
6.390: Midterm Exam, Spring 2023

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in.) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 2 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 19

2 12

3 19

4 12

5 18

6 11

7 9

Total: 100

1

Name:

Regression or Progression?

1. (19 points) Suppose that you are given a small dataset and you would like to learn the param-
eters of a linear regressor hypothesis taking the form h(x) = θ⊤x+ θ0 for fitting the data.

(a) First, consider the following dataset D1 containing three feature-label pairs:

x y

−4 3
2 −1

−1 0

Suppose that you would like to minimize the following objective function:

J1(θ, θ0) =
1

n

n∑
i=1

(θ⊤x(i) + θ0 − y(i))2.

You decide that you would like to find the analytic solution. You start by defining Y =
[y(1), y(2), . . . , y(n)]⊤ and θ̄ = [θ, θ0]

⊤ and rewrite your objective function as,

J2(θ̄) =
1

n
(X̃θ̄ − Y)⊤(X̃θ̄ − Y).

i. What is the data matrix X̃ with data points as rows corresponding to the dataset D1

which ensures that the two objective functions J1, J2 are equivalent?

Solution: X̃ =

−4 1
2 1
−1 1

ii. Does J2 have an analytic solution for dataset D1? Explain your answer. (Note: you
do not need to compute the analytic solution.)

Solution: Yes; the matrix X̃⊤X̃ is invertible.
One way to see this is by calculation, e.g. we can see that the determinant of
X̃⊤X̃ is non-zero. Another way to see invertability is that this data set has more
data points than features and the features are not linearly dependent.
This objective function therefore has a unique analytic solution.

Page 2

Name:

(b) As your dataset is quite small, you decide to add a second feature for each of the three
datapoints. Consider the new dataset D2 defined as:

x1 x2 y

−4 −8 3
2 4 −1

−1 −2 0

i. Does J2 have an analytic solution for dataset D2? Explain your answer. (Note: you
do not need to compute the analytic solution.)

Solution: No; the second feature is just the first feature scaled by two. The
features are linearly dependent and (X̃⊤X̃) is not invertible. This implies the
objective function does not have an analytic solution.

ii. Consider a new objective function with an added regularization term:

J3(θ, θ0) =
1

n

n∑
i=1

(θ⊤x(i) + θ0 − y(i))2 + 0.2(∥θ∥2 + θ20)

Will adding this particular form of regularization in J3 improve the generalization of
our model? Explain your answer.

Solution: This regularization is not a good idea. Adding this regularization
penalizes θ0. This is going to drive θ0 towards 0. As discussed in the notes,
forcing θ0 to be zero potentially hurts the generalization of the model.

iii. Does J3 have an analytic solution for dataset D2? Explain your answer. (Note: you
do not need to compute the analytic solution.)

Solution: Yes. The notes has discussion on that ridge regularization guarantees
unique analytical solution.

(c) Consider a new dataset D3 which includes a fourth data point:

x1 x2 y

−4 −8 3
2 4 −1

−1 −2 0
5 8 −4

Does J2 have an analytic solution for dataset D3? Explain your answer. (Note: you do
not need to compute the analytic solution.)

Solution: The features of the last data point are not linearly dependent; therefore
(X̃⊤X̃) is invertible. This implies that this system has one unique solution.

Page 3

Name:

Discerning Descents

2. (12 points) Indicate whether the following statements are true or false. Explain your answer.

(a) Gradient descent is sure to converge, to some value, for any step size greater than 0.

Solution: False. The step-size can be too large, which may cause the algorithm to
diverge.

(b) Stochastic gradient descent reduces the objective function value at every iteration.

Solution: False. Depending on which index is randomly chosen, the gradient direction
with respect to that data point may increase the objective function value at a single
iteration.

(c) When the algorithms converge, stochastic gradient descent always finds the same solution
as gradient descent.

Solution: False. For example, if there are multiple local minima, even two differ-
ent runs of gradient descent may converge to different local minima, depending on
the random initial condition. Adding on top of this the stochastic/randomness from
stochastic gradient descent makes the statement definitely false.

(d) The more features that we use to represent our data, the better the learning algorithm
will generalize to new data points.

Solution: Two lines of reasoning are okay:

• False; it depends on the kind of features you are adding. For instance, if we just
added “nonsense” or irrelevant features, these features would not be helping.

• True; if one assumes that the features are more informative it should reduce the
chance of over-fitting.

Page 4

Name:

Logistic Regression Logistics

3. (19 points) You would like to train a binary linear logistic classifier of the form,

h(x; θ, θ0) = σ(θTx+ θ0),

where σ(z) = 1/(1 + e−z) is the sigmoid function, by minimizing an objective function,

J(θ, θ0) =
1

n

n∑
i=1

L(g(i), a(i)) + λ∥θ∥2,

where g(i) = h(x(i); θ, θ0) is the “guess” or model output and a(i) = y(i) is the “actual” label.

(a) Typically, we use the negative log-likelihood (NLL) as the loss function for classification,

LNLL(g, a) = −(a log g + (1− a) log(1− g)).

Additionally, recall that
∂LNLL(g, a)

∂g
=

1− a

1− g
− a

g
.

We could also consider using squared loss for classification,

Lsquared(g, a) = (g − a)2.

i. Consider the case when our guess is g ≈ 0 but the actual value should be a = 1.
Compute the following values:

LNLL(g, a) ≈ ∞ (or undefined, DNE, etc.)

Lsquared(g, a) ≈ 1

∂LNLL(g, a)/∂g ≈ −∞ (or undefined, DNE, etc.)

∂Lsquared(g, a)/∂g ≈ -2

ii. Now, let’s instead assume that g = 0.5 and the actual label is still a = 1. Compute
the following values:

∂LNLL(g, a)/∂g = -2

∂Lsquared(g, a)/∂g = -1

Page 5

Name:

iii. Is it ever possible to obtain a guess of g = 1? Explain why or why not.

Solution:
We can never get g = 1 since sigmoid only approaches 1 asymptotically.

iv. Based on these observations, briefly explain why we might prefer one of the loss
functions presented above over the other when training a linear logistic classifier.

Solution:
NLL typically has a larger gradient and leads to faster, more reliable convergence
to a low-error solution.
If you consider “these observations” from part (a) i. in a vacuum, you may be
tempted to conclude that the squared-error loss may be preferable because it
avoids the issue of have undefined gradients revolving around division by zero.
However, as observed in part iii., we can never get to g = 1 (or g = 0), as the
sigmoid only approaches these values asymptotically.

(b) You decide to train your binary linear logistic classifier by minimizing the J objective
function with the NLL loss function by using gradient descent. A few of your friends
comment on your methodology.

i. Chris thinks that sigmoids are too confusing! He suggests that you can replace the
sigmoid function with a step function for training your model.

Does Chris’s scheme make sense? Explain your answer.

Solution: Recall that we are trying to learn a classifier by minimizing the objec-
tive function using gradient descent. Here, with the step function, the gradient
is zero everywhere or undefined and the gradient updates will not be meaningful.
Credit was also given for noting that using the step function with NLL loss may
lead to issues similar to part (a)i.
It is key to note that the issues arise during training using gradient descent. A
linear classifier on its own is a valid choice if the parameters are already given.

Page 6

Name:

ii. Jojo claims that you can generalize from binary to trinary classification as follows: let
the hypothesis take the form h3(x; θ, θ0) = 3σ(θ⊤x + θ0), and learn the parameters
θ, θ0 by minimizing the same objective J with NLL loss, with class labels 0, 1, 2. Then,
you can assign classes using the output of your hypothesis as,

class 0, if 2 ≤ h3(x),

class 1, if 1 ≤ h3(x) < 2,

class 2, if h3(x) < 1.

Does Jojo’s scheme make sense? Explain your answer.

Solution: This scheme does not make sense for many reasons:

• Dividing the range of the sigmoid into three regions does not have any
particular meaningful implications for the classification

• The monotonic nature of sigmoid would imply that the data would have to
be such that, spatially, the decision region for class 0, 1, and 2 must happen
sequentially.

• Trying to use the NLL loss function with a label of 2 is also not sensible.

In essence, this scheme abstracts away from all of the intenions of training a linear
logistic classifier.

Page 7

Name:

iii. Mona overhears your conversation with Jojo and suggests that instead of using a single
classifier, you learn two different binary linear logistic classifiers.
First, learn one binary classifier h01 by minimizing J with the NLL loss function on a
dataset where class 0 is labeled 0 and class 1 is labeled 1, and class 2 feature vectors
are omitted.
Then, learn a second classifier h12 by minimizing J with the NLL loss function on a
dataset where class 0 feature vectors are omitted, class 1 is labeled 0, and class 2 is
labeled 1.
You can assign classes using the output of your two hypotheses by performing the
following sequentially:

if h01(x) < 0.5, assign class 0,

else, if h12(x) < 0.5, assign class 1,

otherwise, assign class 2.

Does Mona’s scheme make sense? Explain your answer.

Solution: Notice that this scheme is a sort of incomplete one-vs-one set up. A
third binary classifier should be used to differentiate between classes 0 and 2, in
conjunction with some sort of notion of “confidence” or “margins” to break ties.
While each classifier may be learned in a sensible way, the classifications outlined
will not be sensible when trying to do this multi-class classification task.

Page 8

Name:

Won’t You Be My Neighbor?

4. (12 points) Indicate whether the following statements are true or false. Explain your answer.

(a) Consider a classification problem where the training dataset consists of n data points that
all have different feature values.

i. A k-nearest-neighbor classifier with k = 1 will always have 100% training accuracy on
this dataset.

Solution: True. For any training data point, the 1 nearest neighbour is always
itself. Therefore, the predicted class label will by construction be correct. So the
training accuracy is 100%.

ii. A k-nearest-neighbor classifier with k > 1 will always have 100% training accuracy on
this dataset.

Solution: False. The data points in the training dataset do not necessarily have
the same label values. Some data points may have labels different from the par-
ticular training data point in consideration. When taking a majority vote of class
labels from any point’s k neighbours, the majority vote may differ from this point’s
true label. Therefore, no guarantee of 100% training accuracy.

iii. In general, using a k-nearest-neighbors classifier with k > 1 as opposed to 1-nearest-
neighbor can effectively reduce the tendency of the model to overfit to training data.

Solution: True. With k = 1, the classifier’s decision boundary is heavily influ-
enced by each individual data point. Any potential noise in the training data set is
significantly impacting the decision boundary – classical symptom of over-fitting.
When k increases, the decision boundary is smoothed out, meaning that some
local noises are getting ignored, therefore higher k reduces the tendency to overfit
to the local data.

Page 9

Name:

(b) Consider a regression problem where the training dataset consists of n data points that
all have different feature values.

i. The MSE (mean squared error) of a k-nearest-neighbor regressor with k = 1 will
always be 0 on this dataset.

Solution: True. Similar to the classification case, in regression, running 1-nn on
the training dataset would also return the label of the particular training data
itself. Graphically, when the training data is all of different feature values, the
regressor will go through all the data points. This implies that MSE on this
dataset will be zero.

ii. The MSE (mean squared error) of a k-nearest-neighbor regressor with k > 1 will
always be 0 on this dataset.

Solution: False. For instance, say k = 2, and for a training data (x, y) its
two nearest neighbors are (x1, y1) and (x, y). The prediction (y1 + y)/2 is not
necessarily equal to y.

iii. A k-nearest-neighbor regressor with k = n trained on this dataset will always output
constant prediction.

Solution: True. Suppose the labels of data point i in the training data set is y(i),
then the prediction made by this k-NN with k = n (because n-NN sounds funny)
will be 1

n

∑n
i=1 y

(i).

Page 10

Name:

The Rise of ELU

5. (18 points) We have been considering the ReLU function for an internal non-linearity in neural
networks:

ReLU(z) =

{
z if z > 0,

0 otherwise.

Let’s also consider the ELU (exponential linear unit) function:

ELUα(z) =

{
z if z > 0,

α(ez − 1) otherwise,

which is shown here for α = 0.1:

0.2

0.4

0.6

0.8

1.0

(a) What is ∂ELUα(z)/∂z?

Solution:

∂ELUα(z)/∂z =

{
1 if z > 0

αez otherwise

(b) We have the simple neural network shown below:

We will train the neural network using the squared loss function,

Lsquared(g, a) = (g − a)2.

Our target output is 1 and the initial weights (including the offsets bi) are −0.1.

i. Assume the input is x = 1. What is the sign of the update that will be applied to w1,
using a step size of 1? Explain your answer.

Solution: The gradient of the loss with respect to w1, has a factor which is the
derivative of ReLU with respect to z. Since the activation of the ReLU is negative,
the gradient of the ReLU is zero. Therefore the gradient update is zero.

Page 11

Name:

ii. Assume that instead of the ReLU unit we have an ELU unit. What is the sign of
the gradient update that will be applied to w1, using a step size of 1? Explain your
answer.

Solution: The gradient update is

w1 := w1 − η∂Lsquared/∂w1

∂Lsquared/∂w1 = 2(g − a)w2αe
zx

Note that (g − a) is negative, w2 is negative, ez is positive and x is positive. So
the gradient of the loss will be positive and thus the update will be negative.
(assuming α > 0 and small).

iii. Assume we initialize our networks with weights drawn uniformly from the range
[−.1, .1] What advantage does using ELU have over ReLU for use in a multi-layer
neural network?

Solution: Initially, when the weights are small, many of the ReLU units will be
“dead”, with zero output and zero gradient. Which could be problematic as zero
gradient means no update to the weight.

iv. What advantage does using ELU have over the linear activation function for use in
the internal units of a multi-layer neural network?

Solution: Linear activations produce an overall linear classifier. ELU introduces
a necessary non-linearity for improved expressiveness of the network.

Page 12

Name:

Classification (feat. Features)

6. (11 points) Here is a training data-set of four data points (with 1-dimensional feature x) for a
classification problem:

x y

−1 −1
0 +1
1 +1
2 −1

(a) What are the feature values under the feature transformation ϕ(x) = [x, x2, (x− 1)2]⊤ for
each of these four data points?

Solution: ϕ(−1) = [−1, 1, 4]⊤, ϕ(0) = [0, 0, 1]⊤, ϕ(1) = [1, 1, 0]⊤, ϕ(2) = [2, 4, 1]⊤

(b) The given data set is linearly separable in the new feature space ϕ(x) = [x, x2, (x− 1)2]⊤.
Suppose we have a linear classifier with θ = [−1,−1,−1]⊤ and an unknown θ0. Provide a
value of θ0 that results in a correct separator on the training data. Justify your answer.

Solution: Any value between 2 and 4 will work. One can see this by computing the
θ⊤ϕ(x):

θ⊤ϕ(−1) = −4, θ⊤ϕ(0) = −1, θ⊤ϕ(1) = −2, θ⊤ϕ(2) = −7.

Adding, e.g., θ0 = 3 to each of these numbers will result in θ⊤ϕ(x) + θ0 > 0 for the
data points labeled +1 and θ⊤ϕ(x) + θ0 < 0 for data points labeled −1.

(c) Suppose we use a linear classifier θ = [−1,−1,−1]⊤ and θ0 = 4 in the new feature space
ϕ(x) = [x, x2, (x− 1)2]⊤. For what range of values in the original x feature space would a
data point be classified as positive?

Solution: For a point to be predicted positive we need θ⊤ϕ(x)+ θ0 = −x−x2− (x−
1)2 + 4 > 0 which occurs when −1 < x < 3

2 .

Page 13

Name:

Detective on the Case

7. (9 points) As a machine learning expert, your friends often come to you looking for advice on
how to fix their code. For each of the following snippets of pseudocode, identify which line(s)
of code have errors and explain how you would change them.

Here are five commonly referenced functions. You do not need to debug their contents. You
can assume that they operate correctly.

def objective_function(feature_vectors, labels, model, hyperparams=None)

Defines the objective function

return objective_function

def objective_value(feature_vectors, labels, model, hyperparams=None ...

objective_fn=objective_function):

Computes the objective function value

return objective_value

def train_model(feature_vectors, labels, hyperparams=None, ...

objective_fn=objective_function):

Learns a model using some algorithm on the dataset

e.g., by minimizing an objective function

return model

def load_dataset(fname):

Loads the dataset

return feature_vectors, labels

def train_val_split(feature_vectors, labels):

splits the given dataset into two datasets

e.g., for training and validating a model

return train_vectors, train_labels, val_vectors, val_labels

(a) Find the error(s) in this pseudocode for training and validating a model:

1. x_full, y_full = load_dataset("data.csv")

2. my_model = train_model(x_full, y_full)

3. x_train, y_train, x_val, y_val = train_val_split(x_full, y_full)

4. error = objective_value(x_val, y_val, my_model)

print("My model’s performance: " + str(error))

Solution: In lines 2 and 3, the model is trained on the entire dataset and then val-
idated on a subset of the dataset, resulting in attempting to validate the model on
data it has already seen during training. These two lines should be switched such that
the model is trained on one subset of the dataset and validated on the other.

Page 14

Name:

(b) Find the error(s) in this pseudocode for training and testing a regularized model:

1. lam = 0.01

2. x_full, y_full = load_dataset("data.csv")

3. x_train, y_train, x_val, y_val = train_val_split(x_full, y_full)

4. my_model = train_model(x_train, y_train, hyperparams=lam)

5. error = objective_value(x_val, y_val, my_model, hyperparams=lam)

print("My regularized model’s performance: " + str(error))

Solution: In line 5, when the testing error is being calculated, it is including the value
for the hyperparameter. The hyperparams variable should be explicitly set to None
or not included in the call to objective value, as it is None by default.

(c) Find the error(s) in this pseudocode for shipping a regularized model with a validated
hyperpameter value:

1. x_full, y_full = load_dataset("data.csv")

2. x_train, y_train, x_val, y_val = train_val_split(x_full, y_full)

3. lambda_values = [0.0001, 0.001, 0.01, 0.1, 1.0]

4. min_error = 1e10 # assume that any model will have error < 1e10

5. for lam in lambda_values:

6. model = train_model(x_train, y_train, hyperparams=lam)

7. error = objective_value(x_val, y_val, model)

8. if error < min_error:

9. lambda_star = lam

10. min_error = error

11. best_model = train_model(x_train, y_train, hyperparams=lambda_star)

print("Finished training validated model. Ready for testing!")

Solution: In line 11, the final model is only trained on the “train” dataset when it
should be trained on the entire dataset x full,y full, as it is specified that the model
is to be shipped (for being used on future, unseen testing data).

Page 15

