Name:

Autoencoder

4. (14 points) Otto N. Coder is exploring different autoencoder architectures. Consider the fol-
lowing autoencoder with input 2 € R? and output 7% € R%. The autoencoder has one hidden
layer with m hidden units: 2V, ) € R™.

1 (2)
[ /W) w a ,(2)g
yPred,

b(2)

20— g 4 pM)
a® = fWM)Y clement-wise
22 — W@, 4 32

yPred = 1) (2(2)) element-wise

(a) Assume z, z(®), and yP"*? have dimensions d x 1. Also let z(!) and a") have dimensions
m X 1. What are the dimensions of the following matrices?

W p(1) W@ b(2)

m X d m X 1 dxm dx1
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Otto trains the autoencoder with back-propagation. The loss for a given datapoint x,y is:

1

1
J(z,y) = Sl =yl = S = )" (7 - y)

Compute the following intermediate partial derivatives. For the following questions, write
your answer in terms of z, y, y?"¢, WO M) W@ p@ O £2) and any previously
computed or provided partial derivative. Also note that:

1. Let 0fM/92z(1) be an m x 1 matrix, provided to you.

2. Let f® /822 be a d x 1 matrix, provided to you.

3. If Az = y where A is a m xn matrix and x is nx 1 and y is m x 1, then let dy/0A = x.

4

. In your answers below, we will assume multiplications are matrix multiplication; to
indicate element-wise multiplication, use the symbol .

(b) Find 0.J/0y"*?, a d x 1 matrix.

Solution:
oJ
= (y

aypred -

pred

Y)

(¢) Find 8J/02®), a d x 1 matrix. You may use 0J /0y and * for element-wise multipli-
cation.

Solution:

oJ  9J oypred

02(2) — gypred §;(2)
o aJ *af@)

- aypred H2(2)

Check: (d x 1) = (d x 1) % (d x 1) dimensioned arrays; element-wise multiplication.

(d) Find 8.J/0W P, a d x m matrix. You may use 9.J/0z(3).

Solution:

o.J o 9.7

W@ ~ 922 oW @)
oJ T oJ
- M+ = 1) (71 (ANT
5 o BAIUGRERN )

Check: (d x m) = (d x 1)(1 x m) dimensioned arrays. Note that we also accept a(!)
even though it was not explicitly provided.
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(e) Write the gradient descent update step for just W for one datapoint (z,y) given learning
rate 17 and 0.J/OW (2.

Solution: o )
2 . w®@ _ Y
W =W n W@

(f) Otto’s friend Bigsby believes that bigger is better. He takes a look at Otto’s neural network
and tells Otto that he should make the number of hidden units m in the hidden layer very
large: m = 10d. (Recall that z(!) has dimensions m x 1.) Is Bigsby correct? What would
you expect to see with training and test accuracy using Bigsby’s approach?

Solution: No; training accuracy might be high, but this would likely be due to over-
fitting and lead to worse test accuracy.

(g) Otto’s other friend Leila says having more layers is better. Let m be much smaller than
d. Leila adds 10 more hidden layers all with linear activation before Otto’s current hidden
layer (which has sigmoid activation function f(1)) such that each hidden layer has m
units. What would you expect to see with your training and test accuracy, compared to
just having one hidden layer with activation f(1)?

Solution: The intermediary hidden layers do not add any expressivity to the network,
and we would expect similar training and test accuracy as compared to the single
f@ hidden layer network. This may, however, require different number of training
iterations with the same available data, in order to achieve similar accuracy.
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(h) Another friend Neil suggests to have several layers with non-linear activation function.

He says Otto should regularize the number of active hidden units. Loosely speaking, we

consider the average activation of a hidden unit j in our hidden layer 1 (which has sigmoid
(1)

activation function f(l)) to be the average of the activation of a;’ over the points x; in

our training dataset of size IV:
~ 1 N 1

Assume we would like to enforce the constraint that the average activation for each hidden
unit p; is close to some hyperparameter p. Usually, p is very small (say p < 0.05).

What is the best format for a regularization penalty given hyperparameter p and the
average activation for all our hidden units: p;? Select one of the following:

O Hinge loss: X; max (0, (1 — p;)p)
1—
v/ NLL: %; <—p10g 5 —(1—p)log ((1_5].)))
v/ Squared loss: X;(p; — p)?
O 12 norm: %;(p;)?

Solution: Either NLL or squared loss should work, encouraging p and p; to be close.
NLL loss might better handle wide range in the magnitudes of p;.

(i) Which pass should Otto compute p; on? Select one of the following:

v/ Forwards pass
(O Backwards pass
(O Gradient descent step (weight update) pass
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