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Logistics

e 11am Section 3 and 4 are completely full and we have many
requests to switch. Physical space packed.
« If at all possible, please help us by signup/switch to other slots.

« OHs start this Sunday, please also join our Piazza

o Thanks for all the assignments feedback. We are adapting on-the-
go but these certainly benefit future semesters.

o Start to get assignments due now. (first up, exercises 2, keep an
eye on the "due")


https://piazza.com/class/lq7023t93tv5a

Optimization + first-principle physics


https://shenshen.mit.edu/demos/gifs/atlas_darpa_overall.gif



https://s3.amazonaws.com/media-p.slid.es/videos/1350152/Jg2VLvbO/bi-manual_nutella_on_toast.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/PSVOiCD8/book_page_w__recovery.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/MmRrOmfd/bi-manual_berry_scooping.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/M1Uv4St7/bi-manual_potato_peeling.mp4

https:/ /www.youtube.com /embed / fn3KWM1kuAw?enablejsapi=1



https://www.youtube.com/embed/fn3KWM1kuAw?enablejsapi=1

Outline

» Recap of last (content) week.
 Ordinary least-square regression

= Analytical solution (when exists)
= Cases when analytical solutions don't exist

o Practically, visually, mathamtically

e Regularization
« Hyperparameter, cross-validation



How do we learn?

e Have data; have hypothesis class

¢ \Want to choose (learn) a good

hypothesis /& (or more concretely,
a set of parameters)

How to get it:
(Next time!)
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Example: predict pollution level

(Training) data
* n training data points
* Fordatapoint ;c¢
* Feature vector :
2@ = (... )T e R xgly T

o Label v eR Satellite reading

Pollution level
o
@
]

e Training data Dn = {(=™,yW),..., (@™, y™)}

What do we want? A good way to label new points

How to label? Hypothesis A : R* — R Is this a good hypothesis?

T =—p| h |=—Py

* Example h: For any x, h(x) = 1,000,000




Linear regressors
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Linear regressors
* Hypothesis class H : set of A

* Alinear regression hypothesis
when a=1:;
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Linear regressors

* Hypothesis class H : set of A

* Alinear regression hypothesis
when a=1:;
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Linear regressors

* Hypothesis class H : set of A

* Alinear regression hypothesis
when d=1:

h(ﬂ?; 0, 90) = 0x + 90
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Linear regressors

* Hypothesis class H : set of A

* Alinear regression hypothesis
when d=1:

h(ﬂ?; 0, 90) = 0x + 90

* Alinear reg. hypothesis when d>1:

h(il?; 9, 90) = 01331 + -+ Od.%'d + 90
=0z ~+ 0y
OR
h(.’L‘) — 91371 + -+ ded + (90)(1)
=0"x

Pollution level
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Linear regressors

* Alinear reg. hypothesis when d>1:
h(z;0,0p) = 0121+ -+ 0424 + O

=0'r + 6y
OR
h(x;0) = 60121 + -+ 0gxq + (6p)(1)
= HT i Notat\or\a\
trick: not 1€}

same 0& X

* Qur hypothesis class in linear regression
will be the set of all such h




How good is a regression hypotheS|s’?

» Should predict well on future data - Y4 ' o ®
« How good is a regressor atone @ .*. .
. ® '
point? Loss L(g, a) 5 S
 Ex: squared loss 5 &7
L(gaa’):(g_a’)Q D? '
| | < >
* Example: asymmetric loss v wgn+1) x1
_ [ (g—a)ifg>a Satellite reading
L(gaa') - { 2(g_a)2 lfg é a
| 1 n+n . -
« Test error (n’new points): £(h) = — Z L(h(z®), y®)
1= n—l—l
« Training error: &,( ZL y()

One idea: prefer h to h if 8 ( ) < En(h)



1.3)

Now, here are some executions for different values of k (shown in red is the hypothesis with the lowest MSE, among the k

tested).

(A) k=1

0.0

0.2

(C) k=20

0.0

0.2

(B) k=5

(D) k=50

* What happens as we increase k? Compare the four "best”
linear regressors found by the random regression algorithm
with different values of k chosen, which one does your group
think is "best of the best"?

+ How does it match your initial guess about the best
hypothesis?

+ Will this method eventually get arbitrarily close to the best
solution? What do you think about the efficiency of this
method?



Outline

» Recap of last (content) week.
 Ordinary least-square regression

= Analytical solution (when exists)
= Cases when analytical solutions don't exist

o Practically, visually, mathemtically

e Regularization
« Hyper-parameter, cross-validation



Linear regression: Another way

* How about we just consider all hypotheses in our class
and choose the one with lowest training error?

» We'll see: not typically straightforward
» But for linear regression with square loss: can do it!



Linear regression: Another way

* How about we just consider all hypotheses in our class
and choose the one with lowest training error?

» We'll see: not typically straightforward
» But for linear regression with square loss: can do it!

* Recall: training error: &, ( ZL 7)), )

. Tra|n|ng error square loss, linear regr extra “17 feature

- Z (z)



Linear regression: Another way

* How about we just consider all hypotheses in our class
and choose the one with lowest training error?

» We'll see: not typically straightforward
» But for linear regression with square loss: can do it!

1 — . .
* Recall: training error:  £,(h) = ~ > L(h(z?),y")
=1

* Training error: square loss, linear regr., extra “1” feature
1 < . .
. 9 (@) _ ,,(9))2
JO) = N CAFICIEIR)

=1



Linear regression: Another way

» Training error: square loss, linear regr., extra “1” feature

1 - 7 7
JO) =~ (072 -y’
1=1
Define 1 -
) o 2 -
X=1 . Y=| :
_ mgn) xf;%) _ ]y




Linear regression: Another way

* Training error: square loss, linear regr., extra “1” feature

n

1 i i | ~ -~ ~
i=1
Define ) oA
a;§> mg) C ()
X=| : oo v—| -
_ mgn) . xfzn) _ ]y




Linear regression: A Direct Solution
« Goal: minimize J(6) = l()"(9 -Y)'(X0-Y)

n

* Q: what kind of functionis J(0)

' N
e Q: how does J(0) look like? - ;ﬁi_

 A: J(0) quadratic function; X
typically look like a “bowl!” (but

there’re exceptions) Ty,



Linear regression: A Direct Solution

* Goal: minimize 9y = L (X0 _ )T (X0 - 7)
n

e Unigquely minimized at a point if gradient at that point
Is zero and function “curves up” [see linear algebra]

* Gradient VyaJ(0) =



- N\ —1 _ _
Comments about ¢ = (X'X) X'¥

« When 6* exists, guaranteed to be |
. L JO)=—-(X0-Y) (X0-Y)
unique minimizer of n
Y- v s, Y

1

1 L1

Z1
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1

. «  (vT v o may not be

Now, the catch: ¢ = (x7%) x7v 70"
- N —1 - - -

. 0% — (XTX) XTY is not well-defined if (XTX) is not invertible

o Indeed, it's possible that (X' X ) is not

invertible.

e In particular, (X X ) is not invertible if = { J[ 1 =L J ) ( l

and Only if X iS nOt full COlumn rank Ax and Ay are linear combinations of columns of 4.

l[x1 Y1] Alx y]=[Ax Ay]



Now, the catch: ¢ = (XTX)

Recall

1 .
~ T~ is not well-
XY defined

if X is not full column rank

indeed X is not full column rank

1. if n<d
2. if columns (features) in X have linear
dependency



Re C ap: 1. if n<d (i.e. not enough data)

2. if columns (features) in X have linear

| L dependency (i.e., so-called co-linearity)
-
| N
(n) L O 0" = (X X ) X'y is not defined
i xl PN xd .

« Both cases do happen in practice

« In both cases, loss function is a "half-pipe"

o In both cases, infinitily-many optimal
hypotheses

 Side-note: sometimes noise can resolve
invertabiliy issue, but undesirable




Outline

» Recap of last (content) week.
 Ordinary least-square regression

= Analytical solution (when exists)
= Cases when analytical solutions don't exist

o Practically, visually, mathemtically

e Regularization
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Regularization

 How to choose among hyperplanes? Preference for 6
components being near zero



Ridge Regression Regularization

* Linear regressmn W|th square penalty: ridge regression

Jrldge(g 90 Z(OT (Z)_|_9 _y(Z)) —I_}‘”Q”z
1=1



Ridge Regression Regularization

* Linear regression wi}Lh square penalty: ridge regression

1 . .
Jriage(6,00) = = 3 (0" &' 405 — y'U)? + X[0]?

1=1



Ridge Regression Regularization

* Linear regressmn W|th square penalty: ridge regression

Jrldge(g 90 Z(OT (z)_|_9 _y(z)) —|—A||9||2 (A >0)
=1

» Special case: ridgev régression with no offset

= . e <
VE ] — E(Xa ~Y)" (X6 -Y)+ )||9)?

e Min at; V@Jrjdge(G) — (0
=0=(X"X+n\)'XTY

* When X > 0, always “curves up” & can invert .
« Can also solve with an offset Aisa hyper-par ameter
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Cross-validation

e (1)

Cross-validate (D, , k)

Divide D, into k chunks Dp1,...,Dpi (of
roughly equal size)



Cross-validation

e ()

Cross-validate (D, , k)
Divide D, into k chunks Dn1,...,Dpi (of
roughly equal size)
for i = 1 to k



Cross-validation

(D) (1)

Cross-validate (D, , k)
Divide D, into k chunks Dn1,...,Dpi (of
roughly equal size)
for i =1 to k



Cross-validation

(D) ()

Cross-validate (D, , k)

Divide D, into k chunks Dp1,...,Dpi (of
roughly equal size)
for i = 1 to k



Cross-validation

(D) 2 (1)

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dpi (of
roughly equal size)
for 1 =1 to k
train h; on D,\D,,; (i.e. except chunk i)



Cross-validation

(D) ()

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dpr (of
roughly equal size)
for i = 1 to k
train h; on D,\D,; (i.e. except chunk i)
compute “test” error &(h;,Dn;) of h; on Dy,



Cross-validation

e 2

Cross-validate (D, , k)
Divide D, into k chunks Dpi1,...,Dpx (of
roughly equal size)
for 1 = 1 to k
train h; on D,\D,; (i.e. except chunk i)
compute “test” error &(hi;Dn;) of h; on Dy,

k
1
Return v Z E(hi, D ;)

1=1



Cross-validation

e 2

Cross-validate (D, , k)
Divide D, into k chunks Dpi1,...,Dpx (of
roughly equal size)
for 1 = 1 to k
train h; on D,\D,; (i.e. except chunk i)
compute “test” error &(hi;Dn;) of h; on Dy,

k
1
Return v Z E(hi, D ;)

1=1



Comments about cross-validation

good idea to shuffle data first

a way to "reuse" data

not evaluating a hypothesis, but rather

evaluating learning algorithm. (e.g. hypothesis class, hyper-
parameter)

 Could e.g. have an outer loop for picking good hyper-
parameter/ class



Summary

e One strategy for finding ML algorithms is to reduce the ML
problem to an optimization problem.

o For the ordinary least squares (OLS), we can find the optimizer
analytically, using basic calculus! Take the gradient and set it to
zero. (Generally need more than gradient info; suffices in OLS)

« Two ways to approach the calculus problem: write out in terms of
explicit sums or keep in vector-matrix form. Vector-matrix form is
easier to manage as things get complicated (and they will!) There
are some good discussions in the lecture notes.



Summary

« What does it mean to well posed.

« When there are many possible solutions, we need to indicate our
preference somehow.

e Regularization is a way to construct a new optimization problem

« Least-squares regularization leads to the ridge-regression formulation.
Good news: we can still solve it analytically!

« Hyper-parameters and how to pick them. Cross-validation



We'd love it for you to share some lecture feedback.

Thanks!


https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?usp=sf_link

