
Name:

Curling

2. (18 points) You have designed a robot curling stone to enter a modified curling contest.1 In an
attempt to get your robot stone to perform well, you have designed a state and action space,
a reward structure, and a transition model. The goal of the robot stone is to slide upwards on
an ice sheet and stop in a target region. Your robot stone likes to show off; after each state
transition, it displays the reward it receives. In addition to your robot stone, there will be a
number of opponent stones on the ice, as shown below. For simplicity’s sake, we will consider
the opponent stones to be fixed.

1Curling is an Olympic sport involving granite stones
about 36 inches in circumference and 4.5 inches in height,
that are directed toward target regions on an ice rink,
and that might be defended or attacked by an opponent’s
stones. MIT has a Curling Club that you might enjoy.

Your model for the state and action spaces is as follows:

S ∈ {t, 0, 1, 2, 3}
a ∈ {“go”, “stop”}

where the states refer to the robot stone being in either a terminal state (denoted as t) or
within one of the four regions below:

Page 4



Name:

You design the following reward function and (deterministic) transition model for your robot
stone:

R(s, a):

action “go” action “stop”

state 3 0 2
state 2 1 1
state 1 1 0
state 0 1 0

T (s, a, s′) :

T (0, “go”, 1) = 1
T (1, “go”, 2) = 1
T (2, “go”, 3) = 1
T (3, “go”, t) = 1
T (*, “stop”, t) = 1

and all other transition probabilities are 0. Here * indicates any state. Note that once the robot
stone enters state t the game ends: there is no transition and zero reward out of state t (and
hence no action to decide once in state t.) Together with this reward function and transition
model, you specify a discount factor γ = 1.

(a) In order to enable decision making by your robot stone, you need to give it the optimal
policy π∗(s). For your reward and transition structure and discount factor γ = 1, what
are the optimal Q-values, Q∗(s, a)? What is the optimal policy π∗(s)? Fill in the following
two tables.

Q∗(s, a):

action “go” action “stop”

state 3 0 2

state 2 3 1

state 1 4 0

state 0 5 0

π∗(s):

π∗(s)

state 3 stop

state 2 go

state 1 go

state 0 go

Page 5



Name:

Unfortunately, your competitor has also designed a robot stone. You do not know your
competitor’s reward structure R(s, a) or transition model T (s, a, s′); however, you do
know they use the same state and actions spaces. Instead, you decide to use Q-learning
to observe their robot stone and learn from it! For your Q-learning, use discount factor
γ = 1 and learning rate α = 0.5, with a Q table initialized to zero for all (s, a) pairs.

(b) Your competitor runs their robot through a first game, exhibiting the following experience:

step # s a r s′

1 0 “go” 1 1
2 1 “stop” 0 t

You perform Q-learning updates based on the experience above. After observing steps 1
and 2 (the first game), what is the learned Q(0, “go”)?

Solution: We know Q(s, a) := αQ(0, a) + α(r + γmaxai Q(0, ai) So step #1 causes
the following update:

Q(0, “go”) = 0.5 · 0 + 0.5(1 + 1 · 0) = 0.5

What is the learned Q(1, “stop”)?

Solution:
Q(1, “stop”) = 0.5 · 0 + 0.5(0 + 1 · 0) = 0

(c) Your competitor runs their robot through a second game, exhibiting the following addi-
tional experience:

step # s a r s′

3 0 “go” 1 1
4 1 “go” 1 2
5 2 “go” 1 3
6 3 “stop” 2 t

You perform additional Q-learning updates based on this additional experience. After
completion of both games (all six steps), what are the full set of Q values you have learned
for their robot? Fill in the following table.

Q(s, a):

state s action “go” action “stop”

3 0 1

2 0.5 0

1 0.5 0

0 0.75 0

Page 6



Name:

(d) We can think of learning the Q-value function for a given action as a regression problem
with each state s mapped to a one-hot feature vector x = φA(s), where x = [1 0 0 0]T for
state 0, x = [0 1 0 0]T for 1, etc., and x = [0 0 0 0]T for state t.

We’ll focus on the action “go”. We would like to come up with parameters θ, θ0 such that
Q(s, “go”) = θ · φA(s) + θ0 = θ · x + θ0. Is there in general — for arbitrary values of
our Q(s, “go”) — a setting of θ, θ0 that enables representation of Q(s, “go”) with perfect
accuracy? If so, provide the corresponding θ and θ0. If not, explain why. (Note that we
do not need to model Q(t, a), since the game is over once state t has been reached.)

Solution: Yes; θi is simply the value for Q(s = i, “go”) and θ0 = 0.

Note: θ = [5 4 3 0]T and θ0 = 0 would work for our optimal Q∗(s, a), but we seek a
more general θ corresponding to arbitrary or general Q(s, a).

(e) Unfortunately, your robot’s GPS system suddenly breaks, and it is no longer able to tell
which of the four regions it is in. However, the robot has side cameras which can detect
the opponent stones as it travels through the center of the ice, encoded as [(number of
stones to immediate left) (number of stones to immediate right)]T . You decide to use this
information as state, giving the following feature transformation φB on your original state:

φB(3) = [1 1]T

φB(2) = [0 0]T

φB(1) = [1 0]T

φB(0) = [0 1]T

We would still like to come up with parameters θ, θ0 such that Q(s, “go”) = θ ·φB(s) + θ0,
for general values of Q(s, “go”). Is there a setting of θ, θ0 that enables representation of
this encoding of Q(s, “go”) with perfect accuracy? If so, provide the corresponding θ and
θ0. If not, explain why this is not possible, and provide a feature transformation φC(·)
that does enable representation of Q(s, “go”) = θ · φC(φB(s)) + θ0 with perfect accuracy.

Solution: No. Let [x1 x2] = φB(s), so θ1x1 + θ2x2 + θ0 = Q(s, “go”). φB(2) forces
θ0 = Q(2, “go”); φB(1) forces θ1; φB(0) forces θ2; and we no longer have the ability to
find θ for φB(3).

We can create φC as a one-hot encoding of state such that φC(φB(s)) = φA(s) to
uniquely identify our four states (with corresponding θ and θ0 as in the previous part)
to regain perfect representational power.

Page 7


