
CHAPTER 9

Non-parametric methods

Neural networks have adaptable complexity, in the sense that we can try different struc-
tural models and use cross validation to find one that works well on our data. Beyond
neural networks, we may further broaden the class of models that we can fit to our data,
for example as illustrated by the techniques introduced in this chapter.

Here, we turn to models that automatically adapt their complexity to the training data.
The name non-parametric methods is misleading: it is really a class of methods that does not
have a fixed parameterization in advance. Rather, the complexity of the parameterization
can grow as we acquire more data.

Some non-parametric models, such as nearest-neighbor, rely directly on the data to
make predictions and do not compute a model that summarizes the data. Other non-
parametric methods, such as decision trees, can be seen as dynamically constructing some- These are sometimes

called classification trees;
the decision analysis lit-
erature uses “decision
tree” for a structure that
lays out possible fu-
ture events that consist
of choices interspersed
with chance nodes.

thing that ends up looking like a more traditional parametric model, but where the actual
training data affects exactly what the form of the model will be.

The non-parametric methods we consider here tend to have the form of a composition
of simple models:

• Nearest neighbor models: (Section 9.1) where we don’t process data at training time,
but do all the work when making predictions, by looking for the closest training
example(s) to a given new data point.

• Tree models: (Section 9.2) where we partition the input space and use different sim-
ple predictions on different regions of the space; the hypothesis space can become
arbitrarily large allowing finer and finer partitions of the input space.

• Ensemble models: (Section 9.2.3) in which we train several different classifiers on the
whole space and average the answers; this decreases the estimation error. In particu-
lar, we will look at bootstrap aggregation, or bagging of trees.

• Boosting is a way to construct a model composed of a sequence of component models
(e.g., a model consisting of a sequence of trees, each subsequent tree seeking to correct
errors in the previous trees) that decreases both estimation and structural error. We
won’t consider this in detail in this class.

Why are we studying these methods, in the heyday of complicated models such as
neural networks?

78

MIT 6.390 Spring 2024 79

• They are fast to implement and have few or no hyperparameters to tune.

• They often work as well as or better than more complicated methods.

• Predictions from some of these models can be easier to explain to a human user:
decision trees are fairly directly human-interpretable, and nearest neighbor methods
can justify their decision to some extent by showing a few training examples that the
prediction was based on.

9.1 Nearest Neighbor

In nearest-neighbor models, we don’t do any processing of the data at training time – we
just remember it! All the work is done at prediction time.

Input values x can be from any domain X (Rd, documents, tree-structured objects, etc.).
We just need a distance metric, d : X × X → R+, which satisfies the following, for all
x, x ′, x ′′ ∈ X:

d(x, x) = 0

d(x, x ′) = d(x ′, x)

d(x, x ′′) ⩽ d(x, x ′) + d(x ′, x ′′)

Given a data-set D = {(x(i),y(i))}ni=1, our predictor for a new x ∈ X is

h(x) = y(i) where i = arg min
i

d(x, x(i)) , (9.1)

that is, the predicted output associated with the training point that is closest to the query
point x. Tie breaking is typically done at random.

This same algorithm works for regression and classification!
The nearest neighbor prediction function can be described by dividing the space up

into regions whose closest point is each individual training point as shown below : Decision boundary re-
gions can also be de-
scribed by Voronoi di-
agrams. In a Voronoi
diagram, each of the
data points would have
its own “cell” or region
in the space that is clos-
est to the data point
in question. In the di-
agram provided here,
cells have been merged
if the predicted value
is the same in adjacent
cells.

In each region, we predict the associated y value.

Study Question: Convince yourself that these boundaries do represent the nearest-
neighbor classifier derived from these six data points.

There are several useful variations on this method. In k-nearest-neighbors, we find the
k training points nearest to the query point x and output the majority y value for classifi-
cation or the average for regression. We can also do locally weighted regression in which we

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 80

fit locally linear regression models to the k nearest points, possibly giving less weight to
those that are farther away. In large data-sets, it is important to use good data structures
(e.g., ball trees) to perform the nearest-neighbor look-ups efficiently (without looking at all
the data points each time).

9.2 Tree Models

The idea here is that we would like to find a partition of the input space and then fit very
simple models to predict the output in each piece. The partition is described using a (typi-
cally binary) “tree” that recursively splits the space.

Tree methods differ by:

• The class of possible ways to split the space at each node; these are typically linear
splits, either aligned with the axes of the space, or sometimes using more general
classifiers.

• The class of predictors within the partitions; these are often simply constants, but
may be more general classification or regression models.

• The way in which we control the complexity of the hypothesis: it would be within
the capacity of these methods to have a separate partition element for each individual
training example.

• The algorithm for making the partitions and fitting the models.

One advantage of tree models is that they are easily interpretable by humans. This is
important in application domains, such as medicine, where there are human experts who
often ultimately make critical decisions and who need to feel confident in their under-
standing of recommendations made by an algorithm. Below is an example decision tree,
illustrating how one might be able to understand the decisions made by the tree.

Example: Here is a sample tree (reproduced from Breiman, Friedman, Olshen, Stone
(1984)):

Minimum systolic blood
pressure over 24h period ⩾ 91?

high risk

no

Age ⩾ 65?

low risk

no

Is sinus tachycardia
present?

low risk

no

high risk

yes

yes

yes

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 81

These methods are most appropriate for domains where the input space is not very
high-dimensional and where the individual input features have some substantially useful
information individually or in small groups. Trees would not be good for image input,
but might be good in cases with, for example, a set of meaningful measurements of the
condition of a patient in the hospital, as in the example above.

We’ll concentrate on the CART/ID3 (“classification and regression trees” and “iterative
dichotomizer 3”, respectively) family of algorithms, which were invented independently
in the statistics and the artificial intelligence communities. They work by greedily con-
structing a partition, where the splits are axis aligned and by fitting a constant model in the
leaves. The interesting questions are how to select the splits and how to control complexity.
The regression and classification versions are very similar.

As a concrete example, consider the following images:

The left image depicts a set of labeled data points in a two-dimensional feature space. The
right shows a partition into regions by a decision tree, in this case having no classification
errors in the final partitions.

9.2.1 Regression

The predictor is made up of

• a partition function, π, mapping elements of the input space into exactly one of M
regions, R1, . . . ,RM, and

• a collection of M output values, Om, one for each region.

If we already knew a division of the space into regions, we would set Om, the constant
output for region Rm, to be the average of the training output values in that region. For
a training data set D =

{(
x(i),y(i)

)}
, i = 1, . . .n, we let I be an indicator set of all of the

elements within D, so that I = {1, . . . ,n} for our whole data set. We can define Im as the
subset of data set samples that are in region Rm, so that Im = {i | x(i) ∈ Rm}. Then

Om = averagei∈Im y(i) .

We can define the error in a region as Em. For example, Em as the sum of squared error
would be expressed as

Em =
∑

i∈Im

(y(i) −Om)2 . (9.2)

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 82

Ideally, we would select the partition to minimize

λM+

M∑

m=1

Em , (9.3)

for some regularization constant λ. It is enough to search over all partitions of the train-
ing data (not all partitions of the input space!) to optimize this, but the problem is NP-
complete.

Study Question: Be sure you understand why it’s enough to consider all partitions
of the training data, if this is your objective.

9.2.1.1 Building a tree

So, we’ll be greedy. We establish a criterion, given a set of data, for finding the best single
split of that data, and then apply it recursively to partition the space. For the discussion
below, we will select the partition of the data that minimizes the sum of the sum of squared
errors of each partition element. Then later, we will consider other splitting criteria.

Given a data set D =
{(

x(i),y(i)
)}

, i = 1, . . .n, we now consider I to be an indicator of
the subset of elements within D that we wish to build a tree (or subtree) for. That is, I may
already indicate a subset of data set D, based on prior splits in constructing our overall
tree. We define terms as follows:

• I+j,s indicates the set of examples (subset of I) whose feature value in dimension j is
greater than or equal to split point s;

• I−j,s indicates the set of examples (subset of I) whose feature value in dimension j is
less than s;

• ŷ+
j,s is the average y value of the data points indicated by set I+j,s; and

• ŷ−
j,s is the average y value of the data points indicated by set I−j,s.

Here is the pseudocode. In what follows, k is the largest leaf size that we will allow in
the tree, and is a hyperparameter of the algorithm.

BUILDTREE(I,k)

1 if |I| ⩽ k

2 Set ŷ = averagei∈I y
(i)

3 return LEAF(value = ŷ)

4 else
5 for each split dimension j and split value s

6 Set I+j,s = {i ∈ I | x(i)j ⩾ s}

7 Set I−j,s = {i ∈ I | x(i)j < s}

8 Set ŷ+
j,s = averagei∈I+j,s

y(i)

9 Set ŷ−
j,s = averagei∈I−j,s

y(i)

10 Set Ej,s =
∑

i∈I+j,s
(y(i) − ŷ+

j,s)
2 +

∑
i∈I−j,s

(y(i) − ŷ−
j,s)

2

11 Set (j∗, s∗) = arg minj,sEj,s

12 return NODE(j∗, s∗, BUILDTREE(I−j∗,s∗ ,k), BUILDTREE(I+j∗,s∗ ,k))

In practice, we typically start by calling BUILDTREE with the first input equal to our
whole data set (that is, with I = {1, . . . ,n}). But then that call of BUILDTREE can recursively
lead to many other calls of BUILDTREE.

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 83

Let’s think about how long each call of BUILDTREE takes to run. We have to consider
all possible splits. So we consider a split in each of the d dimensions. In each dimension,
we only need to consider splits betwee two data points (any other split will give the same
error on the training data). So, in total, we consider O(dn) splits in each call to BUILDTREE.

Study Question: Concretely, what would be a good set of split-points to consider for
dimension j of a data set indicated by I?

9.2.1.2 Pruning

It might be tempting to regularize by using a somewhat large value of k, or by stopping
when splitting a node does not significantly decrease the error. One problem with short-
sighted stopping criteria is that they might not see the value of a split that will require one
more split before it seems useful.

Study Question: Apply the decision-tree algorithm to the XOR problem in two di-
mensions. What is the training-set error of all possible hypotheses based on a single
split?

So, we will tend to build a tree that is too large, and then prune it back.
We define cost complexity of a tree T , where m ranges over its leaves, as

Cα(T) =

|T |∑

m=1

Em(T) + α|T | , (9.4)

and |T | is the number of leaves. For a fixed α, we can find a T that (approximately) mini-
mizes Cα(T) by “weakest-link” pruning:

• Create a sequence of trees by successively removing the bottom-level split that mini-
mizes the increase in overall error, until the root is reached.

• Return the T in the sequence that minimizes the cost complexity.

We can choose an appropriate α using cross validation.

9.2.2 Classification

The strategy for building and pruning classification trees is very similar to the strategy for
regression trees.

Given a region Rm corresponding to a leaf of the tree, we would pick the output class
y to be the value that exists most frequently (the majority value) in the data points whose x

values are in that region, i.e., data points indicated by Im:

Om = majorityi∈Im y(i) .

Let’s now define the error in a region as the number of data points that do not have the
value Om:

Em =
∣∣∣{i | i ∈ Im and y(i) ̸= Om}

∣∣∣ .

We define the empirical probability of an item from class k occurring in region m as:

P̂m,k = P̂(Im, k) =

∣∣{i | i ∈ Im and y(i) = k}
∣∣

Nm
,

where Nm is the number of training points in region m; that is, Nm = |Im|. For later use,
we’ll also define the empirical probabilities of split values, P̂m,j,s, as the fraction of points
with dimension j in split s occurring in region m (one branch of the tree), and 1 − P̂m,j,s as
the complement (the fraction of points in the other branch).

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 84

Splitting criteria In our greedy algorithm, we need a way to decide which split to make
next. There are many criteria that express some measure of the “impurity” in child nodes.
Some measures include:

• Misclassification error:

Qm(T) =
Em

Nm
= 1 − P̂m,Om

(9.5)

• Gini index:
Qm(T) =

∑

k

P̂m,k(1 − P̂m,k) (9.6)

• Entropy:
Qm(T) = H(Im) = −

∑

k

P̂m,k log2 P̂m,k (9.7)

So that the entropy H is well-defined when P̂ = 0, we will stipulate that 0 log2 0 = 0.

These splitting criteria are very similar, and it’s not entirely obvious which one is better.
We will focus on entropy, just to be concrete.

Analogous to how for regression we choose the dimension j and split s that minimizes
the sum of squared error Ej,s, for classification, we choose the dimension j and split s

that minimizes the weighted average entropy over the “child” data points in each of the
two corresponding splits, I+j,s and I−j,s. We calculate the entropy in each split based on the
empirical probabilities of class memberships in the split, and then calculate the weighted
average entropy Ĥ as

Ĥ = (fraction of points in left data set) ·H(I−j,s)

+ (fraction of points in right data set) ·H(I+j,s)

= (1 − P̂m,j,s)H(I−j,s) + P̂m,j,sH(I+j,s)

=
|I−j,s|

Nm
·H(I−j,s) +

|I+j,s|

Nm
·H(I+j,s) . (9.8)

Choosing the split that minimizes the entropy of the children is equivalent to maximizing
the information gain of the test xj = s, defined by

INFOGAIN(xj = s, Im) = H(Im) −

(
|I−j,s|

Nm
·H(I−j,s) +

|I+j,s|

Nm
·H(I+j,s)

)
(9.9)

In the two-class case (with labels 0 and 1), all of the splitting criteria mentioned above
have the values {

0.0 when P̂m,0 = 0.0
0.0 when P̂m,0 = 1.0

.

The respective impurity curves are shown below, where p = P̂m,0; the vertical axis plots
Qm(T) for each of the three criteria.

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 85

There used to be endless haggling about which impurity function one should use. It seems
to be traditional to use entropy to select which node to split while growing the tree, and
misclassification error in the pruning criterion.

9.2.3 Bagging

One important limitation or drawback in conventional trees is that they can have high
estimation error: small changes in the data can result in very big changes in the resulting
tree.

Bootstrap aggregation is a technique for reducing the estimation error of a non-linear
predictor, or one that is adaptive to the data. The key idea applied to trees, is to build
multiple trees with different subsets of the data, and then create an ensemble model that
combines the results from multiple trees to make a prediction.

• Construct B new data sets of size n. Each data set is constructed by sampling n data
points with replacement from D. A single data set is called bootstrap sample of D.

• Train a predictor f̂b(x) on each bootstrap sample.

• Regression case: bagged predictor is

f̂bag(x) =
1
B

B∑

b=1

f̂b(x) . (9.10)

• Classification case: Let K be the number of classes. We find a majority bagged predictor
as follows. We let f̂b(x) be a “one-hot” vector with a single 1 and K − 1 zeros, and
define the predicted output ŷ for predictor fb as ŷb(x) = arg maxk f̂

b(x)k. Then

f̂bag(x) =
1
B

B∑

b=1

f̂b(x), (9.11)

which is a vector containing the proportion of classifiers that predicted each class k

for input x. Then the overall predicted output is

ŷbag(x) = arg max
k

f̂bag(x)k . (9.12)

There are theoretical arguments showing that bagging does, in fact, reduce estimation
error. However, when we bag a model, any simple intrepetability is lost.

9.2.4 Random Forests

Random forests are collections of trees that are constructed to be de-correlated, so that
using them to vote gives maximal advantage. In competitions, they often have excellent
classification performance among large collections of much fancier methods.

In what follows, B, m, and n are hyperparameters of the algorithm.

RANDOMFOREST(D;B,m,n)

1 for b = 1, . . . ,B
2 Draw a bootstrap sample Db of size n from D

3 Grow a tree Tb on data Db by recursively:
4 Select m variables at random from the d variables
5 Pick the best variable and split point among the m variables
6 Split the node
7 return tree Tb

Given the ensemble of trees, vote to make a prediction on a new x.

Last Updated: 04/11/24 12:41:31

MIT 6.390 Spring 2024 86

9.2.5 Tree variants and tradeoffs

There are many variations on the tree theme. One is to employ different regression or
classification methods in each leaf. For example, a linear regression might be used to model
the examples in each leaf, rather than using a constant value.

In the relatively simple trees that we’ve considered, splits have been based on only a
single feature at a time, and with the resulting splits being axis-parallel. Other methods
for splitting are possible, including consideration of multiple features and linear classifiers
based on those, potentially resulting in non-axis-parallel splits. Complexity is a concern in
such cases, as many possible combinations of features may need to be considered, to select
the best variable combination (rather than a single split variable).

Another generalization is a hierarchical mixture of experts, where we make a “soft” ver-
sion of trees, in which the splits are probabilistic (so every point has some degree of mem-
bership in every leaf). Such trees can be trained using a form of gradient descent. Combi-
nations of bagging, boosting, and mixture tree approaches (e.g., gradient boosted trees) and
implementations are readily available (e.g., XGBoost).

Trees have a number of strengths, and remain a valuable tool in the machine learning
toolkit. Some benefits include being relatively easy to interpret, fast to train, and ability
to handle multi-class classification in a natural way. Trees can easily handle different loss
functions; one just needs to change the predictor and loss being applied in the leaves. Meth-
ods also exist to identify which features are particularly important or influential in forming
the tree, which can aid in human understanding of the data set. Finally, in many situations,
trees perform surprisingly well, often comparable to more complicated regression or clas-
sification models. Indeed, in some settings it is considered good practice to start with trees
(especially random forest or boosted trees) as a “baseline” machine learning model, against
which one can evaluate performance of more sophisticated models.

Last Updated: 04/11/24 12:41:31

