


Name:

Negative Reward

Now consider the case where this MDP has negative reward. In this scenario, the reward
is R(s, next) = �1 for all states, except for state sk where the reward is R(sk, next) = 0.
Again, there is only one action, next, and the decision policy remains ⇡A(s) = next for all
s. We always start at state s1 and each arrow has a deterministic transition probability
p = 1. There is no transition out of the end state END, and zero reward for any action
from the end state, i.e., R(END,next) = 0.

(d) Calculate V⇡(s) for each state in the finite-horizon case with horizon h = 1, k = 4, and
discount factor � = 1.

Solution:

V
1
⇡ (s4) = 0

V
1
⇡ (s3) = �1

V
1
⇡ (s2) = �1

V
1
⇡ (s1) = �1

(e) Calculate V⇡(s) for each state in the infinite horizon case with k = 4 and discount factor
� = 0.9.

Solution:

V⇡(s4) = 0

V⇡(s3) = �1 + � ⇤ 0 = �1

V⇡(s2) = �1 + 0.9(�1) = �1.9

V⇡(s1) = �1 + 0.9(�1.9) = �2.71

(f) Derive a formula for V⇡(s1) that works for any value of (is expressed as a function of) k

and � for this negative reward MDP with infinite horizon. Recall that
Pn

i=0 �
i = (1��n+1)

(1��) .

Solution: At every step, we receive a reward of -1, except for the k
th step, where we

receive a reward of 0. Therefore, the summation is

k�1X

i=0

�1 ⇤ �i+0⇤�k�1 = �1⇤�0�1⇤�1�1⇤�2+ ...�1⇤�k�2+0⇤�k�1 = �1� �
k�1

1� �
.
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Name:

Positive and Negative Reward

Consider the MDP below with negative rewards for some R(s, a) and positive rewards for
others. Now there are two actions, next and stop. The solid arrows show the probabilities
of state transitions under action next; the dashed arrows show the probability of state
transitions under action stop. (If there is no dashed arrow from a state, that indicates a
probability p = 0 of transitioning out of that state under action stop.) The correspond-
ing rewards R(si, a) are also indicated on the figure below. Note that the rewards are
R(si, next) = �1 for all si, except for state s4, where the reward is R(s4, next) = 10.
Finally, under action stop, we have reward R(s1, stop) = r (some unknown value r), and
R(s, stop) = 0 for all other states. As before, we always start in state s1. There is no
transition out of the end state END, and zero reward for any action from the end state,
i.e., R(END,next) = R(END, go) = 0. Assume discount factor � and infinite horizon.

(g) We consider two possible policies: ⇡A(s) = next for all s, and ⇡B(s) = stop for all s. Your
goal is to maximize your reward. When you start at s1, you have reward 0 before taking
any actions. Determine what r should be, so that it is best to run this MDP under policy
⇡B rather than policy ⇡A. Give your answer as an expression for r involving p and �.

Solution: Under policy ⇡A:

V⇡(s4) = 10

V⇡(s3) = �1 + p�V⇡(s4) + (1� p)�V⇡(end) = �1 + p� · 10
V⇡(s2) = �1 + p�V⇡(s3) = �1� p� + (p�)2 · 10
V⇡(s1) = �1 + p�V⇡(s2) = �1� p� � (p�)2 + (p�)3 · 10

Under policy ⇡B, we simply have V⇡(s1) = r. So we should choose policy ⇡B when

r > �1� p� � (p�)2 + (p�)3 · 10

As an example, for � = 1 and p = 0.9, r is 4.58.
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