
6.036: Midterm, Spring 2019

Do not tear exam booklet apart!

• This is a closed book exam. One page (8 1/2 in. by 11 in.) of notes, front and back, is
permitted. Calculators are not permitted.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every page.

Name: Athena ID:

Question Points Score

1 14

2 17

3 15

4 10

5 14

6 15

7 15

Total: 100
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Linear Classifiers

1. (14 points) In the plots below, we give you 2D points with +1 and −1 labels.
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Answer the following questions for both plot A and plot B:

(a) Using a linear separator h(p; θ, θ0) = sign(θ>p+θ0), what is the minimum possible number
of misclassified points?

Plot A:

Plot B:

(b) What are the values of θ ∈ R2 and θ0 ∈ R that define your separator?

Plot A:

Plot B:

(c) For a given point p, what does θ>p+θ0
‖θ‖ intuitively represent?
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Consider the following plot from the previous classification task. The two curves show the
train and test error vs. the number of steps in the optimization algorithm.

loss

number of steps

A

B

(d) Assign the appropriate labels:

Test error (select one): © A © B

Train error (select one): © A © B

(e) Which of the following options can improve the final performance of the trained classifier
on the test data set? Note: augmentation of a data set refers to taking the existing data
set and adding many points which are slightly perturbed versions of the original points.
Select all that apply.

© A. Augment the training data set and retrain the classifier.

© B. Augment the test data set and retrain the classifier.

© C. Terminate the training process earlier.

© D. Add a penalty on the magnitude of the parameter values and retrain the classi-
fier.
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Perceptron Algorithm

2. (17 points) Alice plans to apply the Perceptron algorithm to solve a classification problem on
the data set shown in the figure below. For this problem, we will only consider linear separators
that pass through the origin.
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(a) What is the theoretical upper bound on the number of steps for the Perceptron algorithm
to find the linear separator on this data set?
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(b) Alice suggests a feature transformation of the form: φ((x1, x2)) = (αx1, x2). Is there a
value of α that would reduce the upper bound on the number of mistakes made by the
Perceptron algorithm? If so, provide one such value. If not, explain why not.

(c) Will scaling both coordinates uniformly, i.e., φ((x1, x2)) = (βx1, βx2), decrease the bound
on the number of mistakes? Explain.

(d) When the point is classified incorrectly, the algorithm updates θ. Is the point guaranteed
to be classified correctly after the update is made? Explain.
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(e) A separator is trained using Perceptron with the points i = 1, ..., N in the data set. Write
the expression for the general final separator in terms of {x(i)}, their labels {y(i)}, and the
number of mistakes {ni} that Perceptron made on each of the points.

(f) Is this algorithm guaranteed to find the classifier with maximum margin?
© yes © no
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Margin Maximization

3. (15 points) In this problem, we will consider using linear regression for classification problems,
and its relationship to margin maximization.

Student Chris has a data set of samples {(xi, yi)} with xi ∈ R and classes yi ∈ {−1,+1}. Chris
mixed up classification and regression, and ended up computing a linear regression ŷ = θ>x+θ0
instead of a classifier. Having made this mistake, Chris figures out that it is possible to convert
the regression into a classifier by taking its sign, i.e. ŷ = sign(θ>x+ θ0) where:

sign(z) =

{
1 when z > 0

−1 when z ≤ 0

Consider the data set x = [[−1], [1], [1000]]> with labels y = [−1, 1, 1]>.

-1 0 1 2 3 998 999 1000

x-axis

y = −1
y = +1

(a) What is its maximum margin separator: θ, θ0 ?

(b) Chris uses a loss function L(g, a) = (g− a)2 that takes g (guess) and a (actual) as param-
eters. Specify Chris’s objective function for the linear regression problem using θ, θ0, xi,
yi:
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With this data set, it turns out that the linear regression solution is approximately

ŷ = 0.001x− 0.000999

.

(c) What then is the decision boundary defined by Chris’s classifier?

(d) Does the classifier correctly classify all of the points in the training set?

© Yes.
© No.

(e) Can you add another point to the data set so that the data set is still linearly separable,
but so that using linear regression to train it would result in a classifier that mis-classifies
one or more points? If yes, specify such a data point. If no, explain why not.

(f) Would you expect this classifier to generalize well? Explain.

(g) Would you expect a maximum margin classifier to generalize better than Chris’s? Explain.
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Model Evaluation

4. (10 points) Lisa trains models for classification problems. She is provided with different image
data sets (e.g., trains, people, cars, cats, dogs) by Snapbook. Each data set has both positive
and negative examples. In fact, Snapbook provides Lisa only a fraction of each data set, the
remainder is left for internal Snapbook testing. Lisa trains a separate model on each data set.
She measures model training accuracy, and she estimates test accuracy using cross-validation.
For each model, Snapbook measures the accuracy of the model on the data that was held out
(not provided to Lisa). These experiments yield the following results:

training accuracy cross-validation accuracy held-out tests accuracy

data set 1 52% 54% 51%
data set 2 97% 71% 70%
data set 3 93% 92% 55%
data set 4 91% 91% 89%
data set 5 50% 53% 70%

For which data set(s):

(a) Lisa’s model is overfitting (check all that apply):

© data set 1 © data set 2 © data set 3 © data set 4 © data set 5

(b) It is likely that more training data drawn from the same distribution would improve the
quality of the held-out accuracy (check all that apply):

© data set 1 © data set 2 © data set 3 © data set 4 © data set 5

(c) Lisa’s hypothesis class might not be expressive enough (check all that apply):

© data set 1 © data set 2 © data set 3 © data set 4 © data set 5

(d) Held-out data set is not likely from the same distribution as Lisa’s (check all that apply):

© data set 1 © data set 2 © data set 3 © data set 4 © data set 5
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Learning as Optimization

5. (14 points) Ben develops a new hypothesis class: h(x;w1, w2) = w1x1 + w1x
2
1 + w2x2 + w2x

2
2,

where x = (x1, x2). He plans to use it for a regression problem on the data set Sn =
{(x(1), y(1)), ..., (x(n), y(n))}.
(a) Ben will use batch gradient descent to compute model parameters w1, w2. His loss function

is mean squared error (MSE). Derive an update rule for w1 given the learning rate η.

(b) Describe the shape of the MSE as a function of w1 and w2. How many minima will it
have? Assume that the data set Sn is fixed.
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(c) Ben tries different settings of the learning rate η. Depending on the setting he obtains
different behavior of the gradient descent algorithm. Match each plot (A,B,C,D) to the
best fitting description (assume MSE loss).

loss

number of steps
A

B

C

D

Learning rate too low (select one):
© A © B © C © D

Learning rate about right (select one):
© A © B © C © D

Learning rate too high (select one):
© A © B © C © D

Learning rate much too high (select one):
© A © B © C © D

(d) Alyssa suggests using a mean absolute error, instead, defined by:

MAE =
1

n

n∑
i=1

∣∣∣y(i) − h(x(i), w1, w2)
∣∣∣

What could be an advantage of this approach?
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Neural Networks

6. (15 points) Mira’s father is an archaeologist who appraises Chinese antiques. Since his daughter
recently took 6.036, he asked her a favor: to build a classifier to predict from which dynasty
each antique artifact originates. Specifically, each antique artifact was built by one of the four
dynasties: Tang (A.D. 618-907), Song (A.D. 960-1276), Ming (A.D. 1368–1644), Qing (A.D.
1636-1912). Mira decides to build a classifier using a neural network and train it using negative
log likelihood (NLL) loss. Recall that the negative log likelihood loss for a single example is
defined as:

LNLL(ŷ, y) = −
ny∑
i=1

yi log ŷi

where ŷ = (ŷ1, . . . , ŷny) denotes the predicted probability distribution over the classes and
y = (y1, . . . , yny) is the ground truth, a one hot vector that has zero at each index except at
the correct class: y = (1, 0, 0, 0) for Tang, y = (0, 1, 0, 0) for Song, y = (0, 0, 1, 0) for Ming,
y = (0, 0, 0, 1) for Qing.

(a) Assume that Mira is given an antique that belongs to Ming dynasty (y = (0, 0, 1, 0)).
Which of these predictions has the smallest NLL loss?

© A. ŷ = (0.25, 0.20, 0.30, 0.25)

© B. ŷ = (0.01, 0.01, 0.44, 0.54)

© C. ŷ = (0.25, 0.25, 0.25, 0.25)

© D. ŷ = (0.97, 0.01, 0.01, 0.01)

(b) Apart from the NLL loss, Mira is also thinking about trying out other loss functions. In
particular, she is thinking about using the accuracy:

Laccuracy(ŷ, y) =

{
−1 arg max(y) = arg max(ŷ)

0 otherwise

or the squared loss function:

Lsquared(ŷ, y) = (1− ŷy>)2

as her new loss functions. Which of the these loss functions can be minimized by the
stochastic gradient descent (SGD) algorithm (mark all that apply)?

© A. NLL-loss, LNLL

© B. Accuracy, Laccuracy

© C. Squared loss, Lsquared
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(c) After trying out different model architectures, Mira finds that softmax classifier works
well. When she uses softmax, the last layer of her network computes pre-activations
z = (z1, ..., zny) which may be arbitrarily large or small (Note: a pre-activation is the
linearly weighted sum that is an input to the activation function). Softmax function then
computes ŷ = (ŷ1, ..., ŷny) by normalizing z such that the sum of the ŷi is 1:

ŷi =
ezi∑ny

j=1 e
zj
.

Mira finds that for some settings of the pre-activation values, the basic softmax function
works poorly. She finds out that subtracting the maximum value max zi from all pre-
activations zi produces more reliable results. Explain why.

(d) Say that Mira wanted to solve a slightly different problem: given an artifact, Mira would
like to figure out what the probability is that the artifact is “typical” of each of the four
time periods. E.g. there could be an antique crafted in a style which was popular both
during the Tang and Ming eras, but not at all in the other two eras, in which case ideally
we would output y = (1, 0, 1, 0). Choose a different structure (activation function and
number of nodes) for the last layer. Specify a loss function that would work better for this
multi-class labeling task.

Activation function and output nodes:

Loss function:
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Initialization is Important

7. (15 points) In this problem we will try to understand why proper initialization of weights in a
network is important.

Kim constructs a fully connected deep neural network with L=4 layers using negative log-
likelihood (NLL) loss and ReLU activation functions for all hidden layers, and a softmax for
the output layer. The ReLU activation function is implemented as ReLU(z) = max(0, z), with
∂ReLU(z)/∂z = 1 if z > 0, and 0 otherwise. Kim uses random initialization for all of the layers
except for layer 2, where he uses zero initialization (i.e., the layer weights are W 2 = 0 and
W 2

0 = 0).

(a) Before training, he is curious about the output of his network as initialized. What will
Kim observe on the output when he provides different input examples, x(i)?

(b) The network will be trained with stochastic gradient descent (SGD). Specify an update
rule for W 1 (layer 1 weights) in terms of ∂L

∂W 1 and step size η. Similarly, specify an update

rule for W 2 in terms of ∂L
∂W 2 and step size η.

Kim (correctly) derives the gradient of the loss function with respect to weights W 1 in

terms of the activation functions Al, weights W l, pre-activations Z l, and partials ∂L
∂A4 , ∂A

l

∂Zl ,
for l = 1,...,4:

∂L

∂W 1
=

∂Z1

∂W 1
· ∂L
∂Z1

, (2)

where
∂L

∂Z1
=
∂A1

∂Z1
·W 2 · ∂A

2

∂Z2
·W 3 · ∂A

3

∂Z3
·W 4 · ∂A

4

∂Z4
· ∂L
∂A4

. (3)
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(c) After one iteration of gradient descent, will the new weights W 1 be different than the
initial weights W 1? Explain why.

(d) After that first iteration of gradient descent, will the new weights W 2 be different than
the initial weights W 2 = 0? Explain why.

(e) Kim finds that his network with initialization of W 2 = 0,W 2
0 = 0 and his ReLU activation

as defined above for L = 2 performs poorly. He switches to a sigmoid activation function
for the hidden nodes in layer L = 2 but still uses zero initialization as previously for L = 2.
Kim finds that the network trains and performs much better. Explain why.

Page 15



Name:

Work space
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