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6.036 Fall 2018 Final Review
Solution Explanations

We provide more detailed explanations for some problems in the
Final Review Problems pdf. The solutions are provided in the Final
Review Problems Solutions pdf. If you feel an explanation is insu�-
cient, reach out on Piazza or at o�ce hours.

2) a) The W action is deterministic and always gives a reward of 1, except
in the s0 state.

Q1(s1,W ) = Q1(s2,W ) = Q1(s3,W ) = Q1(s4,W ) = 1

Note that the Q-values for s0 will always be 0 for both actions. We
can use V (s) = maxa Q(s, a). Some sample calculations:

V1(s0) = R(s0, a) + �[T (s0, a, s0)V0(s0)] = 0

Q1(s1, J) = R(s1, J) + �[T (s1, J, s0)V0(s0) + T (s1, J, s1)V0(s1)]

= 0.5 ⇤ 12 + 0.5[0.5 ⇤ 0 + 0.5 ⇤ 0] = 0.5

Q1(s2, J) = R(s2, J) + �[T (s2, J, s2)V0(s2) + T (s2, J, s0)V0(s0)]

= 0.5 ⇤ 22 + 0.5[0.5 ⇤ 0 + 0.5 ⇤ 0] = 2

s3 and s4 are analogous so s2.

b) For each state, we choose the actions with the higher Q-values (these
are taken as V -values) to get the policy.

c) The corresponding V1-values for s are simply the highest values of
the Q1-values for s and a. From V (s) = maxa Q(s, a).

d) Even though the V -values change after iteration 2 (with the exception
of Qi(s0, a) = V (s0) = 0 for all i, a), the relative ordering stays the
same, which means we keep the same policy. It should be possible
to realize this without doing any calculations beyond the Q2 values.
Here are some sample calculations:

V2(s0) = R(s0, a) + �[T (s0, a, s0)V1(s0)] = 0

s0 is a terminal state, so it’s not included in the policy.

Q2(s1, J) = R(s1, J) + �[T (s1, J, s0)V1(s0) + T (s1, J, s1)V1(s1)]
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= 0.5 ∗ 12 + 0.5[0.5 ∗ 0 + 0.5 ∗ 0.5] = 0.5 + 0.53 = 0.625

Q2(s1,W ) = R(s1,W )+γ[T (s1,W, s0)V1(s0)] = 1∗12 +0.5[1∗0] = 1

since V (s0) stays 0, Q(s1,W ) stays 1 and V (s1) stays 1 with W as
the optimal action.

Q2(s2, J) = R(s2, J) + γ[T (s2, J, s2)V1(s2) + T (s2, J, s0)V1(s0)]

= 0.5 ∗ 22 + 0.5[0.5 ∗ 2 + 0.5 ∗ 0] = 2 + 0.5 = 2.5

Q2(s2,W ) = R(s2,W )+γ[T (s2,W, s1)V1(s1)] = 1∗12+0.5[1∗1] = 1.5

V2(s2) = max{Q2(s2, J), Q2(s2,W )} = 2.5

s3 and s4 are analogous to s2, and all three of these states will keep J
as the optimal action in future iterations. Therefore the policy does
not change.

4) a) The optimal policy will be the one that moves towards higher re-
wards, so S5 will move left while all the other states will move right
(towards S5).

b) one value iteration: 1
two value iterations: 1 + 0.5(10) = 6
infinite value iterations: 1 + (

∑∞
i=1 0.5i)(10) = 11

5) a) Solutions are fine.

b) If we cannot tune hidden layer weights, then we should not be able to
solve an XOR-like distribution with just the input and output layers.
Note that we can, in theory, solve the other distribution with a single
linear separator.

c) The network outputs +1 because f(z1) = 2, f(z2) = 0, W1 = W2 =
1, and W0 = −1 for (b, 2).

d) Recall that only outgoing weights of b and 2 inputs are active for
the input (b, 2) and could potentially be updated. However, since
f(z2) = 0, there is no backpropagation through it. Therefore only
weights from b to the f(z1) hidden unit, 2 to the f(z1) hidden unit,
and the f(z1) unit to the output unit are updated.

6) a) Note that the transition probabilities are all 1, simplifying the calcu-
lations. With γ = 0, none of the future rewards matter, so we can use
the rewards given in the table at face value to determine the optimal
policy. EXPLORE from HIGH and LOW gives higher rewards than
CHARGE from HIGH and LOW. EXPLORE and CHARGE give the
same reward from EMPTY, so they are equally preferable.

b) Changing γ from 0 will make future rewards matter. While the op-
timal policy for HIGH will not change, the policies for LOW and
EMPTY could change. Note that the policy for EMPTY won’t
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