
APPENDIX A

Matrix derivative common cases

What are some conventions for derivatives of matrices and vectors? It will always work
to explicitly write all indices and treat everything as scalars, but we introduce here some
shortcuts that are often faster to use and helpful for understanding.

There are at least two consistent but different systems for describing shapes and rules
for doing matrix derivatives. In the end, they all are correct, but it is important to be
consistent.

We will use what is often called the ‘Hessian’ or denominator layout, in which we say
that for

x of size n × 1 and y of size m × 1, ∂y/∂x is a matrix of size n ×m with the (i, j) entry
∂yj/∂xi. This denominator layout convention has been adopted by the field of machine
learning to ensure that the shape of the gradient is the same as the shape of the shape
of the respective derivative. This is somewhat controversial at large, but alas, we shall
continue with denominator layout.

The discussion below closely follows the Wikipedia on matrix derivatives.

A.1 The shapes of things

Here are important special cases of the rule above:

• Scalar-by-scalar: For x of size 1 × 1 and y of size 1 × 1, ∂y/∂x is the (scalar) partial
derivative of y with respect to x.

• Scalar-by-vector: For x of size n× 1 and y of size 1× 1, ∂y/∂x (also written ∇xy, the
gradient of y with respect to x) is a column vector of size n × 1 with the ith entry
∂y/∂xi:

∂y/∂x =




∂y/∂x1

∂y/∂x2
...

∂y/∂xn


 .
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• Vector-by-scalar: For x of size 1× 1 and y of size m× 1, ∂y/∂x is a row vector of size
1×m with the jth entry ∂yj/∂x:

∂y/∂x =
[
∂y1/∂x ∂y2/∂x · · · ∂ym/∂x

]
.

• Vector-by-vector: For x of size n × 1 and y of size m × 1, ∂y/∂x is a matrix of size
n×m with the (i, j) entry ∂yj/∂xi:

∂y/∂x =




∂y1/∂x1 ∂y2/∂x1 · · · ∂ym/∂x1

∂y1/∂x2 ∂y2/∂x2 · · · ∂ym/∂x2
...

...
. . .

...
∂y1/∂xn ∂y2/∂xn · · · ∂ym/∂xn


 .

• Scalar-by-matrix: For X of size n×m and y of size 1×1, ∂y/∂X (also written∇Xy, the
gradient of y with respect to X) is a matrix of size n×m with the (i, j) entry ∂y/∂Xi,j:

∂y/∂X =



∂y/∂X1,1 · · · ∂y/∂X1,m

...
. . .

...
∂y/∂Xn,1 · · · ∂y/∂Xn,m


 .

You may notice that in this list, we have not included matrix-by-matrix, matrix-by-
vector, or vector-by-matrix derivatives. This is because, generally, they cannot be expressed
nicely in matrix form and require higher order objects (e.g., tensors) to represent their
derivatives. These cases are beyond the scope of this course.

Additionally, notice that for all cases, you can explicitly compute each element of the
derivative object using (scalar) partial derivatives. You may find it useful to work through
some of these by hand as you are reviewing matrix derivatives.

A.2 Some vector-by-vector identities

Here are some examples of ∂y/∂x. In each case, assume x is n× 1, y is m × 1, a is a scalar
constant, a is a vector that does not depend on x and A is a matrix that does not depend on
x, u and v are scalars that do depend on x, and u and v are vectors that do depend on x. We
also have vector-valued functions f and g.

A.2.1 Some fundamental cases

First, we will cover a couple of fundamental cases: suppose that a is an m× 1 vector which
is not a function of x, an n× 1 vector. Then,

∂a
∂x

= 0, (A.1)

is an n×m matrix of 0s. This is similar to the scalar case of differentiating a constant. Next,
we can consider the case of differentiating a vector with respect to itself:

∂x
∂x

= I (A.2)

This is the n × n identity matrix, with 1’s along the diagonal and 0’s elsewhere. It makes
sense, because ∂xj/xi is 1 for i = j and 0 otherwise. This identity is also similar to the scalar
case.
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A.2.2 Derivatives involving a constant matrix

Let the dimensions of A be m × n. Then the object Ax is an m × 1 vector. We can then
compute the derivative of Ax with respect to x as:

∂Ax
∂x

=




∂(Ax)1/∂x1 ∂(Ax)2/∂x1 · · · ∂(Ax)m/∂x1

∂(Ax)1/∂x2 ∂(Ax)2/∂x2 · · · ∂(Ax)m/∂x2
...

...
. . .

...
∂(Ax)1/∂xn ∂(Ax)2/∂xn · · · ∂(Ax)m/∂xn


 (A.3)

Note that any element of the column vector Ax can be written as, for j = 1, . . . ,m:

(Ax)j =
n∑

k=1

Aj,kxk.

Thus, computing the (i, j) entry of ∂Ax
∂x requires computing the partial derivative ∂(Ax)j/∂xi :

∂(Ax)j/∂xi = ∂

(
n∑

k=1

Aj,kxk

)
/∂xi = Aj,i

Therefore, the (i, j) entry of ∂Ax
∂x is the (j, i) entry of A:

∂Ax
∂x

= AT (A.4)

Similarly, for objects x, A of the same shape, on can obtain,

∂xTA
∂x

= A (A.5)

A.2.3 Linearity of derivatives

Suppose that u, v are both vectors of size m× 1. Then,

∂(u + v)
∂x

=
∂u
∂x

+
∂v
∂x

(A.6)

Suppose that a is a scalar constant and u is an m× 1 vector that is a function of x. Then,

∂au
∂x

= a
∂u
∂x

(A.7)

One can extend the previous identity to vector- and matrix-valued constants. Suppose
that a is a vector with shape m× 1 and v is a scalar which depends on x. Then,

∂va
∂x

=
∂v

∂x
aT (A.8)

First, checking dimensions, ∂v/∂x is n × 1 and a is m × 1 so aT is 1 ×m and our answer
is n ×m as it should be. Now, checking a value, element (i, j) of the answer is ∂vaj/∂xi =
(∂v/∂xi)aj which corresponds to element (i, j) of (∂v/∂x)aT .

Similarly, suppose that A is a matrix which does not depend on x and u is a column
vector which does depend on x. Then,

∂Au
∂x

=
∂u
∂x

AT (A.9)
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A.2.4 Product rule (vector-valued numerator)

Suppose that v is a scalar which depends on x, while u is a column vector of shape m × 1
and x is a column vector of shape n× 1. Then,

∂vu
∂x

= v
∂u
∂x

+
∂v

∂x
uT (A.10)

One can see this relationship by expanding the derivative as follows:

∂vu
∂x

=




∂(vu1)/∂x1 ∂(vu2)/∂x1 · · · ∂(vum)/∂x1

∂(vu1)/∂x2 ∂(vu2)/∂x2 · · · ∂(vum)/∂x2
...

...
. . .

...
∂(vu1)/∂xn ∂(vu2)/∂xn · · · ∂(vum)/∂xn


 .

Then, one can use the product rule for scalar-valued functions,

∂(vuj)/∂xi = v(∂uj/∂xi) + (∂v/∂xi)uj,

to obtain the desired result.

A.2.5 Chain rule

Suppose that g is a vector-valued function with output vector of shape m × 1, and the
argument to g is a column vector u of shape d × 1 which depends on x. Then, one can
obtain the chain rule as,

∂g(u)
∂x

=
∂u
∂x

∂g(u)
∂u

(A.11)

Following “the shapes of things,” ∂u/∂x is n × d and ∂g(u)/∂u is d ×m, where element
(i, j) is ∂g(u)j/∂ui. The same chain rule applies for further compositions of functions:

∂f(g(u))
∂x

=
∂u
∂x

∂g(u)
∂u

∂f(g)
∂g

(A.12)

A.3 Some other identities

You can get many scalar-by-vector and vector-by-scalar cases as special cases of the rules
above, making one of the relevant vectors just be 1 x 1. Here are some other ones that are
handy. For more, see the Wikipedia article on Matrix derivatives (for consistency, only use
the ones in denominator layout).

∂uTv
∂x

=
∂u
∂x

v +
∂v
∂x

u (A.13)

∂uT

∂x
=
(∂u
∂x

)T (A.14)
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A.4 Derivation of gradient for linear regression

Applying identities A.5, A.13, A.6, A.4 A.1

∂(X̃θ− Ỹ)T (X̃θ− Ỹ)/n
∂θ

=
2
n

∂(X̃θ− Ỹ)
∂θ

(X̃θ− Ỹ)

=
2
n

(∂X̃θ
∂θ

−
∂Ỹ
∂θ

)
(X̃θ− Ỹ)

=
2
n

(
X̃T − 0

)
(X̃θ− Ỹ)

=
2
n

X̃T (X̃θ− Ỹ)

A.5 Matrix derivatives using Einstein summation

You do not have to read or learn this! But you might find it interesting or helpful.
Consider the objective function for linear regression, written out as products of matri-

ces:

J(θ) =
1
n
(X̃θ− Ỹ)T (X̃θ− Ỹ) , (A.15)

where X̃ = XT is n × d, Ỹ = YT is n × 1, and θ is d × 1. How does one show, with no
shortcuts, that

∇θJ =
2
n
X̃T (X̃θ− Ỹ) ? (A.16)

One neat way, which is very explicit, is to simply write all the matrices as variables with
row and column indices, e.g., X̃ab is the row a, column b entry of the matrix X̃. Further-
more, let us use the convention that in any product, all indices which appear more than
once get summed over; this is a popular convention in theoretical physics, and lets us
suppress all the summation symbols which would otherwise clutter the following express-
sions. For example, X̃abθb would be the implicit summation notation giving the element
at the ath row of the matrix-vector product X̃θ.

Using implicit summation notation with explicit indices, we can rewrite J(θ) as

J(θ) =
1
n

(
X̃abθb − Ỹa

) (
X̃acθc − Ỹa

)
. (A.17)

Note that we no longer need the transpose on the first term, because all that transpose
accomplished was to take a dot product between the vector given by the left term, and the
vector given by the right term. With implicit summation, this is accomplished by the two
terms sharing the repeated index a.

Taking the derivative of J with respect to the dth element of θ thus gives, using the chain
rule for (ordinary scalar) multiplication:

dJ

dθd
=

1
n

[
X̃abδbd

(
X̃acθc − Ỹa

)
+
(
X̃abθb − Ỹa

)
X̃acδcd

]
(A.18)

=
1
n

[
X̃ad

(
X̃acθc − Ỹa

)
+
(
X̃abθb − Ỹa

)
X̃ad

]
(A.19)

=
2
n
X̃ad

(
X̃abθb − Ỹa

)
, (A.20)
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where the second line follows from the first, with the definition that δbd = 1 only when
b = d (and similarly for δcd). And the third line follows from the second by recognizing
that the two terms in the second line are identical. Now note that in this implicit sum-
mation notation, the a,b element of the matrix product of A and B is (AB)ac = AabBbc.
That is, ordinary matrix multiplication sums over indices which are adjacent to each other,
because a row of A times a column of B becomes a scalar number. So the term in the above
equation with X̃adX̃ab is not a matrix product of X̃ with X̃. However, taking the transpose
X̃T switches row and column indices, so X̃ad = X̃T

da. And X̃T
daX̃ab is a matrix product of

X̃T with X̃! Thus, we have that

dJ

dθd
=

2
n
X̃T
da

(
X̃abθb − Ỹa

)
(A.21)

=
2
n

[
X̃T
(
X̃θ− Ỹ

)]
d

, (A.22)

which is the desired result.
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