
Name:

We Recur!

7. (12 points) We have seen in class recurrent neural networks (RNNs) that are structured as:

z
1
t = W

ss
st�1 +W

sx
xt

st = f1(z
1
t )

z
2
t = W

o
st

pt = f2(z
2
t )

where we have set biases to zero. Here xt is the input and yt the actual output for (xt, yt)
sequences used for training, with pt as the RNN output (during or after training).

Assume our first RNN, call it RNN-A, has st, xt, pt all being vectors of shape 2⇥1. In addition,
the activation functions are simply f1(z) = z and f2(z) = z.

(a) For RNN-A, give dimensions of the weights:

W
ss: 2⇥ 2 W

sx: 2⇥ 2 W
0: 2⇥ 2

(b) We have finished training RNN-A, using some overall loss J =
P

t Loss(yt, pt) given the
per-element loss function Loss(yt, pt). We are now interested in the derivative of the
overall loss with respect to xt; for example, we might want to know how sensitive the loss
is to a particular input (perhaps to identify an outlier input). What is the derivative of
overall loss at time t with respect to xt, @J/@xt, with dimensions 2 ⇥ 1, in terms of the
weights W

ss
,W

sx
,W

0 and the input xt? Assume we have @Loss/@z
2
t , with dimensions

2⇥ 1. Use ⇤ to indicate element-wise multiplication.

Solution:

@J

@xt
=

@Loss

@xt
=

@z
2
t

@xt

@Loss

@z
2
t

=
@z

1
t

@xt

@z
2
t

@z
1
t

@Loss

@z
2
t

= W
sxT

W
oT @Loss

@z
2
t

Check: (2⇥ 1) = (2⇥ 2)(2⇥ 2)(2⇥ 1) matrix dimensions.

Or more generally, for xt being (d⇥ 1), st and z
1
t being (m⇥ 1), and pt and z

2
t being

(n⇥ 1), then W
sx has dimensions (m⇥ d) and W

o has dimensions (n⇥m). Then the
above derivative dimension check is (d⇥ 1) = (d⇥m)(m⇥ n)(n⇥ 1) dimensions.

Page 20



Name:

Now consider a modified RNN, call it RNN-B, that does the following:

z
1
t = W

ssx


st�1

xt

�

st = z
1
t

z
2
t = W

ox


st

xt

�

pt = f2(z
2
t )

where st, xt, pt are all vectors of shape 2⇥ 1,


st�1

xt

�
and


st

xt

�
are vectors of shape 4⇥ 1.

(c) For RNN-B, give dimensions of the weights:

W
ssx: 2⇥ 4 W

ox: 2⇥ 4

(d) Imagine we are using RNN-B to generate a description sentence given an input word, as
in language modeling. The input is a single 2⇥ 1 vector embedding, x1, that encodes the
input word. The output will be a sequence of words p1, p2, ..., pn that provide a description
of that word. In this setting, what would be an appropriate activation function f2?

Solution: Softmax to select a best next word.

(e) Continuing with RNN-B for one-to-many description generation using our language mod-
eling approach, we calculate p1 in a forward pass. How do we calculate x2 (what is x2

equal to)?

Solution: x2 = p1

(f) For RNN-B, we are also interested in the derivative of loss at time t with respect to xt,
@Loss/@xt. Indicate all of the following that are true about RNN-B, and the derivative
of loss with respect to xt :

p
@Loss/@xt depends on W

ox

p
@Loss/@xt depends on all elements of W ox

p
@Loss/@xt depends on W

ssx

� @Loss/@xt depends on all elements of W ssx

Solution: The stacking of st and st�1 with x means we need to carry through the
di↵erentiation carefully.

@Loss

@xt
=

@Loss

@z
2
t

dz
2
t

dxt

Page 21



Name:

Since z
2
t = W

ox


st

xt

�
we might think that only the third and fourth columns of W ox

multiply by the two elements of xt and so only a subset of the elements of W ox come
into play when we take dz

2
t /dxt. However, st also depends on xt through W

ssx, and
so all elements of W ox matter when we take dz

2
t /dxt. However, it actually is the case

that only the third and fourth columns of W ssx multiply xt, so when we carry through
the derivative there, only some elements of W ssx matter in this overall gradient.

Page 22


