
6.036: Final Exam, Spring 2019

Solutions

• This is a closed book exam. Two sheets of paper (8 1/2 in. by 11 in.) of notes, front and
back, are permitted. Calculators are not permitted.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every page.
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Nearest Neighbors

1. (8 points) Consider the following 2D dataset:

x y

(1,−1) +1
(1, 1) +1

(1, 2.5) +1
(2,−2) -1
(2, 1) +1
(2, 3) +1

(5,−1) -1
(5,−2) -1

The dataset is plotted below, with positively labeled points as solid points (•) and negatively
labeled points as X marks (×):

x1

x2

•

•

•

•

•

×

×

×

Break ties in distance by choosing the point with smaller x1 coordinate, and if still tied, by
smaller x2 coordinate.

(a) Compute the leave-one-out cross validation accuracy (i.e., average 8-fold cross validation
accuracy) of the 1-nearest-neighbor learning algorithm on this dataset.

Solution: 6/8. When left out of the training set, the point at (1,-1) will be misclas-
sified during testing; similarly for the point at (2,-2).

(b) Compute the leave-one-out cross validation accuracy of the 3-nearest-neighbor learning
algorithm on this dataset.
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Solution: 7/8. Now only the point at (2,-2) will be misclassified during testing, when
left out of the training set.

(c) In the case of the 1-nearest-neighbor learning algorithm, is it possible to strictly increase
the leave-one-out cross validation accuracy on this dataset by changing the label of a single
point in the original dataset? If so, give such a point.

Solution: Yes. Change either point at (2,−2) to +1, or point at (1,−1) to −1.

(d) How about in the case of the 3-nearest neighbor algorithm? If so, give such a point.

Solution: No, not possible. If we try to change the point at (2, -2) to +1, then that
point will be correctly predicted during cross-validation as +1. Unfortunately, with
that change the two points at (5,-1) and (5,-2) will now be misclassified, making our
cross-validation accuracy worse.
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Decision Trees

2. (8 points) Consider the following 2D dataset (same as that used in the previous question).
Positively labeled points are solid points (•) and negatively labeled points are X marks (×).

x y

(1,−1) +1
(1, 1) +1

(1, 2.5) +1
(2,−2) -1
(2, 1) +1
(2, 3) +1

(5,−1) -1
(5,−2) -1

x1

x2

•

•

•

•

•

×

×

×

We will construct a tree using the algorithm discussed in the lecture notes, i.e., a greedy algo-
rithm that recursively minimizes weighted average entropy. Recall that the weighted average
entropy of a split into subsets A and B is:

(fraction of points in A) ·H(RAj,s) + (fraction of points in B) ·H(RBj,s)

where the entropy H(Rm) of data in a region Rm is given by

H(Rm) = −
∑
k

P̂mk log2 P̂mk.

The P̂mk is the empirical probability, which is in this case the fraction of items in region m that
are of class k.

Some facts that might be useful to you:

H(0) = 0

H(3/5) = 0.97

H(3/8) = 0.95

H(3/4) = 0.81

H(5/6) = 0.65

H(1) = 0
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(a) Draw the decision tree that would be constructed by our tree algorithm for this dataset.
Clearly label the test in each node, which case (yes or no) each branch corresponds to,
and the prediction that will be made at each leaf. Assume there is no pruning and that
the algorithm runs until each leaf has only members of a single class.

Solution:

x_2 < 0

Yes branch:

x_1 < 1.5

Yes branch: +1

No branch: -1

No branch: +1

Note: a first (top level) split on x1 < 3.5 looks appealing, but has slightly worse
weighted average entropy than the top level split on x2 < 0. Compare (4/8)H(3/4) ≈
0.405 with (6/8)H(5/6) ≈ 0.488.

(b) Draw the decision tree boundaries represented by your decision tree on the data plot figure
below.

x y

(1,−1) +1
(1, 1) +1

(1, 2.5) +1
(2,−2) -1
(2, 1) +1
(2, 3) +1

(5,−1) -1
(5,−2) -1

x1

x2

•

•

•

•

•

×

×

×

(c) What class does your decision tree (above) predict for the new point: (1, -2)?

Solution: +1
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(d) Decision trees built using our greedy algorithm are a good choice of classifiers for images.

© T
√

F Explain.

Solution: While possible to construct decision trees to classify images (and some
advanced versions of tree algorithms succeed in doing so), image data tends to have
content whose positions vary in the image that are better handled using convolutional
neural networks, rather than by the fixed splits along single dimensions selected by
our greedy tree algorithm.

(e) For decision trees built using our greedy algorithm, standardizing feature values is impor-
tant.

© T
√

F Explain.

Solution: Trees split on individual variables and split values, and these splits are
simply scaled or shifted by standardization but otherwise do not change, so standard-
izing features is not necessary. Interpretation of trees is also made more difficult with
standardized data.

(f) A disadvantage of using decision trees for classification is that they can only be used to
classify data having two classes.

© T
√

F Explain.

Solution: Decision trees extend nicely to multiple class data.
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Tic-Tac-Toe Revised

3. (12 points) Tic-tac-toe is a paper-and-pencil game for two players, X and O, who take turns
marking the spaces in a 3×3 grid. The player who succeeds in placing three of their marks
sequentially in a horizontal, vertical, or diagonal row wins the game. The following example
game is won by the first player, X:

In this question, we’ll consider a “solitaire” version of tic-tac-toe, in which we assume:

• We are the X player;

• The O player is a fixed (but possibly stochastic) algorithm;

• The initial state of the board is empty, and X has the first move;

• We can select any of the nine squares on our turn;

• We don’t know the strategy of the O player or the reward function used by O.

We place an X in an empty square, then an O appears in some other square, and then it’s our
turn to play again. We receive a +1 reward for getting three X’s in a row, reward -1 if there
are three O’s in a row, and reward 0 otherwise. If we select a square that already has an X or
an O in it, nothing changes and it’s still our turn.

(a) We can model this problem as a Markov decision process in several different ways. Here
are some possible choices for the state space.

• Jody suggests letting the state space be all possible 3 x 3 grids in which each square
contains one of the following: a space, an O, and an X.

• Dana suggests using all possible 3 x 3 grids in which each square contains one of the
three options (a space, an O, and an X), and there is an equal number of O’s and X’s.

• Chris suggests using all 3 x 3 tic-tac-toe game grids which appear in games where the
players both employ optimal strategies.

i. Is Dana’s suggestion better or worse for tabular Q learning than Jody’s? Explain your
answer.

Solution: Dana’s is better, because some of Jody’s states might not be part of
any plausible games. Jody’s approach covers a much larger state space, including
states that cannot arise given the rules of the game.

ii. Is Chris’ suggestion better or worse for tabular Q learning than Jody’s? Explain your
answer.

Page 7



Name:

Solution: Worse, since we do not know if O plays optimally. We might not cover
all possible states. Also, Chris’ suggestion may be infeasible, if we do not know
the optimal strategies for both players.

(b) Many states of the game are effectively the same due to symmetry.

i. Draw a pair of such states which are the same due to symmetry:

Solution: Horizontal, vertical, two different diagonal symmetries with respect to
the line passing through the center; rotations through 90, 180, 270 degrees.

ii. Jordan suggests using a state-space that includes one state that stands for each set of
board games that are equivalent due to symmetry. Would this be better or worse for
learning than Jody’s representation? Explain your answer.

Solution: Better. Jordan’s state space representation has fewer states, and should
facilitate faster learning.

(c) What is the action space of the MDP with Dana’s state space definition?

Solution: Selection of one of the 9 squares.

(d) You get to sit and watch an expert player (who always makes optimal moves) play this
game for a long time, and you observe the sequence of state-action pairs that occur in many
games. Which of the following machine-learning problem formulations is most appropriate,
for you to learn how to play the game? For the item you select, provide the specified
additional information (where not “none”).

1. supervised regression (describe the loss function)

2. supervised classification (describe the loss function)

3. reinforcement learning of a policy (none)

4. reinforcement learning of a value function (none)

Explain your answer.

Solution: supervised classification (loss function). You learn the mapping from input
to output (e.g., the position on the grid, where you need to make the next move). The
loss function could be the negative log likelihood between the expert’s move and your
predicted move.

(e) You get to interact with an implementation of this game for many game instances, selecting
your actions, observing the results and rewards. Which of the following machine-learning
problem formulations is most appropriate, for you to learn how to play the game? For the
item you select, provide the specified additional information (where not “none”).

1. supervised regression (describe the loss function)
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2. supervised classification (describe the loss function)

3. reinforcement learning of a policy (none)

4. reinforcement learning of a value function (none)

Explain your answer.

Solution: Reinforcement learning of a policy (none).

(f) Barney wants to solve a tic-tac-toe problem that is exactly the same as the above game
(i.e., three in a row/column/diagonal wins), except that it is played on a 100 x 100 grid.

i. Is it better for Barney to use tabular Q learning or neural-net Q learning? Explain.

Solution: Neural-net Q-learning. A table would be too large.

ii. Suppose Barney were to use neural-net Q learning; would it help for him to start with
a convolutional layer? If your answer is yes, describe four 3 x 3 convolutional filters
that would be particularly helpful for this problem.

Solution: Yes. A 3x3 filter that detects vertical, horizontal, or diagonal lines can
be very useful in detecting local solution (both for X and O).

(g) Suppose you apply Q-learning to the 3x3 tic-tac-toe problem, and your actions always
select an unfilled square. Bert suggests that it is okay to let the discount factor be 1. Is
that true? Explain why or why not.

Solution: Yes. The game has a finite number of steps.
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CNN Backpropagation

4. (10 points) Conne von Lucien has many pictures from her trip to Flatland and wants to de-
termine which ones have her in the image. All of the pictures are arrays of size 4x1, with array
values of either 0 or 1. Conne looks like the vector [1, 0, 1] in one dimension, so if a picture
contains the pattern [1, 0, 1] anywhere inside it, it should be classified as a positive example,
otherwise as a negative example.

Fortunately, you learned about CNNs and have helped Conne by designing the following net-
work architecture with three layers:

1. A convolutional layer with one filter W that is size 3x1, and stride 1, and a single bias
w0 (where the output pixel corresponds to the input pixel that the filter is centered on).
Input values of 0 should be assumed beyond the boundaries of the input.

2. A max-pooling layer P with size 2x1 and stride 2.

3. A fully connected layer σ(·) with a single output unit having a sigmoidal activation func-
tion.

(a) What is the shape of the output of each layer?

Solution: 4 x 1

Solution: 2 x 1

Solution: 1 x 1, scalar

(b) What loss function is most appropriate here, especially if you want your neural network
package to be useful with few modifications, to other Flatland visitors (who may appear
as longer vectors)?

√
A. NLL loss

© B. Hinge loss

© C. Quadratic loss
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(c) We can express the loss function as L(σ(P ), y) where P is the output from the max pooling
layer of the CNN and y is the true label for the input. Given dL

dP , derive the update rule
for w1 if the filter is composed of W = [w1, w2, w3]

T with bias w0, and step size is η.

Solution:

Consider Z to be the outputs of layer 1, Z = [z1, z2, z3, z4]
T .

z1 = w1 · 0 + w2x1 + w3x2 + w0

z2 = w1x1 + w2x2 + w3x3 + w0

z3 = w1x2 + w2x3 + w3x4 + w0

z4 = w1x3 + w2x4 + w3 · 0 + w0

P = [p1, p2]
T

p1 = max(z1, z2)

dp1
dw1

= 0 if z1 > z2 else x1

p2 = max(z3, z4)

dp2
dw1

= x2 if z3 > z4 else x3

dP

dw1
=

[
dp1
dw1

,
dp2
dw1

]T

w1 := w1 − η
dL

dP

T dP

dw1

(d) Given dL
dP , provide the update rule for w0, the bias to the filter.

Solution:

dP

dw0
= [1, 1]T

w0 := w0 − η
dL

dP

T dP

dw0
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(e) Conne decides to use the neural network code as written by a 6.036 student for the 6.036
homework (and that actually was a correct implementation) to train her CNN using SGD.
The sgd procedure may be called multiple times from elsewhere (e.g., to implement multi-
ple epochs of SGD). Conne thinks she has a better sgd python procedure than that given
in the package; her code is:

1 de f sgd (nn , X, Y, i t e r s =100 , l r a t e =0.005) :
2 D, N = X. shape
3 sum loss = 0
4 f o r k in range ( i t e r s ) :
5 Xt = X[ : , k : k+1]
6 Yt = Y[ : , k : k+1]
7 Ypred = nn . forward (Xt)
8 sum loss += nn . l o s s . forward (Ypred , Yt)
9 e r r = nn . l o s s . backward ( )

10 nn . backward ( e r r )
11 nn . sgd s t ep ( l r a t e )

Here, nn is an instance of the Sequential class implementing the CNN. She knows from
the unit tests that the nn routines function properly. In particular, nn.forward prop-
erly computes the predicted outputs Ypred from input data Xt, nn.loss.forward also
properly computes the forward loss, nn.loss.backward properly computes the backward
loss, nn.backward properly computes the backward gradients, and nn.sgd step properly
applies an SGD update step with the specified learning rate lrate. And the N sets of
dimension D input data X, and labels Y are known to be correct.

However, Conne’s procedure consistently gives poor results (and occasionally throws er-
rors), compared with the 6.036 student’s correct SGD routine, when run with identical
arguments.

Why? Specify the line(s) which have errors, and describe how the code should be improved
to do as well as the correct implementation of the 6.036 student:

Solution: Lines 5 and 6

Solution:

The SGD algorithm needs a random data point to be selected for the gradient com-
putation. Thus, the Xt and Yt assignments should draw from a randomly chosen j,
e.g.:

1 f o r k in range ( i t e r s ) :
2 j = np . random . randint (N)
3 Xt = X[ : , j : j +1]
4 Yt = Y[ : , j : j +1]
5 . . .

Note that Conne’s code may throw errors when iters ≥ N .
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Robots

5. (16 points) Consider the following deterministic Markov Decision Process (MDP), describing a
simple robot grid world. Notice that the values of the immediate rewards r for two transitions
are written next to them; the other transitions, with no value written next to them, have an
immediate reward of r = 0. Assume the discount factor γ is 0.8.

(a) For states s ∈ {s6, s5, s2}, write the value for Vπ∗(s), the discounted infinite horizon value
of state s using an optimal policy π∗. It is fine to write a numerical expression—you don’t
have to evaluate it—but it shouldn’t contain any variables.

Solution:

Vπ∗(s6) = 100

Solution:

Vπ∗(s5) = γVπ∗(s6) = 80

Solution:

Vπ∗(s2) = γVπ∗(s5) = 64
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(b) For each state in the state diagram below, circle exactly one outgoing arrow, indicating
an optimal action π∗(s) to take from that state. If there is a tie, it is fine to select any
action with optimal value.

Solution:

(c) Give a value for γ (constrained by 0 < γ < 1) that results in a different optimal policy, and
describe the resulting policy by indicating which π∗(s) values (i.e., which policy actions)
change.

Solution: A small γ = 0.001 will make it not worthwhile to defer gains for very long.
In this problem, if γ2100 < 50, then it will be better to directly take the 50 reward.

So valid answers here are 0 < γ <
√
2
2 .

Solution: Now π∗(s2) is to go right (east).

(d) Is it possible to change the immediate reward for each state in such a way that Vπ∗ changes
but the optimal policy π∗ remains unchanged? If yes, provide a new reward function, and
explain how the resulting Vπ∗ changes but π∗ does not. Otherwise, explain in at most two
sentences why this is impossible.

Solution: Yes. We can establish small immediate rewards, say r = 1, for all of the
transitions currently with r = 0. These are not enough to change the π∗ decisions,
but do change Vπ∗ for all of these states.
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When winter comes, snow also appears on one path in the grid world, making exactly one
of the actions non-deterministic. The resulting MDP is shown below. Specifically, the
change is that now the result of the action “go north” from state s6 results in one of two
outcomes. With probability p, the robot succeeds in transitioning to state s3 and receives
immediate reward 100. However, with probability (1− p) it slips on the ice, and remains
in state s6 with 0 immediate reward. Assume again that the discount factor γ = 0.8.

(e) Assume p = 0.75. For each of the states s ∈ {s2, s5, s6}, write the value for Vπ∗(s). It is
fine to write a numerical expression, but it shouldn’t contain any variables.

Solution:

Vπ∗(s6) = 100p+ (1− p)γVπ∗(s6)

Vπ∗(s6)(1− (1− p)γ) = 100p

Vπ∗(s6) =
100p

1− (1− p)γ
= 93.75

Solution:

Vπ∗(s5) = γVπ∗(s6) = 75

Solution:

Vπ∗(s2) = γVπ∗(s5) = 60

(f) How bad does the ice have to get before the robot will prefer to completely avoid the ice?
Let us answer the question by giving a value for p for which the optimal policy chooses
actions that completely avoid the ice, i.e., choosing the action “go left” over “go up” when
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the robot is in the state s6. Approach this in four parts. The answer to each of the first
three parts can be a numerical expression; the answer to the last part can be an expression
involving numbers and p.

i. What is the value V of going right in state s2?

Solution: 50

ii. What is the value V of going up in state s5, if you’re going to go right in state s2?

Solution: γ · 50 = 40

iii. What is the value V of going left in state s6, if you’re going to go up in state s5 and
right in state s2?

Solution: γ2 · 50 = 32

iv. Under what condition on p is it better to go left in state s6 (then up in state s5 and
right in state s2) than it is to go up in state s6?

Solution:

p · 100

1− (1− p) · 0.8
< 32

p <
8

93
≈ 0.086
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Recommender System

6. (14 points) After taking 6.036, Bob decides to train a recommender system to predict what
ratings different customers will give to different movies. Currently, he knows of three really
popular movies, and he knows of two potential customers who have ranked some of these movies.
The data matrix currently looks like: Y = [[2, ?, 3], [4, 2, ?]] where, as in class, rows correspond
to customers and columns correspond to movies, and ? indicates a missing or unknown ranking.
He decides to find a low rank factorization of Y using the alternating least squares algorithm
implemented in class. Assume for this question that offsets are set to 0.

(a) Bob starts out by trying a rank 1 factorization of Y as UV T . He initializes U = [1, 2]T .
Assume there is no regularization. In the first iteration of alternating least squares, we
will find the best V given the current U . What is the objective function J(V ) in terms of
V ? Write it in terms of V1, V2, V3 and specific numerical values from Y .

Solution:

J(V ) = (1 · V1 − 2)2 + (1 · V3 − 3)2 + (2 · V1 − 4)2 + (2 · V2 − 2)2

(b) What is the optimal value of V ?

Solution: The optimal value is V = [2, 1, 3]T . We are fortunate in being able to
exactly match all of the non-empty Y elements.

(c) What is the associated overall training error?

Solution: The training error is 0.

(d) Bob is happy about what he has accomplished, until he realizes that there are a bunch of
movies and users that he still needs to add to his database! He sees that his database will
slowly grow over time, and that it will be time-consuming to train a completely new model
every single time he updates his database. If Bob has an m × n data matrix which he
wants to find a rank k factorization for, his analysis indicates that the worst-case run-time
(in terms of number of expensive multiplications) of performing alternating least squares
for t iterations (where each iteration updates both U and V ) will be O(k2mnt).

Instead, Bob comes upon the following idea: whenever he gets information about a new
movie, he adds an extra row to V but does not alter the existing entries of U or V . He then
finds the values of the entries in that extra row that minimize the objective function (with
no regularization). He performs a similar procedure when he gets a new user, but instead
adds an extra row to U . Working from the dataset in the first part, say Bob receives a
new movie to which his first user has given the rating 4. What is the updated value of V ?
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Solution: Adding an extra row to V makes V T = [2, 1, 3, a]. Then, multiplying out
UV T , the rating the first user gives to the new movie is a. To minimize the objective
function, we can thus set a = 4.

Thus, V = [2, 1, 3, 4]T

(e) With this updated V , what rating does Bob predict that the second user will give this
movie?

Solution: (UV T )14 = 2 · a = 2 · 4 = 8 from above.

(f) Bob continues using this update scheme whenever he adds new movies and users. Does
the order in which Bob receives new information affect the final values of U and V that
he learns? If your answer is yes, explain in detail why they are different. If your answer is
no, explain in detail why they are the same.

Solution: Yes. Let us say Bob gets information about movie k and person a in that
order. Based on this new update scheme, the row in V corresponding to movie k will be
frozen after the information is received, and will not be updated when the information
about person a is received. On the other hand, the learned row in U corresponding
to person a will depend in part on the previously updated row in V corresponding to
movie k.

If the information was received in the opposite order, we would have the opposite
result. The row in U corresponding to person a would be frozen after the first piece
of information was received, and not be influenced by the information about movie k.
Meanwhile, the row in V corresponding to movie k would be learned in part based on
the information gained about person a previously.

Thus, the order of new information matters a lot in this new scheme, because U and
V aren’t jointly optimized completely every time new information is received.

(g) Let us say that Bob modifies this procedure, so that he still adds new movies and users in
this way, but after every 100 new additions, he retrains U and V from scratch using alter-
nating least squares. Would you expect that this method would make better predictions
than if we just used Bob’s original procedure? Explain.

Solution: Yes.

Whenever we retrain U and V from scratch, we are minimizing the objective function
over all variables in the problem (all entries of U and V ) so the minimum of the
objective will be lower than we could obtain by just retraining a subset of variables,
as we were doing in the previous part to lower computational costs.
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Thus, this method will make better predictions.

(h) After having added a few thousand users and movies to his database, Bob wants to try
analyzing the user and movie vectors that he has learned, in order to see whether he can
interpret what is causing customers to like certain movies over others. However, some of
the numbers in U and V have a very high magnitude, which may lead to problems with
numerical precision. How might Bob adjust his training process to fix the problem of high
magnitude numbers in U and V ?

Solution: In order to have fewer numbers of large magnitude, Bob can employ regu-
larization of both U, V .
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Linear Regression with Regularization

7. (14 points) In this problem, we consider using linear regression with a regularization term.
Assume a dataset of n samples {(x(i), y(i))} with x(i) ∈ R2 and output values y(i) ∈ R. Recall
that the ridge regression objective is defined as follows:

Jridge(θ) = Jdata(θ) + Jreg(θ) =
1

n

n∑
i=1

(θTx(i) − y(i))2 + λ||θ||2

where θ = [θ1, θ2] and λ is the regularization trade-off parameter.

Chris would like to solve the problem of computing θ that minimizes the ridge regression
objective. He will employ graphical methods to obtain the solution. When plotting just the
data error term, Jdata(θ), as a function of θ1 and θ2, the following set of isocontour lines (curves
connecting sets of θ1, θ2 for which the objective value is constant) is obtained, for his dataset:

(a) What is the optimum solution θ∗ when you minimize only the data error term, Jdata(θ),
i.e., for λ = 0? Give an approximate value, for Chris’s data.

Solution: [0.5, 1.0]

(b) In general, is the data error term Jdata(θ
∗) guaranteed to be zero for the optimal value of

θ, for the case when λ = 0? Explain.

Solution: No. Since we are not likely to perfectly fit all of the data, the data term
error is likely to be larger than zero even for the optimal θ value.
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(c) Recall that ∇Jdata(θ) is a vector in 2D. In general, at any parameter vector θ, describe the
geometric relationship between ∇Jdata(θ) and the isocontour line of the data error term
Jdata(θ) that passes through θ.

Solution: The vector ∇Jdata(θ) is locally perpendicular to the isocontour line of the
data error term Jdata(θ) at θ. The gradient points in the “uphill” direction.

(d) What is ∇Jdata(θ∗) at the optimum θ∗, when λ = 0?

Solution: ∇Jdata(θ∗) = 0.

(e) Now we consider regularization. Sketch the isocontour lines for just the regularization
term, Jreg(θ). Clearly label the contour line corresponding to the values of θ for which
this term has value 1, when λ = 1.
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(f) What is the effect of the regularization trade-off parameter λ on the shape and value of
the isocontour lines of the regularization term Jreg(θ)?

Solution: The shape remains concentric circles centered at the origin. λ scales the
isocontour value for each radius of these concentric circles. (Note that for a constant
isocontour value, the radius then decreases.) Visualizing the shape as a bowl, larger
λ makes the bowl steeper.

(g) Now consider the gradient of the regularization term ∇Jreg(θ). Towards what specific
point does the −∇Jreg(θ) vector point to?

Solution: The origin, (0,0).

(h) If λ is very large, what is the θ∗ that minimizes Jridge(θ
∗)? What approximate numerical

value does Jdata(θ
∗) have for Chris’s data?

Solution: λ being very large forces θ∗ to be very nearly [0, 0]. Looking at the plot at
the start of the problem, we see that the Jdata at the origin is approximately 20.

(i) Given a general optimal solution θ∗ for Jridge(θ) for a given (finite) λ, what is the algebraic
relationship between ∇Jdata(θ∗) and ∇Jreg(θ∗)?

Solution: We know that ∇Jridge(θ∗) = 0 at the optimal point. This forces ∇Jdata(θ∗)
= -∇Jreg(θ∗).
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Training Neural Networks with Regularization

8. (8 points) In this problem we will investigate regularization for neural networks.

Kim constructs a fully connected neural network with L=2 layers using mean squared error
(MSE) loss and ReLU activation functions for the hidden layer, and a linear activation for the
output layer. The network is trained with a gradient descent algorithm on a data set of n
points {(x(1), y(1)), ..., (x(n), y(n))}.
Recall that the update rule for weights W 1 can be specified in terms of step size η and the
gradient of the loss function with respect to weights W 1. This gradient can be expressed in
terms of the activations Al, weights W l, pre-activations Z l, and partials ∂L

∂A2 , ∂Al

∂Zl , for l = 1,2:

W 1 := W 1 − η
n∑
i=1

∂L(h(x(i);W ), y(i))

∂W 1
,

where h(·) is the input-output mapping implemented by the entire neural network, and

∂L

∂W 1
=

∂Z1

∂W 1
· ∂A

1

∂Z1
·W 2 · ∂A

2

∂Z2
· ∂L
∂A2

.

(a) Derive a new update rule for weights W 1 which also penalizes the sum of squared values
of all individual weights in the network:

Lnew = L(h(x(i);W ), y(i)) + λ||W ||2

where λ denotes the regularization trade-off parameter. You can express the new update
rule as follows:

W 1 := αW 1 − η
n∑
i=1

∂L(h(x(i);W ), y(i))

∂W 1

where L(·) represents the previous prediction error loss.

What is the value of α in terms of λ and η?

Solution:
Lnew = L+ λ

∑
i,j,l

(W l
i,j)

2

∂Lnew

∂W 1
=

∂L

∂W 1
+ 2λW 1

W 1 := W 1 − η
∑ ∂Lnew

∂W 1

W 1 := (1− 2λη)W 1 − η
∑ ∂L

∂W 1

Thus α = 1− 2λη.

Page 23



Name:

(b) Explain how this new update rule helps the neural network reduce overfitting to the data.

Solution: For reasonable λ and η, the weights are scaled by a factor less than 1 at
each iteration. (If 1 − 2λη > 1, the weights will rapidly grow and diverge.) A value
of |α| < 1 pushes the weights toward zero in general, except those weights that are
needed to fit substantial subsets of the data (i.e., those weights that are needed to
keep the data loss term L low).

(c) Given that we are training a neural network with gradient descent, what happens when
we increase the regularization trade-off parameter λ too much, while holding the step size
η fixed?

Solution: With too large a λ, α may approach zero and the weights would be too
strongly penalized and thus tend to zero, preventing the neural network from fitting
the available training data. That is to say, the network is pushed towards an overly
“generalized” constant output based on zero or near-zero weights. With even larger
values of λ, α may become negative causing oscillations in weights. With |α| larger
than 1, the weights will grow in magnitude without bound.

Page 24



Name:

Lost in Translation

9. (10 points) We want to make an RNN to translate English to Martian. We have a training
set of pairs (e(i),m(i)), where e(i) is a sequence of length J (i) of English words and m(i) is a
sequence of length K(i) of Martian words. The sequences, even within a pair, do not need to
be of the same length, i.e., J (i) need not equal K(i). We are considering two different strategies
for turning this into a transduction or sequence-to-sequence learning problem for an RNN.

Method 1: Construct a training-sequence pair (x, y) from an example (e,m) by letting

x = (e1, e2, . . . , eL, stop)

y = (m1,m2, . . . ,mL, stop)

In Method 1, we assume that if the original e and m had different numbers of words, then
the shorter sentence is padded with enough time-wasting words (“ummm” for English,
“grlork” for Martian) so that they now have equal length, L. Any needed padding words
are inserted at the end of e(i), and at the start of m(i).

Method 2: Construct a training-sequence pair (x, y) from an example (e,m) by letting

x = (e1, e2, . . . , eJ ,stop, blank, . . . , blank)

y = (blank, . . . , blank,m1,m2, . . . ,mK , stop)

In Method 2, blanks are inserted at the end of e and start of m such that the length of x
and y are now both J +K + 1.

(a) Assume an element-wise loss function Lelt(p, y) on predicted versus true Martian words.
What is an appropriate sequence loss function for Method 1? Assume that the predicted
sequence p has the same length as the target sequence y.

Solution:

Lseq =

L+1∑
i=1

Lelt(pi, yi)

The RNN should seek to output the correct Martian words, as well as the stop indi-
cator.

(b) Assume an element-wise loss function Lelt(p, y) on predicted versus true Martian words.
What is an appropriate sequence loss function for Method 2? Assume the predicted
sequence p has the same length as the target sequence y.

Solution:

Lseq =
J+K+1∑
i=J+1

Lelt(pi, yi)

It’s really only necessary that the RNN correctly outputs the whole Martian sequence
and the final stop indicator. But, it’s okay if you sum starting from the first token,
i = 1.

Page 25



Name:

(c) Which method is likely to need a higher dimensional state? Explain why.

Solution: Method 2 likely needs to have a larger state to hold a representation of the
full input sentence e, while Method 1 might have a shorter state that enables mapping
of individual words or shorter sub-sequences of words to corresponding output words
or sub-sequences.

(d) Which method is better if English and Martian have very different word order? Explain
why.

Solution: Method 2 since it can first parse the entire input sentence, and then output
in a different word order.

(e) Martian linguist Grlymp thinks it is also important to pad the original English and Martian
sentences with time-wasting word to be of the same length for Method 2 (i.e., so that
J = K), but English linguist Chome Nimsky disagrees. Who is correct, and why?

Solution: Chome Nimsky is right: Method 2 already has full flexibility in processing
the entire sentence e before outputting m, so additional time-wasting words would not
help (and may hurt) in expressiveness and/or training.
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