1}, yk = 1
if and only if k/K < x ≤ (k + 1)/K; that is, it discretizes the interval into K equally sized
sequential ranges. Please don’t worry about precisely what the output is at the boundaries of
the intervals.

They choose an architecture with a single linear layer with weights W and W0 and a softmax
activation function, so that the output

a = softmax(z)

where
z = W Tx+W0 .

Assume that, for prediction purposes, we are going to take the output of the network, a, and
convert it into a K-dimensional one-hot vector (y0, . . . , yk−1) where

yi =

{
1 if i = arg maxj aj

0 otherwise

That is, it has a value of 1 at the index corresponding to the maximal element of a and value
0 everywhere else.

(a) How many trainable weights does this network have when K = 10?
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(b) Let’s consider the case of K = 3. On the axes below, draw the three components of the
z vector, z0, z1, and z2, as a function of x so that the resulting y will provide a correct
discretization of the interval into three equal regions. (There are many correct solutions.)

<latexit sha1_base64="JAu09ZBtP9D6nViMwzzD+tLiHj4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1C9K1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOiDjQM=</latexit>x

<latexit sha1_base64="sp78TYbCPXvrzZe6qPTFMBbL3Yo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJUY9ELx4hkUcCGzI79MLI7OxmZtYECV/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1C9K1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOuLjQU=</latexit>z

<latexit sha1_base64="gYJa+h4eRi6XDaD289+2EUHPjMA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe2OMuw==</latexit>

0
<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

(c) Provide a set of weight values that will discretize the unit interval into 3 equal parts,
with output predictions y = [1, 0, 0] for x ∈ [0, 1/3], y = [0, 1, 0] for x ∈ [1/3, 2/3],
and x = [0, 0, 1] for x ∈ [2/3, 1]. Please don’t worry about exactly what happens at the
boundaries!!!

W0 =

W =
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