
6.390: Midterm, Fall 2022

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in. or A4) of notes, front and back,
is permitted. Calculators are not permitted.

• The total exam time is 2 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 20

2 20

3 20

4 20

5 20

Total: 100
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Validation Vacillation

1. (20 points) You have the data set shown below, where two samples belong to one class (marked
with X’s), and two samples belong to a different class (marked with circles). You are interested
in finding the best linear classifier for this data, but also want to estimate the accuracy of
the resulting classifiers using leave-one-out (or four-fold) cross-validation. Here, accuracy A is
measured as

A(h;D) = 1− 1

n

n∑
i=1

L01(g(i), y(i)),

where n is the number of data points in whichever dataset D is used, D is Dtrain for training
accuracy, D is Dtest for testing accuracy.
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(a) You start by finding a linear classifier with the best training accuracy using the whole
data set (training using all four samples). What is the best training accuracy that can be
achieved?

Solution: The best classifier (among many) will misclassify one of the four training
data points, for a training accuracy Atrain = 0.75.

(b) You now conduct four-fold (leave-one-out) cross-validation. For each fold, suppose you
find a linear classifier with the highest possible training accuracy. You decide to look at
the training accuracy for each of these linear classifiers, and report an average of these
training accuracies across the four folds. What is the final value that you report?

Solution: Leaving any one point out, we’re always able to train a linear classifier that
linearly separates the remaining three points. So the best average training accuracy
is Atrain = 1.

(c) You still consider the same set of four linear classifiers found in (b). But now you look at
the testing accuracy for each of these linear classifiers on the corresponding fold’s testing
set, and report an average of these testing accuracies across the four folds (i.e., what we
traditionally report when we use cross-validation). What is the final value that you report?
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Solution: The “perfect” linear classifiers found from training on three points will
always misclassify the held-out test data point. So the average testing accuracy is
Atest = 0.

(d) Concerned that four data points may not be a large enough data set, you obtain a much
larger number of data points as shown below, with 25% of the data in each of the four
quadrants. In each quadrant, the data is bounded as shown within a square region of
width 1 and height 1 from the corner points at (±1,±1).
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This much larger data set is randomly shuffled to ensure that the order of data points in
the overall data set is random. Now you perform four-fold cross-validation on this data
set, and in each fold you take the linear classifier with highest training accuracy on the
training data. Approximately what is the average of training accuracies across the folds?

Solution: Now we’re back to the situation in (a), where the best linear classifier will
misclassify all or most of the points in one quadrant of the data set (which will contain
approximately 25% of the training data), resulting in an average training accuracy
Atrain ≈ 0.75.

(e) You still consider the same set of four linear classifiers that you found in (d). But now
you look at the testing accuracy for each of these linear classifiers on the corresponding
fold’s testing set and report an average of these testing accuracies across the four folds.
Approximately what value do you report?

Solution: With our data random shuffled, the best trained classifier will misclassify
about 25% of the test samples, so the average test accuracy will also be Atest = 0.75.
Unlike the cases with very small number of sample points, here the training and test
accuracies are comparable, giving us some confidence that the best we can do with a
linear classifier (without feature transformations) is about 75% accurate for this data.

(f) You desire a feature transformation that makes your data in (a) and/or (d) linearly sepa-
rable, and consider various options. Each feature transformation supplements the original
two components, x1 and x2, with a third component, to provide three features in total as
shown below:
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A: [x1, x2, x
2
1]

B: [x1, x2, x
2
1 − x2

2]

C: [x1, x2, x1x2]

D: [x1, x2, x
2
1 + x2

2]

E: [x1, x2,
(x1+x2)2

2 + (x1−x2)2

1 ]

i. Mark all of the feature transformations defined above that will make the four data
points in part (a) linearly separable:

© A. © B.
√

C. © D.
√

E.

ii. Mark all of the feature transformations defined above that will make the many data
points in part (d) linearly separable:

© A. © B.
√

C. © D. © E.

Solution: Choices A and B do not help; one can consider the four points at
(±1,±1) and see that those map to the same values for our additional feature
component, even for different class samples.

Choice C makes both data sets linearly separable; all class “X” samples are
mapped to positive x1x2 and all “circle” samples to negative x1x2.

Choice D gives the squared distance of the point from the origin; this does not
help distinguish the two classes since many of both classes sit at the same distance
from the origin.

Choice E is an ellipse, and is interesting in that it can separate the two classes
in part (a) data but not in part (d) data. For the part (a) data, one can draw

the ellipse for some value of (x1+x2)2

2 + (x1−x2)2

1 that encompasses the upper right
and lower left points (“X” points) in data from part (a), but not the “circle” class
samples. However, expanding the ellipse so that it encompasses all of the upper
right and lower left “X” points from part (d) data will cause some of the upper
left and lower right data “circle” points in part (d) to be included, making this
data not linearly separable with this added feature.

Separability can be seen more easily by considering mappings for all (±1,±1) and
(±2,±2) points, to see if the added feature has a threshold that enables separation
into the two classes. In the table below, the value of the third feature component
is shown under A-E. Values enabled linear separability are bolded.

x1 x2 A B C D E Class

-1 -1 1 0 1 2 2 X
-1 1 1 0 -1 2 4 ©
1 1 1 0 1 2 2 X
1 -1 1 0 -1 2 4 ©

-2 -2 4 0 4 8 8 X
-2 2 4 0 -4 8 16 ©
2 2 4 0 4 8 8 X
2 -2 4 0 -4 8 16 ©
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Store Cluster

2. (20 points) Amazing, Inc., is going to open their first k stores in the greater Megacity region.
They know that the ith customer (out of n total customers) lives at location x(i). They will
place the jth store (for j = 1, . . . , k) at location µ(j). Amazing, Inc., would like to minimize
the squared distance between customer locations and stores, and they decide to use k-means
clustering to choose their store locations.

Amazing, Inc., wants to focus on where to place their stores, and decides to formulate the
problem as finding the µ that minimizes a loss function

L(µ) =
n∑

i=1

min
j∈1,...,k

∥∥∥x(i) − µ(j)
∥∥∥2

.

Here L(µ) is the value of the k-means objective after we have picked the optimal assignments
of the data points to cluster means (that’s what the minj does), for the given set of cluster
means µ.

(a) Amazing, Inc., has four customers in Megacity, located at positions (x1, x2) as shown by
the circles in the plot below, and plans to build two stores. They have initial guesses for
these two store locations, as marked by the triangles below. What is the starting loss
L(µ)?
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Solution:

L(µ) = 22 + 42 + (22 + 12) + (22 + 12)

= 4 + 16 + 5 + 5

= 30

(b) Amazing, Inc., runs the k-means clustering algorithm starting from the initial guess shown
above, until convergence (no further improvements in loss L(µ) can be made). Mark the
final locations of the stores (with triangles) on the plot below. What is the final loss L(µ)?
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Solution:
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The final loss has improved to:

L(µ) = 4 · 12 = 4

(c) After several years, Amazing Inc., has grown tremendously. Now rather than tracking
individual customers, they instead have a database consisting of r records: the ith record,
i = 1, . . . , r, provides both c(i) and x(i), where c(i) is the number of customers that are
located at position x(i). They still want to put each store (indexed by j = 1, . . . , k) at a
position µ(j) that minimizes the squared distances between customers and store locations,
summed up over all customers. They just don’t have individual customer data anymore.

Define a new objective LC(µ) to account for the fact that now Amazing, Inc., has access
only to record data instead of individual customer data. Please define any new expressions
that you use within your formulation.

Solution: We need to include the c(i) term in the objective, as:

LC(µ) =
r∑

i=1

(min
j

∥∥∥x(i) − µ(j)
∥∥∥2

) · c(i) .

(d) Amazing, Inc., test-runs their approach in the One-di City, which has a small number of
customers. Their data set D consists of one-dimensional locations x and customer counts
c as pairs, (x, c) : D = ((−1, 10), (1, 4)). Amazing, Inc., is only going to build one store:
where should it be located? Show your work.

Solution: For this case, our LC(µ) can be expressed as:

LC(µ) = c(1) · (µ− x(1))2 + c(2) · (µ− x(2))2

= 10 · (µ+ 1)2 + 4 · (µ− 1)2

= 14µ2 + 12µ+ 14
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The optimum occurs where dLC(µ)/dµ = 0, or:

28µ+ 12 = 0

µ = −12/28 = −3/7 .

As a sanity check, this makes sense – the store should be located to the left of x = 0,
since there are more customers to that side.

(e) Amazing, Inc., also has a single distribution center (DC) in Megacity, located at xDC , that
supplies all of their stores in Megacity. There is a cost associated with transporting goods
from the DC to each of the stores, that grows with both squared distance and with the
number of customers served by the store. Specifically, for each store, that cost is equal
to the number of customers assigned to cluster j times the square of the distance from
µ(j) to xDC . Amazing, Inc., would like to minimize both its own tranportation costs and
the transportation cost of customers visiting their stores, the latter of which is the loss
from (c). To that end, they decide to minimize the sum of these two costs.

Define the loss function LS(µ) that expresses the overall loss that Amazing Inc. is seeking
to minimize: the sum of the Amazing, Inc., transportation costs and the customer-to-
store costs. Please define any new expressions that you use within your formulation.
All of your definitions should be in equations that ultimately depend only on quantities
defined in this problem, not just definitions in words. You may find it useful to define

y(i) = arg minj

∥∥x(i) − µ(j)
∥∥2

for record i.

Solution: In addition to the c(i) term in the objective, we add the store-to-DC costs
as:

LS(µ) = LC(µ) +
k∑

j=1

N
(j)
C

∥∥∥µ(j) − xDC

∥∥∥2
,

where LC is defined as in (a):

LC(µ) =
r∑

i=1

(min
j

∥∥∥x(i) − µ(j)
∥∥∥2

) · c(i) .

In LS as defined above, we account for the total number of customers (not just number
of points) in cluster j by defining

N
(j)
C =

r∑
i=1

c(i) · 1(y(i) = j) ,

where

y(i) = arg min
j

∥∥∥x(i) − µ(j)
∥∥∥2

is which cluster (store) the ith record is assigned to.
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Some alternative expressions or notations for LS are shown below. Let yi denote the
assignment of ith record to its nearest cluster.

LS(µ) =
r∑

i=1

c(i)
∑
j=1:k

1[yi = j](||x(i) − µ(j)||2 + ||µ(j) − xDC ||2)

=
r∑

i=1

c(i) min
j=1:k

||x(i) − µ(j)||2 +
r∑

i=1

∑
j=1:k

1[yi = j]c(i)||µ(j) − xDC ||2

=

r∑
i=1

c(i) min
j=1:k

||x(i) − µ(j)||2 +
∑
j=1:k

||µ(j) − xDC ||2
r∑

i=1

1[yi = j]c(i)

=
r∑

i=1

c(i) min
j=1:k

||x(i) − µ(j)||2 +
∑
j=1:k

||µ(j) − xDC ||2N j
C .

(f) Amazing, Inc., returns to the One-di City to see where they should put their single store.
The records are the same as in (d), but now we also know that their distribution center is
located at xDC = 10. If we aim to minimize the objective function desired in (e), at what
location µ should their store be located?

Solution: Now our combined LS(µ) can be expressed as:

LS(µ) = LC(µ) + (c(1) + c(2))(µ− xDC)2

= (14µ2 + 12µ+ 14) + (10 + 4)(µ− 10)2

= (14µ2 + 12µ+ 14) + (14µ2 − 280µ+ 1400)

= 28µ2 − 268µ+ 1414.

The optimum occurs where dL(µ)/dµ = 0, or:

56µ− 268 = 0

µ = 268/56 = 67/14 = 4.79 .

Again as a sanity check, this value looks consistent with putting the store much further
right than before, to be closer to the DC.
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Not All Regressions are Equal

3. (20 points) The questions below explore linear regressions to find a linear hypothesis

h(x1) = θ1x1 + θ0 that best matches a set of data, where y(i) is the output and x
(i)
1 is the input

for each data point i = 1, . . . , n as shown. We will consider different loss functions. For each
feature value x(i), our guess g(i) = h(x(i)), and our loss is L(g(i), y(i)). The objective function
we seek to minimize is J(θ1, θ0) = 1

n

∑n
i=1 L(g(i), y(i)) + λR(θ1), with R(θ1) = θ2

1 as a ridge
regularization term. Various L and λ will be considered. Solutions to these questions do not
require detailed calculations.

(a) Our first data set consists of three points as shown below. We use a squared error loss
function, L = LSE(g(i), y(i)) = (g(i) − y(i))2, and λ = 0. Write the equation for the best
hypothesis, and sketch this equation on the plot:

Solution:

−2−1 0 1 2
−1

0

1

2

3

x1

y

Just the straight line h(x1) = 0 · x1 + 2.

(b) Using the same data as in (a), we now use λ = 1000, and continue to use L = LSE .
Does the best hypothesis change? Explain why or why not. Whether it has changed or
not, provide and justify an (approximate) hypothesis found by linear regression with this
regularized objective, and sketch that on the plot below.

Solution:

−2−1 0 1 2
−1

0

1
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y

The best hypothesis does not change – it remains the straight line h(x1) = 0 · x1 + 2,
because this also minimizes the regularization term (by setting the norm of θ1 to zero)
in addition to minimizing the sum of losses term.
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(c) We now consider a second data set as shown below, and use a squared error loss function
L = LSE . We set λ = 0. Write the equation for the best hypothesis, and sketch that
hypothesis on the plot:

Solution:

−2−1 0 1 2
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y

Now, the best hypothesis is the line h(x1) = 1 ·x1 +0, which splits the interval between
points at (2,1) and (2, 3).

(d) Using the same data and loss function LSE as in (c), we change the regularization param-
eter to λ = 1000. Does the best hypothesis change? Explain why or why not. Whether
it has changed or not, provide and justify an (approximate) hypothesis found by linear
regression with this objective and regularization, and sketch that on the plot below.

Solution:

−2−1 0 1 2
−1

0

1

2

3

x1

y

The best hypothesis does indeed change. Now the penalty on non-zero θ1 is quite
large, driving that to be near to zero. The θ0 term will change to reduce squared error
between θ0 and the y values, becoming close to the mean of the y values; thus the
hypothesis will be h(x1) ≈ 0 · x1 + 4

3 .
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(e) Continuing with this same data, we now change our loss function to instead be absolute
error, L = LAE(g(i), y(i)) = |g(i) − y(i)|. We continue with the objective function J (but
now using our LAE), and initially with λ = 0. What is the minimum J that can be
achieved? Write the equation for a hypothesis that minimizes J , and sketch that below.

Solution:

−2−1 0 1 2
−1

0

1

2

3y

The minimum objective value achievable is J = 2/3. Any line defined by h(x1) = θ1x1

for θ1 ∈ [0.5, 1.5] results in this minimum objective value for J.

(f) Is the hypothesis giving minimum J in (e) unique? If it is unique, justify why. If not
unique, sketch and shade the region in which all of the minimum-J hypotheses must
reside.

Solution:

−2−1 0 1 2
−1

0

1

2

3y

The “best” hypothesis is not unique. All lines of the form h(x) = θ1x1 with θ1 ∈
[0.5, 1.5] achieve the minimum J = 2/3.
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(g) Finally, using the same data and LAE loss function as in (e), we change the regularization
parameter to λ = 0.001. Now is there a unique best hypothesis? Explain why or why not.
Provide and justify an (approximate) best hypothesis found by linear regression with this
objective and regularization, and sketch that on the plot below.

Solution:

−2−1 0 1 2
−1

0

1

2

3

y

The best hypothesis changes – now the penalty on non-zero θ1 is enough to split the
ties on J from the previous part, picking the unique one that still minimizes sum of
absolute errors, but now that also uses the θ1 with smallest norm. So now the best
hypothesis is h(x1) = 0.5 · x1 + 0.
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Gradient Portfolio

4. (20 points) Joe Smallbucks has a limited budget ($1000, though he can borrow money with
some penalty, or not use all of his budget, also with some lost opportunity penalty). He wants
to build a stock portfolio. Joe is considering a set of n stocks with known prices. His task is

to decide how much of each stock, x =
[
x1, x2, . . . , xn

]>
, to hold. Let pi be the price of

one unit of stock i, and p be the column vector that collects the pi. If Joe holds xi units of
stock i, we say that the value of that stock in Joe’s portfolio is xipi. The value of Joe’s whole
portfolio is the sum of the values of all individual stocks. And we note that xi can be positive
or negative (also known as “long” or “short” positions, respectively).

Even though he has a small budget, Joe hopes that by using gradient descent ideas, he can
find an optimal portfolio.

(a) Joe first seeks to formulate his objective, as a function of his decision variable x. He
decides to impose a “budget penalty” for being over or under his budget that is 0.1 times
the square of how much his total portfolio value differs from his budget ($1000). Joe also
defines a “share holding penalty” that squares the xi for each stock in his portfolio, then
takes the total sum of these, and weights this sum by 0.5. His final objective is the sum
of his budget penalty and his share holding penalty.

Using the variables defined above, write an expression for the objective function that Joe
is seeking to minimize, in terms of the vectors x and p. Note: write your solution in term
of the vectors x and p, not in terms of their individual components xi and pi.

Solution: J(x) = 0.1 · (p>x − 1000)2 + 0.5 · ||x||2. The first term corresponds to his
“budget penalty” and the second term is the “share holding penalty”.

(b) To perform gradient descent, Joe needs the gradient of J with respect to his decision
variable, x. Derive an expression for ∇xJ(x): Again, make sure to write your final solution
in terms of the vectors x and p, and not their individual components xi and pi.

Solution: ∇xJ(x) = 0.2 · (p>x− 1000) · p+ x.

(c) Next, Joe needs an update rule. Write the update rule for gradient descent calculation of
xnew related to the previous value xold, in terms of step-size (learning rate) parameter η
and other expressions derived above.

Solution: xnew = xold − η∇xJ(x).

(d) Let’s try out gradient descent, with a learning rate of η = 0.1. We consider a particular
case where p = [1, 3]>, and our initial guess for holdings is x = [0, 0]>. After one iteration
of gradient descent, what is x? Show your work.
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Solution:

xnew = xold − η∇xJ(x)

=

[
0
0

]
− 0.1

(
0.2 ·

([
1 3

] [0
0

]
− 1000

)[
1
3

]
+

[
0
0

])
= 20 ·

[
1
3

]
=

[
20
60

]

(e) Now suppose we take one more step of gradient descent. What is x after this second
iteration? Show your work.

Solution:

xnew =

[
20
60

]
− 0.1

(
0.2 ·

([
1 3

] [20
60

]
− 1000

)[
1
3

]
+

[
20
60

])
=

[
20
60

]
+

[
14
42

]
=

[
34
102

]
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Corrupted Classification

5. (20 points) Consider the data set Dn =
{

(x(i), y(i))
}n
i=1

comprised of n = 200 data points. For

each pair (x(i), y(i)) ∈ Dn, each feature vector x(i) = [x
(i)
1 , x

(i)
2 ]> has two components. The

labels y(i) ∈ {−1,+1} encode two different classes. There are 100 data points in each class. In
the plot below, the −1 class is represented by an X and the +1 class by a circle.

(a) Let the hypothesis class of linear classifiers be defined as,

h(x; θ, θ0) = sign(θ>x+ θ0) =

{
+1, θ>x+ θ0 > 0,
−1, otherwise.

Specify θ, θ0 that define a linear classifier that has 100% accuracy on the data set as
shown below. Draw the linear separator and its normal vector for your classifier on the
plot below.

Solution:

2 4 6 8 10 12 14
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0

0

x1

x
2

y = −1
y = +1

Many viable choices. One option is plotted, which corresponds to
θ = [1, 2]>, θ0 = −22 (the positive class appears above and to the
right of the line x2 = −0.5x1 + 11).
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(b) You decide to learn a linear logistic classifier trained on the data set above, by minimizing
the following objective function:

J(θ, θ0) =
1

n

n∑
i=1

Lnll(σ(θ>x(i) + θ0), y(i)) + λR(θ) .

Here, Lnll(g
(i), y(i)) = −(y(i) log(g(i)) + (1−y(i)) log(1−g(i))) is the negative log-likelihood

loss function, σ(z) = 1
1+e−z is the sigmoid function, and R(θ) = ‖θ‖2 is the ridge regression

regularizer. The value for λ is set to be very small.

You split the data into a training and testing set. For each of the following, determine
whether or not the linear classifier trained on the chosen training data set would reliably
obtain low training error and/or low testing error across multiple runs of the indicated
approach. Circle A if the proposal would reliably obtain low training error, and circle B if
the proposal would reliably obtain low testing error. You can circle both, one, or neither.
In every case, explain your response.

i. Randomly select, without replacement, 50% of the data set to be the training data
set. The remaining data is used as the testing data set.
A. low training error B. low testing error

Solution: This random sampling should create training and testing subsamples
that both reasonably approximate the distribution of available data, with plenty
of positive and negative samples, with relatively good separation between the
positive and negative samples.

ii. Take all 100 of the data points labeled +1 and a single data point at x = [−2, 2]>

labeled y = −1 to be the training data set. The remaining data is the testing data
set.
A. low training error B. low testing error

Solution: The trained classifier will be able to well-separate the positive group
from the lone negative data point, with low training error; it can form a perfect
separator. But the separator will be very near the lone data point to maximize
the probability of all the +1 data points. So many of the other -1 points in the
test set will get classified as +1 and therefore not have a low testing error.

iii. Take exactly 60 data points (uniformly at random without replacement) from each
class to be the training data set. The remaining data is the testing data set.
A. low training error B. low testing error

Solution: This random sampling should also create training and testing subsam-
ples that both reasonably approximate the distribution of available data, similar
to (i) above, with low training and testing error.

(c) Now, consider a corrupted version of the data set, where 20 out of 200 data points (selected
uniformly at random, without replacement) have had their class label switched ; data points
that should belong to class +1 are now labeled −1, and vice versa. The feature vectors,
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x(i), remain the same for all 200 data points. At the time of training, you are not told
which labels have been switched.

Calculate the value of the following objective function,

J(θ, θ0) =
1

n

n∑
i=1

L01(sign(θ>x(i) + θ0), y(i)),

for the linear classifier that you drew in part (a), now on the corrupted data set.

Solution: None of the data points are moved (i.e., x(i) = [x
(i)
1 , x

(i)
2 ]> remains the

same), so this is essentially asking for (1 - accuracy) of the classifier from (a) when
20 random data points have had their label (deterministically) flipped; their classifier
will misclassify exactly 20 data points, so J(θ, θ0) = 1/10.

(d) You decide to learn a linear logistic classifier trained on the corrupted data set, but now
using a weighted objective function,

Jw(θ, θ0) =
1

n

n∑
i=1

w(i)Lnll(σ(θ>x(i) + θ0), y(i)) + λR(θ) .

Here, Lnll(g
(i), y(i)) is the negative log-likelihood loss function, and σ(z) is the sigmoid

function, both defined in part (b). The value for λ is set to be very small.

Each data point is assigned a real-valued, non-negative weight w(i) that appears in the
objective Jw. Describe the intuition for what these weights do (e.g., which points get a
high weight and which points get a low weight?), for each of the following choices:

A. Set w(i) = 1 for all data points.

B. For each data point x(i), identify the five closest data points. Compute the mean

ȳ(i) of the labels for these five data points. Set w(i) = 1− |ȳ(i)−y(i)|2 .

C. For each data point x(i), set w(i) = (x1−7)2 +(x2−7)2, i.e., the squared-distance
of the data point to the point (7, 7).

Solution: In Choice A, the weights will have no impact or benefit to the training.
See further explanation in solution to part (e) below.

Choice B will consider the data points surrounding any given data point; the weighting
will be higher for data points that are surrounded by those with the same label, and
we will have a lower weighting for data points that are labeled differently than those
surrounding it. This should reduce the influence of corrupted data, improving training
and giving us a classifier that better reflects the uncorrupted data.

Finally, Choice C places larger weights on points that are further from the center of the
plot, which is independent of the location of the corrupted data points – it is unlikely
that this weighting will do anything helpful for this classification problem.

(e) Consider using the entire corrupted data set as the training data set for minimizing the
objective function in part (d), with w(i) = 1 for all i = 1, ..., n. You use gradient descent,
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where you initialize using the θ, θ0 from the linear classifier that you drew in part (a).
Assume that you choose good values for the learning rate and the number of iterations to
run. Would you expect the separator and direction of normal vector for the newly learned
linear classifier to be similar to the separator and direction of normal vector that you drew
in part (a)? Why or why not?

Solution: A good initialization is key here. The separator and normal vector from
part (a) should be a very good starting point, with the corrupted data points randomly
distributed. During further training, the corrupted data points will have only minor
impact (and are likely to balance out in terms of moving the separator in different
directions). Thus we’re likely to move the separator (or direction of normal vector)
relatively little from what we had in part (a).
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