
6.036 Fall 2018 Midterm Review

Solutions

1 Spring 2013: Problem 1

1.1a) Here are plots of θ and the decision boundary θ · x = 0, obtained by sim-
ply running the perceptron algorithm on each point sequentially, with the
initial value of θ as 0.

Figure 1: Problem 1.1a

1.1b) Here is one possible assignment of labels to the points such that the de-
sired properties are satisfied.

Figure 2: Problem 1.1b

Explanation: Observe that these original five points are not linearly
separable, so perceptron wouldn’t converge. Applying the feature mapping
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φ(x) = x/‖x‖ is just a fancy way of saying “project each point onto the
unit circle.” Observe that these projected points (marked on the circle) are
indeed linearly separable, so perceptron would converge on the featurized
data.

2 Spring 2013: Problem 3

3.1a) Statements 1, 3, and 4 should be marked (TRUE).

Explanations:
Statement 1 is TRUE because it is the optimality condition: we are just
saying that the gradient of J(θ) at θ̂ is zero.

Statement 2 is FALSE because the greater than sign should be a less than
sign: the optimal θ̂ minimizes J(θ), not maximizes it!

Statement 3 is TRUE because increasing λ means we enforce more regu-
larization.

Statement 4 is TRUE because we can always add frivolous features without
increasing the training error for the optimal θ̂ (for example, we could set

the coefficents of θ̂ corresponding to those features to 0). However, note

that it may take longer for our learning algorithm to find this θ̂!

3.1b) A good classifier here would be y = 1 iff θ̂ · φ(x) ≥ 0.5.

Explanation: What you don’t want to do is threshold at 0, i.e. y = 1 iff
θ̂ · φ(x) ≥ 0. This is because the target ratings (training labels) are 0 or
1, so the regression function that we learn will tend to predict values that
are between 0 and 1. This means we should use the midpoint value 0.5 as
our threshold.

3.1c) The predictions will tend towards 0.

Explanation: If we increase λ, then ‖θ̂‖ will decrease. As a result, the re-

gression function values θ̂ ·φ(x) will tend towards zero. Given the decision
rule above, the predictions are going to become biased towards y = 0.

3 Spring 2014: Problem 3

3.1a) Yes. See the plot.

3.1b) No. See the plot.

3.1c)+3.1di) Here’s a plot of the featurized data, θ̂, and separator.
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Figure 3: Problems: 3.1c and 3.1d(i)

3.1dii) The value of the margin is
√

2.

Explanation: the minimum distance from any data point to the separa-
tor, which you can see from the above plot.

3.1diii) ‖θ̂‖ = 1√
2
.

Explanation: Remember that in the SVM objective, we are secretly
encoding the margin as 1

‖θ‖ . So we have ‖θ̂‖ = 1√
2
, based on the previous

answer.

3.1e) Please see the plot.

Explanation: We can solve for this analytically. We have θ̂ = [0.5, 0.5]>

for the featurized data, which we found by looking at the above plot. That
means the decision boundary is θ̂ · φ(x) = 0.5x1 + 0.5x2x1 = 0, which is
solved by either x1 = 0 or x2 = −1. So, this is a non-linear decision
boundary in the original feature space! And here’s the plot.
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Figure 4: Problem: 3.1e

4 Spring 2016: Problem 1

1.1) No.

Explanation: For example, suppose that the first coordinate had the
same value across all data points. Then, eliminating it would not change
whether or not the data are linearly separable!

1.2) No.

Explanation: Perceptron does not do gradient descent on any particular
loss function.

1.3) Objective Function = 2 + 1
3 .

Yes there is a solution which has lower loss and smaller ||θ||.
Explanation: Note that the margin is 1

2 here, as shown by the dotted
lines. Remember that in the SVM objective, we are secretly encoding the
margin as 1

‖θ‖ . So we have ‖θ‖ = 2.

Now we need to find the loss. The top and bottom points are classified
correctly and are outside the dotted lines, so they incur 0 loss. The +
point that’s on the decision boundary incurs loss 1 because θ · x = 0 for
that point, and hinge loss is 1− yθ · x if yθ · x < 1.

Putting it all together, we get 1
n (0 + 0 + 1) + λ

2 ‖θ‖
2 = 1

3 + 2.

A better separator would be one that is shifted down a bit (but maintains
the same slope), so it passes equidistant between the lower + and the −.

1.4) The third option (labelled as (4) in the list) should be marked.

Explanation: Note that Statement 4 is wrong because we are doing
stochastic gradient descent, so no need to divide by n (the total number
of data points).
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5 Spring 2016: Problem 2

2.1) θ̂ = 0.

Explanation: We are applying infinite regularization, so all we care about
is that ‖θ̂‖ is as small as possible. Explanation:

2.2) You only need to have the right shape of your plot.

Explanation: Training error is smallest when λ = 0 and increases with
λ.

Figure 5: Problem 2.2

6 Spring 2016: Problem 4

4.1) (a) and (d) should be marked.

Explanation: Note that the points labeled ’+’ live in the first and third
quadrants (Q1, Q3), while the points labeled O live in the second and
fourth quadrants (Q2, Q4).
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Also note that:

– In Q1: x1 > 0, x2 > 0 so x1x2 > 0

– In Q2: x1 < 0, x2 > 0 so x1x2 < 0

– In Q3: x1 < 0, x2 < 0 so x1x2 > 0

– In Q4: x1 > 0, x2 < 0 so x1x2 < 0

Thus, x1x2 > 0 in Q1 and Q3 and x1x2 < 0 in Q2 and Q4. Now let’s
go through each of the choices (a),(b),(c),(d) and see if data is linearly
separable in each of the cases.

(a) We can see [x1, x2, x1x2] as the third dimension ”height” added to
the original picture above. Because x1x2 > 0 in Q1 and Q3 and
x1x2 < 0 in Q2 and Q4, [x1, x2, x1x2] looks like the following:

Or if we only look at the ”height” dimension, like the following:
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Thus, because of this ”height” dimension created by xy, there is
a linear boundary (something like xy = 0 ) that linearly
separates given data.

(b) Note that [x21, x
2
2] maps all data to Q1. Because + and O labeled

points are (almost) symmetric with respect to the x1, x2 axis, + and
O labeled points may be mapped to (almost) same location in Q1.
Thus, the first two dimensions do not help in any way for linear
separability.
x1+x2

2 is always positive for points in Q1, always negative for points
in Q3, can be either positive/negative/0 for points in Q2 and Q4.

As in the picture above, there is no linear boundary in the third
dimension that linear separates data. Overall, data is not linearly
separable.

(c) tanh(x1 +x2) is always positive for points in Q1, always negative for
points in Q3, can be either positive/negative/0 for points in Q2 and
Q4. Similarly as in (b), data is not linearly separable.

(d) We saw in (a) that there exists a linear boundary in the direction
of x1x2 that linearly separates given data. Thus, data is linearly
separable.

7 Spring 2016: Problem 5

5.1) x ≤ −1.

Explanation: Because f1 = ReLU(z1), f1 = 0 iff z1 ≤ 0.
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z1 ≤ 0⇔ xw11 + w01 ≤ 0⇔ x+ 1 ≤ 0⇔ x ≤ −1

Figure 6: Problem 5.2

5.2) Explanation: From 5.1), we know that

f1 =

{
x+ 1, if x ≥ −1

0, otherwise

Similarly,

f2 =

{
2x− 2, if x ≥ 1

0, otherwise

Thus, for x ∈ [−2, 2], we get

(f1, f2) =


(0, 0), if − 2 ≤ x < −1

(x+ 1, 0), if − 1 ≤ x < 1

(x+ 1, 2x− 2), if 1 ≤ x < 2

(1)

5.3) Yes

Explanation: From eq. (1),

we know that

– When x = −1, (f1, f2) = (0, 0)

– When x = 1, (f1, f2) = (2, 0)

– When x = 2, (f1, f2) = (3, 2)

Thus, in (f1, f2) coordinates, given (x, y) data pairs look like the following:
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Thus the training examples are linearly separable.

5.4) x ∈ (1,∞)

Explanation: After a gradient descent step, w02 will decrease iff ∂
∂w02

Lossh(yf) >
0. Because it was given that y = −1,

∂

∂w02
Lossh(yf) =

∂

∂w02
1− yf if f ≥ −1

=
∂

∂w02
f if f ≥ −1

=
∂

∂w02
f2w2 if f ≥ −1

=
∂

∂w02
w2(w12x+ w02) if f ≥ −1and x ≥ 1

Otherwise, ∂
∂w02

Lossh(yf) = 0. Also, ∂
∂w02

Lossh(yf) = ∂
∂w02

w2(w12x +
w02) > 0 iff f > 0, x > 1.

We can easily see that f > 0 automatically if x > 1.

Thus, gradient positive and w02 decreases iff x > 1.

5.5) All weights stay the same except for w0.

Explanation: Because of ReLU, f1 = ReLU(z1) = ReLU(−1) = 0,
f2 = ReLU(z2) = ReLU(−1) = 0. So the derivative of f1, f2 with respect
to w11, w01, w12, w01 will be 0, and all of w11, w01, w12, w01 will stay the
same after a step of stochastic gradient descent update.

Because f1 = f2 = 0 always,

∂

∂w1
f = f1 = 0,

∂

∂w2
f = f2 = 0

. Thus, both of w1, w2 will stay 0.
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∂

∂w0
f = 1

, which is nonzero, so w0 may be updated if Loss(f) is a function that
depends on f (such as the non-zero case of hinge loss, 1− yf .)

5.6) A,C,B

Explanation: With regularization: you increase the training error but
lead to better generalization/test error compared to the case with no reg-
ularization. When you increase the number of hidden units, you are po-
tentially overfitting so you get smaller training error but high test error.

8 Spring 2017: Problem 1

1.1) θ0 = −7

Explanation: Let αi be the number of mistakes that the perceptron
makes on the point x(i) with label y(i). The resulting offset parameter is:
θ0 =

∑8
i=1 αiy

(i) = −7.

1.2) No

Explanation: When perceptron is initialized to all zeros, the first point
considered is always a mistake. Since no mistakes were made on the point
(4,4) labeled +1, it could not have been the first point considered.

1.3) θ = [1 1], θ0 = −5

Explanation: The margin of a separator is the minimal distance between
the separator and any point in the dataset. The equation of the line
that maximizes the margin on the given points is x1 + x2 − 5 = 0. The
parameters corresponding to the maximum margin separator are:
θT = [1 1], θ0 = −5.

1.4) Margin = 1√
2

Explanation: The support vectors (points closest to the max-margin
separator) are (2,2), (2, 4) and (5,1). The distance between any one of

these points and the separator is
√
2
2 Alternatively, we know the margin is

1
||θ|| = 1√

2
.

1.5) 0

Explanation: Since the points are perfectly separated, the hinge loss is
0. Alternatively, the sum of the hinge losses can be calculated by:∑8
i=1 max{0, 1− y(i)(θ · x(i) + θ0)}.

1.6) 1.5
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Explanation: The sum of the hinge losses for the new parameters is:

8∑
i=1

max{0, 1− 1

2
y(i)(θ · x(i) + θ0)} = 0 + 0 + 0+

(1− 1

2
(−1)([1 1] · [2 2]− 5))+

(1− 1

2
(1)([1 1] · [5 1]− 5)) + 0+

(1− 1

2
(1)([1 1] · [2 4]− 5)) + 0

9 Spring 2017: Problem 2

1.1) θ ← (1− ηλ)θ + η

{
y(i)x(i), if y(i)θ · x(i) ≤ 1

0, otherwise

Explanation:

θ ← θ − η∆θ[Lossh(y(i)θ · x(i)) +
λ

2
||θ||2]

= θ − η∆θ[Lossh(y(i)θ · x(i))]− η∆θ[
λ

2
||θ||2]

= θ − η∆θ[Lossh(y(i)θ · x(i))]− ηλθ

= (1− ηλ)θ + η

{
y(i)x(i), if y(i)θ · x(i) ≤ 1

0, otherwise

1.2) ((B)) small λ, small η;
((A)) small λ, large η;
((C)) large λ, large η.

Explanation: With small η, we should see very little change to the classi-
fier; thus, this corresponds to figure B. With large λ and large η,we should
see both an increase in the margin and large update to the classifier. This
matches figure C, leaving figure A as small λ and large η. Also note that
in

figure A, the new θ can be visually obtained by adding a fraction of vector
x (the point) to the previous θ. As a result, λ has to be small.

10 Spring 2017: Problem 4

4.1) See the plot below.
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Explanation: From the arrows indicated on the left plot of (4.1), note
that [w11, w12] = [1, 0] and [w21, w22] = [0, 1]. Thus,

f(z1) = max
{

0, x1
}
, f(z2) = max

{
0, x2

}
Thus each of the points a, b, c, d, e, f in the (x1, x2) space is mapped to
(f(z1), f(z2)) space like the following:

Figure 7: Problem 4.1

4.2) No

Explanation:Since points c and e are mapped to the origin but have
opposite label, it is impossible to classify them both correctly.

4.3) Yes

Explanation: Instead of mapping points a, b, c, d, e, f to the 2-dimensional
(f(z1), f(z2)), if we map the points to a higher dimensional space, we can
linearly separate data.

4.4) True, True, True

Explanation:

– Note that tanh(x) behaves like a linear function when x has a small
absolute value near 0.

– Note that as x gets large, tanh(x) behaves like tanh(x) = +1 if x > 0,
tanh(x) = −1 if x < 0.

– Consider the unit at the last layer of the given network. What does
it mean that tanh(v1f(z1) + v2f(z2)) behaves like a sign function?
That means

tanh(v1f(z1) + v2f(z2)) =


+1, if v1f(z1) + v2f(z2) > 0

−1, if v1f(z1) + v2f(z2) < 0

0 otherwise
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and will have gradient 0 with respect to v1, v2. Thus, a network
with sign units cannot be effectively trained with stochastic gradient
descent.

11 Fall 2017: Problem 1

1. (a) The second option should be checked (Linearly separable but not
through the origin).

Explanation: From the plot, we see that any separators through the
origin that classify both ‘+’ labeled points correctly will also apply
a ‘+’ label to the negative points. So, the points are not separable
through the origin, but are linearly separable if we allow an offset,
for example, using the line that passes through (0, 4) and (4, 0).

(b) There are many examples of linear separators that properly classify
these points. One possible answer:
(−1)x1 + (−1)(x2) + (0)x21 + (0)x22 + (4) = 0

Explanation: We will consider the separator that passes through
(0, 4) and (4, 0). The normal vector should have slope 1 and point
towards the origin (to classify the ‘+’ points positively), so we can
take θ = [−1,−1]T . Then, computing the offset by plugging in (0, 4)
yields θ0 = 4. Thus, our separator is defined by

θTx+ θ0 = 0

−x1 − x2 + 4 = 0

(c) Check the third option (False for all data sets).

Explanation: We have simply performed a linear transformation of
our data, so the separation problem has not gotten any harder. To
see this mathematically, assume that we have found a linear separator
θ′, θ′0 of the transformed data. We will expand the equation of the
separator:

θ′Tφ(x1, x2) + θ′0 = 0

θ′1 · 2x1 + θ′2 · (x1 + x2) + θ′0 = 0

(2θ′1 + θ′2)x1 + θ′2x2 + θ′0 = 0

Thus, we see that θ = [2θ′1 + θ′2, θ
′
2]T , θ0 = θ′0 separates our original

dataset. So, if our original dataset is not separable, then neither is
the transformed dataset.

12 Fall 2017: Problem 4

4. (a) i. Yes
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Explanation: θ matches the normal to the separator, and we
can easily verify the offset by plugging in any point on the sep-
arator.

ii. (1, 1) : 0,
(1, 3) : 1,
(3, 2) : 2,
(3, 4) : 0
Explanation: These are direct computation, using y(i) accord-
ing to the labels given in the diagram, and the hinge loss given
in the problem statement.

iii. J = 1.75
Explanation: This is a direct computation using the objective
function provided in the problem.

(b) (1): N/A or -1,
(2): 1,
(3): 1

Explanation: We can compute the margin of each point with re-
spect to the separator using the equation

y(i)(θTx(i) + θ0)

‖θ‖

The margin of each separator with respect to the entire training set
is then the minimum of the margins for each point.

Alternatively, we can plot the separators on the diagram and take
the minimum (signed) distance of any point to the separator. We see
that for θ(1) this corresponds to a distance of -1 to the point at (3, 2),
while the other two separators have a distance of 1 to all four points.

(c) Select the third separator (3)

Explanation: Computing the the loss for each separator,

J(θ(1), θ
(1)
0 ) =

1

4
(0 + 1 + 2 + 0) = 0.75

J(θ(2), θ
(2)
0 ) =

1

4
(0.9 + 0.9 + 0.9 + 0.9) = 0.9

J(θ(3), θ
(3)
0 ) =

1

4
(0 + 0 + 0 + 0) = 0

So, we prefer the third separator.

(d) Yes

Explanation: Yes, the large λ causes us to favor separators with
small magnitude:

J(θ(1), θ
(1)
0 ) = 0.75 + 100 · 1 = 100.75
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J(θ(2), θ
(2)
0 ) = 0.9 + 100 · 0.1 = 10.9

J(θ(3), θ
(3)
0 ) = 0 + 100 · 100 = 10000

So, we would choose the second separator.

13 Fall 2017: Problem 5

5. a) 3

Explanation: max(1 · (−2) + 3, 0) · 3 + 0 = 3.

b) ∂L(f2,y)
∂z2

= w2 max(0, w1x+ b1) + b2 − y
Explanation:

∂L(f2, y)

∂z2
= (f2 − y)

∂

∂z2
f2

= (f2 − y)

= w2 max(0, w1x+ b1) + b2 − y

c) ∂L(f2,y)
∂z1

=

{
0, if w1x+ b1 < 0

w2(w2 max(0, w1x+ b1) + b2 − y), o.w..

Explanation:

∂L(f2, y)

∂z1
=
∂f1
∂z1

∂z2
∂f1

∂

∂z2
L(f2, y)

= w2(f2 − y)

{
0, if w1x+ b1 < 0

1, o.w..

=

{
0, if w1x+ b1 < 0

w2(w2 max(0, w1x+ b1) + b2 − y), o.w..

d) w1 = −5

Explanation:

∂L(f2, y)

∂w1
=
∂z1
∂w1

∂L(f2, y)

∂z1

= w2(f2 − y)x

{
0, if w1x+ b1 < 0

1, o.w..

Given the values provided,
w1 ← w1 − 0.5 ∂

∂w1
L(f2, y) = −2− 0.5(1 · 1 · 3 · (3− 1)) = −5.
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e) If x = 0, or if w2 = 0, or if w1x + b1 < 0, or if f2 = y, which
corresponds to the condition max(w1x+ b1, 0)w2 + b2 = y

Explanation: w1 is unchanged during backpropagation if the gra-
dient evaluates to 0. We use our expression from (d) for the gradient
(or partial derivative, since we are in 1-d) of the loss with respect to
w1:

∂

∂w1
L(f2, y) = x ·

{
0 if w1x+ b1 < 0
1 otherwise

}
w2(f2 − y)

This is 0 if x = 0, if w2 = 0, if w1x + b1 < 0, or if f2 = y, which
corresponds to the condition

max(w1x+ b1, 0)w2 + b2 = y

14 Fall 2017: Problem 6

6. a) c1 = 1, c2 = 1 OR c1 = 1
2 , c2 = 1

2 . (The rest of the answers below
assume c1 = c2 = 1.)

Explanation: For squared error, we don’t penalize differently for
over or underestimating, so c1 = c2 = c. Minimizing this loss is
equivalent for whatever positive constant c we choose, though you will
most often see c set to 1 or 1/2 (for cleanliness when differentiating).
In lecture notes, we take the average squared loss so in that case
c1 = c2 = 1/2.

c) Assuming c1 = c2 = 1.

θ = θ − 2ηx(g − y)

{
c1, if g > y

c2 o.w.

θ0 = θ0 − 2η(g − y)

{
c1, if g > y

c2 o.w.

15 Fall 2017: Problem 7

7. a) i. One-hot encoding
Explanation: We have categorical data that has no numeri-
cal interpretation, so it makes the most sense to use a one-hot
encoding.

ii. Divide by 50
Explanation: We would like our features to have approximately
the same magnitude, so we divide by 50.

iii. Divide by 1 billion
Explanation: We would like our features to have approximately
the same magnitude, so we divide by 1,000,000.
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iv. Omit
Explanation:The company name is unlikely to be indicative of
how the stock will perform in the future, so we omit it.

b) i. α) 1
β) sigmoid
γ) NLL
Also okay: 1 unit, linear, hinge or 2 units, softmax, NLL
Explanation: We can try to predict the probability that the
company will have an IPO (and use a threshold probability of
0.5 to decide which classification to make), which can be done
with a single sigmoid unit and NLL loss.
Other valid solutions are to use a single linearly activated unit
with hinge loss (which is effectively SVM to perform the classifi-
cation into the two classes) or two units with softmax activation
and NLL loss (and choosing the larger of the two probabilities
for our classification).

ii. α) 1
β) linear
γ) squared-error
Explanation: We would like to predict a single numerical value
that spans the real numbers, so we will use a linear activation
and squared error.

iii. α) 100
β) sigmoid
γ) NLL (individually)
Explanation: Here, we are asked to perform 100 independent
2-class classification problems. So, we can have 100 separate
sigmoid activated units each with their own NLL loss (which we
sum to get the total loss). Each unit is responsible for performing
the prediction for one specific client.
We can also adapt the other solutions from (a), just using 100
copies of whatever approach we choose.

16 Fall 2017: Problem 9

9. (a) 0.01: Weight trajectory: (d) , Objective: (g)

Explanation: For the smallest step size, we see the slowest conver-
gence to the optimum, which corresponds to slowest moving trajec-
tory (d) and the slowly decreasing objective plot (g).

(b) 0.05: Weight trajectory: (a) , Objective: (h)

Explanation: As the step size increases, speed of convergence in-
creases, as seen in trajectory (a) and objective plot (h).

(c) 0.50: Weight trajectory: (c) , Objective: (f)
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Explanation: Convergence is even faster in trajectory (c), though
we start seeing some oscillation. The objective plot is the most
sharply decreasing plot (f).

(d) 1.00: Weight trajectory: (b) , Objective: (e)

Explanation: The step size has increased too much, and our weights
and objective diverge. This is seen in (b) and (e).
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