
6.036: Final Exam, Fall 2019
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Shoe Shop

1. (12 points) General Ization is consulting for a shop that sells shoes, and the General is building
a model to predict what color of sneakers a given customer will buy, given information about
their age and the color of the shoes they’re wearing when they enter the store. The shoe shop
asks for a classifier, as well as an indication of how well the classifier will perform once deployed.

(a) There are several sneaker colors that customers might wear or buy. The General wishes
to train a neural network classifier. What representation is best for the input (the color
of shoes a customer is wearing when they enter the store)?

What kind of output layer should the General use?

(b) The store gives the General data from the past year of sales, which she splits into three
distinct parts: training data, validation data, and test data. While training the neural
network classifier, the General gets the following learning curves. This graph indicates
that she should use the classifier resulting from training after fewer than 80 iterations.
Unfortunately, she forgot to put the legend in, but luckily you can fix it! Fill in the leg-
end with the appropriate two among training time, training loss, validation loss.
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(c) Around how many iterations should the General use to train the classifier she delivers to
the shoe shop? Explain why.

(d) The General made a grave mistake. It turns out that though she thought she had split the
data into three parts, she had only split it into two and used both those splits in training
and selecting her classifier. Now, she needs to collect the third split in order to indicate
how well her classifier will perform when deployed. Which of the following would be the
best to use? Provide a short justification for your choice.

1. Go to a nearby school and ask the students what color sneakers they used to own and
note what color sneakers they are currently wearing.

2. Go to a nearby construction site and ask the workers what color shoes they used to
own and note what color shoes they are currently wearing.

3. Ask the shoe store to give her more data in two months.

4. Ask a different shoe store for their data.
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(e) The store goes back to the General and says they’ve discovered a new feature they think
might be useful: the color of shoes that a famous celebrity, Keslie Laelbling, is wearing
that day. (Due to social media, both the customer and the store know exactly what color
of shoes Keslie is wearing each day.) Unfortunately, the General is close to her deadline:
she has time to train a new linear model, but not to train another deep neural network like
she did before. How might the General produce an augmented model that incorporates
this new feature?
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Curling

2. (18 points) You have designed a robot curling stone to enter a modified curling contest.1 In an
attempt to get your robot stone to perform well, you have designed a state and action space,
a reward structure, and a transition model. The goal of the robot stone is to slide upwards on
an ice sheet and stop in a target region. Your robot stone likes to show off; after each state
transition, it displays the reward it receives. In addition to your robot stone, there will be a
number of opponent stones on the ice, as shown below. For simplicity’s sake, we will consider
the opponent stones to be fixed.

1Curling is an Olympic sport involving granite stones
about 36 inches in circumference and 4.5 inches in height,
that are directed toward target regions on an ice rink,
and that might be defended or attacked by an opponent’s
stones. MIT has a Curling Club that you might enjoy.

Your model for the state and action spaces is as follows:

S ∈ {t, 0, 1, 2, 3}
a ∈ {“go”, “stop”}

where the states refer to the robot stone being in either a terminal state (denoted as t) or
within one of the four regions below:
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You design the following reward function and (deterministic) transition model for your robot
stone:

R(s, a):

action “go” action “stop”

state 3 0 2
state 2 1 1
state 1 1 0
state 0 1 0

T (s, a, s′) :

T (0, “go”, 1) = 1
T (1, “go”, 2) = 1
T (2, “go”, 3) = 1
T (3, “go”, t) = 1
T (*, “stop”, t) = 1

and all other transition probabilities are 0. Here * indicates any state. Note that once the robot
stone enters state t the game ends: there is no transition and zero reward out of state t (and
hence no action to decide once in state t.) Together with this reward function and transition
model, you specify a discount factor γ = 1.

(a) In order to enable decision making by your robot stone, you need to give it the optimal
policy π∗(s). For your reward and transition structure and discount factor γ = 1, what
are the optimal Q-values, Q∗(s, a)? What is the optimal policy π∗(s)? Fill in the following
two tables.

Q∗(s, a):

action “go” action “stop”

state 3

state 2

state 1

state 0

π∗(s):

π∗(s)

state 3

state 2

state 1

state 0
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Unfortunately, your competitor has also designed a robot stone. You do not know your
competitor’s reward structure R(s, a) or transition model T (s, a, s′); however, you do
know they use the same state and actions spaces. Instead, you decide to use Q-learning
to observe their robot stone and learn from it! For your Q-learning, use discount factor
γ = 1 and learning rate α = 0.5, with a Q table initialized to zero for all (s, a) pairs.

(b) Your competitor runs their robot through a first game, exhibiting the following experience:

step # s a r s′

1 0 “go” 1 1
2 1 “stop” 0 t

You perform Q-learning updates based on the experience above. After observing steps 1
and 2 (the first game), what is the learned Q(0, “go”)?

What is the learned Q(1, “stop”)?

(c) Your competitor runs their robot through a second game, exhibiting the following addi-
tional experience:

step # s a r s′

3 0 “go” 1 1
4 1 “go” 1 2
5 2 “go” 1 3
6 3 “stop” 2 t

You perform additional Q-learning updates based on this additional experience. After
completion of both games (all six steps), what are the full set of Q values you have learned
for their robot? Fill in the following table.

Q(s, a):

state s action “go” action “stop”

3

2

1

0
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(d) We can think of learning the Q-value function for a given action as a regression problem
with each state s mapped to a one-hot feature vector x = φA(s), where x = [1 0 0 0]T for
state 0, x = [0 1 0 0]T for 1, etc., and x = [0 0 0 0]T for state t.

We’ll focus on the action “go”. We would like to come up with parameters θ, θ0 such that
Q(s, “go”) = θ · φA(s) + θ0 = θ · x + θ0. Is there in general — for arbitrary values of
our Q(s, “go”) — a setting of θ, θ0 that enables representation of Q(s, “go”) with perfect
accuracy? If so, provide the corresponding θ and θ0. If not, explain why. (Note that we
do not need to model Q(t, a), since the game is over once state t has been reached.)

(e) Unfortunately, your robot’s GPS system suddenly breaks, and it is no longer able to tell
which of the four regions it is in. However, the robot has side cameras which can detect
the opponent stones as it travels through the center of the ice, encoded as [(number of
stones to immediate left) (number of stones to immediate right)]T . You decide to use this
information as state, giving the following feature transformation φB on your original state:

φB(3) = [1 1]T

φB(2) = [0 0]T

φB(1) = [1 0]T

φB(0) = [0 1]T

We would still like to come up with parameters θ, θ0 such that Q(s, “go”) = θ ·φB(s) + θ0,
for general values of Q(s, “go”). Is there a setting of θ, θ0 that enables representation of
this encoding of Q(s, “go”) with perfect accuracy? If so, provide the corresponding θ and
θ0. If not, explain why this is not possible, and provide a feature transformation φC(·)
that does enable representation of Q(s, “go”) = θ · φC(φB(s)) + θ0 with perfect accuracy.
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The Missing Rating

3. (8 points) Mitch Mitdiddle has kept track of ratings of three items from three different users
of his new e-commerce website. These items are essential, and so each user has purchased
and rated all three of the items. However, Mitch has lost one of the ratings, r. The (almost)
complete ratings matrix is here:

Y =

6 8 10
9 12 r
3 4 5


Note, users a and items i are indexed from 1, i.e., the first row of Y corresponds
to user 1 (a = 1), and the first column of Y corresponds to item 1 (i = 1).

(a) Treating r as a missing value, is there a rank-1 representation of Y as UV T (i.e., such that
UV T produces a matrix that perfectly matches the non-missing elements of Y )? If yes,
provide matrices U and V of shape 3× 1 such that Y = UV T . If no, explain why not.

An e-commerce expert explains to you that users only care about one particular feature
when it comes to rating products, and provides you with the value of this feature for each
item, which we set as V :

V =

 6
8
10



Mitch remembers that we can use the alternating least squares method to solve for U ,
minimizing:

J(U, V ) =
1

2

∑
(a,i)εD

(U (a) · V (i) − Ya,i)2

where D is the set of all user a item i rating pairs (a, i). Here U (a) is the ath row of U , and
V (i) is the ith row of V . Note that offsets are fixed at bU = 0 and bV = 0 in this problem.
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(b) Using the same data matrix Y with missing value r and holding V constant, what is the
value of U (2) (the second row of U) that minimizes J? Identify what (a, i) pairs and Ya,i
values matter in this minimization, remembering that r (value of Y2,3) is not involved.

(c) What is our prediction for r, given the V and U (2)?

(d) Mark all that are true for our U , V , and Y above:

© There are infinitely many settings of U and V that minimize J .

© For any constant (non-zero) V , J(U) has a unique global minimum.

© For any constant (non-zero) V , there exists a U such that J(U, V ) = 0.

© For any m× n matrix Y of rank 1, there exist matrices U and V of sizes m× 1
and n× 1 such that J(U, V ) = 0.

Page 10



Name:

Autoencoder

4. (14 points) Otto N. Coder is exploring different autoencoder architectures. Consider the fol-
lowing autoencoder with input x ∈ Rd and output ypred ∈ Rd. The autoencoder has one hidden
layer with m hidden units: z(1), a(1) ∈ Rm.

z(1) = W (1)x+ b(1)

a(1) = f (1)(z(1)) element-wise

z(2) = W (2)a(1) + b(2)

ypred = f (2)(z(2)) element-wise

(a) Assume x, z(2), and ypred have dimensions d × 1. Also let z(1) and a(1) have dimensions
m× 1. What are the dimensions of the following matrices?

W (1) b(1) W (2) b(2)
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Otto trains the autoencoder with back-propagation. The loss for a given datapoint x, y is:

J(x, y) =
1

2
||ypred − y||2 =

1

2
(ypred − y)T (ypred − y) .

Compute the following intermediate partial derivatives. For the following questions, write
your answer in terms of x, y, ypred, W (1), b(1), W (2), b(2), f (1), f (2) and any previously
computed or provided partial derivative. Also note that:

1. Let ∂f (1)/∂z(1) be an m× 1 matrix, provided to you.

2. Let ∂f (2)/∂z(2) be a d× 1 matrix, provided to you.

3. If Ax = y where A is a m×n matrix and x is n×1 and y is m×1, then let ∂y/∂A = x.

4. In your answers below, we will assume multiplications are matrix multiplication; to
indicate element-wise multiplication, use the symbol ∗.

(b) Find ∂J/∂ypred, a d× 1 matrix.

(c) Find ∂J/∂z(2), a d × 1 matrix. You may use ∂J/∂ypred and ∗ for element-wise multipli-
cation.

(d) Find ∂J/∂W (2), a d×m matrix. You may use ∂J/∂z(2).
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(e) Write the gradient descent update step for just W (2) for one datapoint (x, y) given learning
rate η and ∂J/∂W (2).

(f) Otto’s friend Bigsby believes that bigger is better. He takes a look at Otto’s neural network
and tells Otto that he should make the number of hidden units m in the hidden layer very
large: m = 10d. (Recall that z(1) has dimensions m× 1.) Is Bigsby correct? What would
you expect to see with training and test accuracy using Bigsby’s approach?

(g) Otto’s other friend Leila says having more layers is better. Let m be much smaller than
d. Leila adds 10 more hidden layers all with linear activation before Otto’s current hidden
layer (which has sigmoid activation function f (1)) such that each hidden layer has m
units. What would you expect to see with your training and test accuracy, compared to
just having one hidden layer with activation f (1)?
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(h) Another friend Neil suggests to have several layers with non-linear activation function.
He says Otto should regularize the number of active hidden units. Loosely speaking, we
consider the average activation of a hidden unit j in our hidden layer 1 (which has sigmoid

activation function f (1)) to be the average of the activation of a
(1)
j over the points xi in

our training dataset of size N :

p̂j =
1

N
ΣN
i=1 a

(1)
j (xi) .

Assume we would like to enforce the constraint that the average activation for each hidden
unit p̂j is close to some hyperparameter p. Usually, p is very small (say p < 0.05).

What is the best format for a regularization penalty given hyperparameter p and the
average activation for all our hidden units: p̂j? Select one of the following:

© Hinge loss: Σj max (0, (1− p̂j)p)

© NLL: Σj

(
−p log p

p̂j
− (1− p) log (1−p)

(1−p̂j)

)
© Squared loss: Σj(p̂j − p)2

© l2 norm: Σj(p̂j)
2

(i) Which pass should Otto compute p̂j on? Select one of the following:

© Forwards pass

© Backwards pass

© Gradient descent step (weight update) pass
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Go Positive, or Go Negative

5. (16 points) Consider the following simple MDP: Positive Reward

First consider the case where the MDP has positive reward. In this scenario, there is only
one action (next); we name this decision policy πA with πA(s) = next for all s. The reward is
R(s, next) = 0 for all states s, except for state sk where reward is R(sk, next) = 10. We always
start at state s1 and each arrow indicates a deterministic transition probability p = 1. There
is no transition out of the end state END, and 0 reward for any action from the end state.

(a) Calculate Vπ(s) for each state in the finite-horizon case with horizon h = 1, k = 4, and
discount factor γ = 1.

(b) Calculate Vπ(s) for each state in the infinite horizon case with k = 4 and discount factor
γ = 0.9.

(c) Derive a formula for Vπ(s1) that works for any value of (is expressed as a function of) k
and γ for the above positive reward MDP, in the infinite horizon case.
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Negative Reward

Now consider the case where this MDP has negative reward. In this scenario, the reward
is R(s, next) = −1 for all states, except for state sk where the reward is R(sk, next) = 0.
Again, there is only one action, next, and the decision policy remains πA(s) = next for all
s. We always start at state s1 and each arrow has a deterministic transition probability
p = 1. There is no transition out of the end state END, and zero reward for any action
from the end state, i.e., R(END,next) = 0.

(d) Calculate Vπ(s) for each state in the finite-horizon case with horizon h = 1, k = 4, and
discount factor γ = 1.

(e) Calculate Vπ(s) for each state in the infinite horizon case with k = 4 and discount factor
γ = 0.9.

(f) Derive a formula for Vπ(s1) that works for any value of (is expressed as a function of) k

and γ for this negative reward MDP with infinite horizon. Recall that
∑n

i=0 γ
i = (1−γn+1)

(1−γ) .
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Positive and Negative Reward

Consider the MDP below with negative rewards for some R(s, a) and positive rewards for
others. Now there are two actions, next and stop. The solid arrows show the probabilities
of state transitions under action next; the dashed arrows show the probability of state
transitions under action stop. (If there is no dashed arrow from a state, that indicates a
probability p = 0 of transitioning out of that state under action stop.) The correspond-
ing rewards R(si, a) are also indicated on the figure below. Note that the rewards are
R(si, next) = −1 for all si, except for state s4, where the reward is R(s4, next) = 10.
Finally, under action stop, we have reward R(s1, stop) = r (some unknown value r), and
R(s, stop) = 0 for all other states. As before, we always start in state s1. There is no
transition out of the end state END, and zero reward for any action from the end state,
i.e., R(END,next) = R(END, go) = 0. Assume discount factor γ and infinite horizon.

(g) We consider two possible policies: πA(s) = next for all s, and πB(s) = stop for all s. Your
goal is to maximize your reward. When you start at s1, you have reward 0 before taking
any actions. Determine what r should be, so that it is best to run this MDP under policy
πB rather than policy πA. Give your answer as an expression for r involving p and γ.
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Trees in a Forest

6. (12 points) Consider the following 2D dataset. Positively labeled points (+1) are solid points
(•) and negatively labeled points (-1) are X marks (×).

x y

(0, 1) +1
(1, 1) +1

(−1,−2) -1
(0,−1) -1
(1,−1) +1
(2,−1) -1

1 2 3-1-2-3

1

2

3

-1

-2

-3

x1

x2

• •

•

×

× ×

Consider the following splits:

Split A: x2 ≥ 0
Split B: x1 ≥ 0.5
Split C: x1 ≥ −0.5

Paul Bunyan works to construct trees using the algorithm discussed in the lecture notes, i.e., a
greedy algorithm that recursively minimizes weighted average entropy, considering only com-
binations of the three splits mentioned above. He wants the output of the tree for any input
(x1, x2) to be the probability that the input is a positive (+1) example.

Recall that the weighted average entropy H̄ of a split into subsets R1 and R2 is:

H̄(split) = (fraction of points in R1) ·H(R1) + (fraction of points in R2) ·H(R2)

where the entropy H(Rm) of data in a region Rm is given by

H(Rm) = −
∑
k

P̂mk log2 P̂mk.

Here P̂mk is the empirical probability, which is in this case the fraction of items in region m
that are of class k.

Some facts that might be useful to you:

0 log2(0) = 0 log2(2) = 1

log2(1) = 0 log2(1/2) = −1

log2(1/3) = −1.58 log2(1/4) = −2.00

log2(2/3) = −0.58 log2(3/4) = −0.42
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(a) Considering the entire data set, Paul finds that the best first split of these three is Split A,
with H̄(A) = 0.54, compared to H̄(B) = 0.92 and H̄(C) = 0.81, resulting in a region RA+

with all positive examples, and a region RA− with mixed positive and negative examples.
Given Split A, however, Paul is not sure which is the next split to include in his tree.
Calculate the weighted average entropy of Split B for region RA− , H̄(B|RA−), versus Split
C for the same region, H̄(C|RA−), and identify which of Split B or Split C Paul should
choose for his second split.

(b) Draw the decision tree boundaries represented by this decision tree (with two splits) on
the data plot figure below.

x y

(0, 1) +1
(1, 1) +1

(−1,−2) -1
(0,−1) -1
(1,−1) +1
(2,−1) -1

1 2 3-1-2-3

1

2

3

-1

-2

-3

x1

x2

• •

•

×

× ×
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(c) Draw the decision tree corresponding to this tree with two splits. Clearly label the test
in each node, which case (yes or no) each branch corresponds to, and the output at a leaf
node represented as a probability of having a positive label, +1.

(d) What probability of being a positive example does Paul’s decision tree from part (a) above
return for the new point (-1, 1)?

(e) What probability of being a positive example does Paul’s decision tree from part (a) above
return for the new point (1, -2)?
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(f) Paul decides to consider a particular type of “random forest,” which is an ensemble or
collection of decision trees, where each tree might only have a subset of split features.
Paul restricts his trees to only use Splits A, B, C, or some combination of these splits.
The final output of the random forest is the average of the output across the collection
of n trees (i.e., with equal weight 1/n for each tree in the random forest). Paul’s random
forest consists of three trees:

• The tree consisting of the best single split using feature x2 only.

• The tree consisting of the best single split using feature x1 only.

• The tree consisting of the best two splits (in total) using both features x1 and x2 (this
is the tree from part (a) in this problem).

For this random forest, what is the output for the probability that an input point at
(−1, 1) is a positive (+1) example? Note: Paul’s calculations in part (a) may be of help.

(g) Would you expect the accuracy for Paul’s random forest generated decision to be better,
or for the decision made by Paul’s single two-split decision tree from part (a) to be better,
when evaluated against held-out test data? Explain.
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We Recur!

7. (12 points) We have seen in class recurrent neural networks (RNNs) that are structured as:

z1t = W ssst−1 +W sxxt

st = f1(z
1
t )

z2t = W ost

pt = f2(z
2
t )

where we have set biases to zero. Here xt is the input and yt the actual output for (xt, yt)
sequences used for training, with pt as the RNN output (during or after training).

Assume our first RNN, call it RNN-A, has st, xt, pt all being vectors of shape 2×1. In addition,
the activation functions are simply f1(z) = z and f2(z) = z.

(a) For RNN-A, give dimensions of the weights:

W ss: W sx: W 0:

(b) We have finished training RNN-A, using some overall loss J =
∑

t Loss(yt, pt) given the
per-element loss function Loss(yt, pt). We are now interested in the derivative of the
overall loss with respect to xt; for example, we might want to know how sensitive the loss
is to a particular input (perhaps to identify an outlier input). What is the derivative of
overall loss at time t with respect to xt, ∂J/∂xt, with dimensions 2 × 1, in terms of the
weights W ss,W sx,W 0 and the input xt? Assume we have ∂Loss/∂z2t , with dimensions
2× 1. Use ∗ to indicate element-wise multiplication.
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Now consider a modified RNN, call it RNN-B, that does the following:

z1t = W ssx

[
st−1
xt

]
st = z1t

z2t = W ox

[
st
xt

]
pt = f2(z

2
t )

where st, xt, pt are all vectors of shape 2× 1,

[
st−1
xt

]
and

[
st
xt

]
are vectors of shape 4× 1.

(c) For RNN-B, give dimensions of the weights:

W ssx: W ox:

(d) Imagine we are using RNN-B to generate a description sentence given an input word, as
in language modeling. The input is a single 2× 1 vector embedding, x1, that encodes the
input word. The output will be a sequence of words p1, p2, ..., pn that provide a description
of that word. In this setting, what would be an appropriate activation function f2?

(e) Continuing with RNN-B for one-to-many description generation using our language mod-
eling approach, we calculate p1 in a forward pass. How do we calculate x2 (what is x2
equal to)?

(f) For RNN-B, we are also interested in the derivative of loss at time t with respect to xt,
∂Loss/∂xt. Indicate all of the following that are true about RNN-B, and the derivative
of loss with respect to xt :

© ∂Loss/∂xt depends on W ox

© ∂Loss/∂xt depends on all elements of W ox

© ∂Loss/∂xt depends on W ssx

© ∂Loss/∂xt depends on all elements of W ssx
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With Some Regularity

8. (8 points) We previously examined ridge regression, where a regularizer term Rλ(θ) is added
to a sum of squares loss to form the J1 objective function as below. Throughout this problem,
we will assume zero offset θ0 = 0 and linear models of output y as a function of input x.

J1(θ) =
1

2

n∑
i=1

(yi − θ · xi)2 +Rλ(θ)

=
1

2

n∑
i=1

(yi − θ · xi)2 +
λ

2
||θ||2

Laz Zo prefers an alternative approach (called “lasso” regularization), where a different regu-
larizer Rα(θ) is added to the sum of squares loss:

J2(θ) =
1

2

n∑
i=1

(yi − θ · xi)2 +Rα(θ)

=
1

2

n∑
i=1

(yi − θ · xi)2 + α
k∑
j=1

|θj |

Consider the two-dimensional case, k = 2, so that our vector θ has just two components, θ1
and θ2. Suppose also that θ1 > θ2 and both are positive (θ1, θ2 > 0). We are interested
in the behavior of Rα(θ) and Rλ(θ). Assume both λ and α are positive.

(a) First consider the lasso regularizer for this specific case:

Rα(θ) = α
k∑
j=1

|θj | = α(θ1 + θ2)

where Rα(θ) = α(θ1 + θ2) in this case since both θ1 and θ2 are positive. We consider
reducing θ1 by a small δ where δ > 0, versus reducing θ2 by δ. (By “reducing” we mean
subtracting δ from θ1. You can assume δ is smaller than θ1 and θ2.) What is true, if our
goal is to minimize Rα(θ)?

© It is better to reduce θ1 by δ

© It is better to reduce θ2 by δ

© It is equally beneficial to reduce θ1 or θ2 by δ.

(b) Now we are interested in the behavior of Rλ(θ) for this specific case:

Rλ(θ) =
λ

2
||θ||2 =

λ

2
(θ21 + θ22).

We consider reducing θ1 by a small δ, where δ > 0, versus reducing θ2 by δ. (You can
assume δ is smaller than θ1 and θ2.) What is true, if our goal is to minimize Rλ(θ)?

© It is better to reduce θ1 by δ

© It is better to reduce θ2 by δ

© It is equally beneficial to reduce θ1 or θ2 by δ
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Rega Lizer is interested in the behavior of these two regularizers, when used to fit a linear
model by minimizing J1 and J2. We compare the ridge regularizer Rλ and the lasso
regularizer Rα, for general k. Assume α and λ are positive.

(c) Check all of the following that are true about Rλ when minimizing J1 (with sum of squares
loss and Rλ(θ) terms):

© Rλ pushes θ to have smaller magnitude θi

© Rλ favors reducing the magnitude of the largest magnitude θi over reducing the
magnitude of smaller magnitude θi

© Rλ inhibits sparsity (i.e., disfavors finding θ such that some θi are zero) for θ
with equivalent sum of squares loss

(d) Check all of the following that are true about Rα when minimizing J2 (with sum of squares
loss and Rα(θ) terms):

© Rα pushes θ to have smaller magnitude θi

© Rα favors reducing the magnitude of the largest magnitude θi over reducing the
magnitude of smaller magnitude θi

© Rα inhibits sparsity (i.e., disfavors finding θ such that some θi are zero) for θ
with equivalent sum of squares loss

(e) Rega proposes combining the two regularizers with a sum of squares loss to form the J3
objective:

J3(θ) =
1

2

n∑
i=1

(yi − θ · xi)2 +Rα(θ) +Rλ(θ)

=
1

2

n∑
i=1

(yi − θ · xi)2 + α
k∑
j=1

|θj |+
λ

2
||θ||2

Check all of the following that are true about using both of these regularizers when mini-
mizing J3:

© This is a bad idea, as the two regularizers will compete against each other.

© This is a reasonable idea, to achieve some controllable mixture of the behavior
of the two regularizers based on the two hyperparameters, α and λ.

© This is a bad idea, as the two regularizers are redundant, and only add complex-
ity in training because now there are two hyperparameters, α and λ, that need
to be decided.
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Work space
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