PROBLEM 6

Problem 5 Consider a robot that can either stand still and CHARGE (using its solar
panels) or it can scurry around and EXPLORE. The robot’s state (as we measure it)
represents only how charged its battery is and can be EMPTY, LOW or HIGH. The
robot is very eager to explore and this is how the rewards are set. The MDP transition
probabilities and rewards are specified as shown below.

s a s’ T(s,a,s’) | R(s,a)
HIGH EXPLORE LOW 1.0 +2
LOW  EXPLORE EMPTY 1.0 +2

EMPTY EXPLORE EMPTY 1.0 -10
HIGH CHARGE  HIGH 1.0 0
LOW  CHARGE  HIGH 1.0 -1

EMPTY CHARGE HIGH | 1.0 -10

Note that the reward only depends on the robot’s current state and action, not the state
that it transitions to.

(5.1) (3 points) Based on the transitions and rewards (without further calculation),
what is the optimal policy for this robot if we set the discount factor v = 07
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(5.2) (4 points) Could changing the discount factor 7 change the optimal a¢tion to
take in any state? (check all that apply)
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(5.3) (4 points) Let’s see how the robot values its states, and recovers those values
through value iteration, when the discount factor is set to v = 0.5. We start with
all zero values as shown in the first value column. Please fill out the table

s Vo(s) | Va(s) | Va(s)
EMPTY | 0 |~0 | =9
LOW 0 2 | O
HIGH 0l 2 | »

(5.4) (4 points) If the robot uses values V5(s) as the true (converged) values, which
action would it take in state s = LOW? (Show your calculation)
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change from CHARGE because, even though both CHARGE and
EXPLORE appear to cost the same -10 in the table, performing a
CHARGE leads to higher reward states.

Recall that V(s) = max, Q(s,a). The possible s’ in this model for

s =EMPTY are EMPTY and HIGH. We determine Q2 (EM PTY, EXPLORE)

and Q2(EMPTY,CHARGE) and take the max of the two to be
Vo(EMPTY).

Q2(EMPTY, EXPLORE) = =10+ 0.5 % V{(EMPTY) = —15

Q2(EMPTY,CHARGE) = —10 4+ 0.5 « Vi (HIGH) = —9
So Voa(EMPTY) = —9.

Solutions are fine.

Recall that the normal vector to a hyperplane is defined as the 6
parameter. The hidden sign units in this network perform the same
kind linear combination with an offset that our signed hyperplanes
use.

Using the fact that the hidden units act as linear classifiers, we can
draw decision boundaries that separate the signed points (orientation
is important). Multiple solutions.

Solutions are fine.

Solutions are fine.

Solutions are fine.
We get the optimal policy from the largest Q1 (s, a)-values.
We can get the Vi (s) values from the largest Q(s,a) values.

Recall that the margin of a dataset with respect to a separator is
the minimum margin of all points in the dataset with respect to the
separator. Removing a single point can result in the margin of the
dataset increasing (if the removed point had the minimum margin)
or staying the same (if it did not).

If there were a separator for the dataset with some of the coordinates
omitted, then the same separator (with 0 weights for the omitted
coordinates) would still separate the original dataset.

The setup of this problem is unusual because we are given a fixed set
of classifiers H = {hi, ho, h3} and select one based on a training set
error. The parameters of the classifiers do not actually depend on
the training set, and the test set error is fixed for a particular choice
of classifier. We are also told the relative test errors are £(hy) <
E(hg) < E(hg). The point of the problem is to see how the function
we choose given a training set changes with the number of training
points.



