
Name:

Autoencoder

4. (14 points) Otto N. Coder is exploring di↵erent autoencoder architectures. Consider the fol-
lowing autoencoder with input x 2 Rd and output ypred 2 Rd. The autoencoder has one hidden
layer with m hidden units: z(1), a(1) 2 Rm.

z
(1) = W

(1)
x+ b

(1)

a
(1) = f

(1)(z(1)) element-wise

z
(2) = W

(2)
a
(1) + b

(2)

y
pred = f

(2)(z(2)) element-wise

(a) Assume x, z
(2)

, and y
pred have dimensions d ⇥ 1. Also let z

(1) and a
(1) have dimensions

m⇥ 1. What are the dimensions of the following matrices?

W
(1)

b
(1)

W
(2)

b
(2)

m⇥ d m⇥ 1 d⇥m d⇥ 1

Page 10

Name:

Otto trains the autoencoder with back-propagation. The loss for a given datapoint x, y is:

J(x, y) =
1

2
||ypred � y||2 = 1

2
(ypred � y)T (ypred � y) .

Compute the following intermediate partial derivatives. For the following questions, write
your answer in terms of x, y, ypred, W (1), b(1), W (2), b(2), f (1), f (2) and any previously
computed or provided partial derivative. Also note that:

1. Let @f (1)
/@z

(1) be an m⇥ 1 matrix, provided to you.

2. Let @f (2)
/@z

(2) be a d⇥ 1 matrix, provided to you.

3. If Ax = y where A is a m⇥n matrix and x is n⇥1 and y is m⇥1, then let @y/@A = x.

4. In your answers below, we will assume multiplications are matrix multiplication; to
indicate element-wise multiplication, use the symbol ⇤.

(b) Find @J/@y
pred, a d⇥ 1 matrix.

Solution:
@J

@ypred
= (ypred � y)

(c) Find @J/@z
(2), a d ⇥ 1 matrix. You may use @J/@y

pred and ⇤ for element-wise multipli-
cation.

Solution:

@J

@z(2)
=

@J

@ypred

@y
pred

@z(2)

=
@J

@ypred
⇤ @f

(2)

@z(2)

Check: (d⇥ 1) = (d⇥ 1) ⇤ (d⇥ 1) dimensioned arrays; element-wise multiplication.

(d) Find @J/@W
(2), a d⇥m matrix. You may use @J/@z

(2).

Solution:

@J

@W (2)
=

@J

@z(2)

@z
(2)

@W (2)

T

=
@J

@z(2)
a
(1)T =

@J

@z(2)
f
(1)(W (1)

x+ b
(1))T

Check: (d ⇥m) = (d ⇥ 1)(1 ⇥m) dimensioned arrays. Note that we also accept a
(1)

even though it was not explicitly provided.

Page 11

Name:

(e) Write the gradient descent update step for just W (2) for one datapoint (x, y) given learning
rate ⌘ and @J/@W

(2).

Solution:

W
(2) := W

(2) � ⌘
@J(x, y)

@W (2)

(f) Otto’s friend Bigsby believes that bigger is better. He takes a look at Otto’s neural network
and tells Otto that he should make the number of hidden units m in the hidden layer very
large: m = 10d. (Recall that z(1) has dimensions m⇥ 1.) Is Bigsby correct? What would
you expect to see with training and test accuracy using Bigsby’s approach?

Solution: No; training accuracy might be high, but this would likely be due to over-
fitting and lead to worse test accuracy.

(g) Otto’s other friend Leila says having more layers is better. Let m be much smaller than
d. Leila adds 10 more hidden layers all with linear activation before Otto’s current hidden
layer (which has sigmoid activation function f

(1)) such that each hidden layer has m

units. What would you expect to see with your training and test accuracy, compared to
just having one hidden layer with activation f

(1)?

Solution: The intermediary hidden layers do not add any expressivity to the network,
and we would expect similar training and test accuracy as compared to the single
f
(1) hidden layer network. This may, however, require di↵erent number of training

iterations with the same available data, in order to achieve similar accuracy.

Page 12

Name:

(h) Another friend Neil suggests to have several layers with non-linear activation function.
He says Otto should regularize the number of active hidden units. Loosely speaking, we
consider the average activation of a hidden unit j in our hidden layer 1 (which has sigmoid

activation function f
(1)) to be the average of the activation of a(1)j over the points xi in

our training dataset of size N :

p̂j =
1

N
⌃N
i=1 a

(1)
j (xi) .

Assume we would like to enforce the constraint that the average activation for each hidden
unit p̂j is close to some hyperparameter p. Usually, p is very small (say p < 0.05).

What is the best format for a regularization penalty given hyperparameter p and the
average activation for all our hidden units: p̂j? Select one of the following:

� Hinge loss: ⌃j max (0, (1� p̂j)p)
p

NLL: ⌃j

⇣
�p log p

p̂j
� (1� p) log (1�p)

(1�p̂j)

⌘

p
Squared loss: ⌃j(p̂j � p)2

� l2 norm: ⌃j(p̂j)2

Solution: Either NLL or squared loss should work, encouraging p and p̂j to be close.
NLL loss might better handle wide range in the magnitudes of p̂j .

(i) Which pass should Otto compute p̂j on? Select one of the following:
p

Forwards pass

� Backwards pass

� Gradient descent step (weight update) pass

Page 13

