X

https:/ /introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 3: Gradient Descent Methods

Shen Shen
Feb 16, 2024

(many slides adapted from Tamara Broderick)

https://introml.mit.edu/
https://tamarabroderick.com/

Outline

o Recall (Ridge regression) => Why care about GD

o Optimization primer
= Gradient, optimality, convexity
« GD as an optimization algorithm for generic function
 GD as an optimization algorithm for ML applications
= Loss function typically a finite sum
« Stochastic gradient descent (SGD) for ML applications

» Pick one out of the finite sum

|
—
®
°
°

Recall E
o A general ML approach =
» Collect data %

. Elk;oci)isoenhypothems class, hyperparameter, loss ~« P—— re:adingwl

n

> L(h(?;0),y?) + AR(O)

=

» Train (optimize for) "good" hypothesis by
minimizing loss. e.g. ridge regression -

 Great when have analytical solutions

= But don't always have them (recall, half-pipe) (A>0)

= Even when do have analytical solutions, can be
expensive to compute (recall, lab2, Q2.8,)

« Want a more general, efficient way! => GD methods

Outline

o Recall (Ridge regression) => Why care about GD

o Optimization primer

= Gradient, optimality, convexity

« GD as an optimization algorithm for generic function

 GD as an optimization algorithm for ML applications
= Loss function typically a finite sum

« Stochastic gradient descent (SGD) for ML applications

» Pick one out of the finite sum

Gradient eq

* Def: For f : R™ — R, its gradient .
Vf:R™— R™is defined at the point ~ ;;;15:‘33;3“3§3§3§§§§§§§§
p = (x1,...,%,) in m-dimensional R
space as the vector

— a -
52 (p)
V f (p) — E The gradient of the function f{(x,y) = —(coszx"' COSZ}’)Z &
of
L 3z, () | another f(z,y,2) = 4y + 2

example 2
Vf(m’ Y, 2:) = 3y2
1

When gradient is zero:

5 cases:
local/
global
max
-400 |OQa|
global i
min

Q
S
q

Saddle
point

O
“ \‘\\“\\\
A

0

S
S
OO

1/2

When minimizing a function, we'd hope to get a global min

Convex Functions

« A function f on R™ is convex if any line segment connecting two points
of the graph of f lies above or on the graph.
e (fis concave if — f is convex.)

 For convex functions, local minima are all global minima.

https:/ /shenshen.mit.edu/demos/convex.html

https://shenshen.mit.edu/demos/convex.html

Simple examples
Convex functions

f@) = =

f = min(Jz], 10)

302 0 1 2 3 4
¥

Convex Functions (cont'd)

What do we need to know:

o Intuitive understanding of the definition

o If given a function, can determine if it's convex or not. (We'll
only ever give at most 2D, so visually is enough)

« Understand how (stochastic) gradient descent algorithms
would behave differently depending on if convexity is
satisfied.

« For this class, OLS loss function is convex, ridge regression
loss is (strictly) convex, and later cross-entropy loss function
1S convex too.

Outline

o Recall (Ridge regression) => Why care about GD
o Optimization primer

= Gradient, optimality, convexity

 GD as an optimization algorithm for generic function

 GD as an optimization algorithm for ML applications
= Loss function typically a finite sum (over data)
« Stochastic gradient descent (SGD) for ML applications

» Pick one data out of the finite sum

Gradient descent

hyperparameters

Gradient-Descent (O, n, f, Vo f,¢
Initialize ©© =@,
Initialize t = 0
repeat

t =1t + 1

Q) — (-1 _ nVef(© ot— 1)
until |[f(©Y) - fO!- 1))‘ <e
Return o)

Gradient descent

Gradient-Descent (Oiit,n, f, Vo f,€)

Initialize 00 =@
Initialize t = 0
repeat

t=1t +1

0l = et~ _ pvg f(OE—)
until |[f(@®)-— f(@(t_l))‘ <e
Return o®

init

Gradient descent

Gradient-Descent (Oiit,n, f, Ve f,€

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

Q) — gt=1) _ nVef(© ot— 1)
until |[f(@®)— fO- 1>)‘ <e
Return o®

Gradient descent

Gradient-Descent (Oiit,n, f, Ve f,€

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

Q) — o(t=1) _ nVef(© ot— 1)
until |[f(@®)— fO- 1>)‘ <e
Return o®

Gradient descent

Gradient-Descent (Oiit,n, f, Ve f,€

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

Q) — g(t=1) _ nVef(© ot— 1)
until |[f(@®)— fO- 1>)‘ <e
Return o®

Gradient descent

Gradient-Descent (Oiit,n, f, Ve f,€

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

Q) — g(t=1) _ nVef(© ot— 1)
until |[f(@®)— fO- 1>)‘ <e
Return o®

Gradient descent

Gradient-Descent (Oiit,n, f, Ve f,€

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

Q) — glt=1) _ nVef(© ot— 1)
until |[f(@®)— fO- 1>)‘ <e
Return o®

Gradient descent

Gradient-Descent (Oiit,n, f, Vo f,€)
Initialize ©® =@
Initialize t = 0
repeat

t =t + 1

0l =l _ pvg f(OED)
until |[f(@®)-— f(@(t_l))‘ <e
Return o®

init

Gradient descent

Gradient-Descent (Oiit,”n, f, Vo f,€)
Initialize ©© =@,
Initialize t = 0
repeat

t=t +1

0l =l _ pvg f(OED)
until |[f(@®)-— f(@(t_l))‘ <e
Return o®

Gradient descent .

Gradient-Descent (Oiit,”n, f, Vo f,€)
Initialize ©© =@,
Initialize t = 0
repeat

t=t +1

0l =l _ pvg f(OED)
until |[f(@®)-— f(@(t_l))‘ <e
Return o®

Gradient descent

Gradient descent

f(©)

Gradient descent

Gradient-Descent (Ounit,n, f, Vof,€)
Initialize ©© =@,
Initialize t = 0
repeat

t =1t + 1

01 = ot—1) _ pvg f(OFY)
until [f(©®)- f(©)| <e
Return @

» Other possible stopping criteria:
* Max number of iterations T
+ 00—tV < c
. [Vof(®W)] <€

Gradient descent properties

Theorem: Gradient descent performance
« Assumptions: (Choose any € > 0)

* f|s sufficiently “smooth’l and convex if violated:
* fhas at least one global optimum can't run gradient
* 7 is sufficiently small descent

* Conclusion: If run long enough, gradient
descent will return a value within € of a
global optimum ©

Gradient descent properties

Theorem: Gradient descent performance

« Assumptions: (Choose any € > 0)

e fis sufficiently “smooth” and

convex

* fhas at least one global optimum

* 7 is sufficiently small

* Conclusion: If run long enough, gradient
descent will return a value within € of a

global optimum ©

if violated:

e.g. get stuck at a
saddle point

Gradient descent properties

Theorem: Gradient descent performance if violated:

» Assumptions: (Choose any € > 0) e.g. may not terminate
 fis sufficiently “smooth” and convex e
* fhas at|least one global optimum 1
e 7 is sufficiently small

* Conclusion: If run long enough, gradient
descent will return a value within € of a
global optimum ©

Gradient descent properties

Theorem: Gradient descent performance

« Assumptions: (Choose any € > 0)
 fis sufficiently “smooth” and convex if violated:
* fhas at least one global optimum see demo, and lab
e nlis sufficiently small

* Conclusion| If run long enough,|gradient
descent will return a value within € of a
global optimum ©

Recall: need step-size sufficiently small

run long enough

https://shenshen.mit.edu/demos/gd.html

Outline

o Recall (Ridge regression) => Why care about GD
o Optimization primer
= Gradient, optimality, convexity

 GD as an optimization algorithm for generic function

 GD as an optimization algorithm for ML applications

= Loss function typically a finite sum

« Stochastic gradient descent (SGD) for ML applications

» Pick one out of the finite sum

Outline

o Recall (Ridge regression) => Why care about GD
o Optimization primer
= Gradient, optimality, convexity

 GD as an optimization algorithm for generic function

 GD as an optimization algorithm for ML applications

= Loss function typically a finite sum

« Stochastic gradient descent (SGD) for ML applications

» Pick one out of the finite sum

Gradient descent on ML objective

« ML objective functions has « Because (gradient of sum) =
typical form: finite sum (sum of gradient), gradient of an
ML objective :

1 n
f(©) ”;:1:f() Vf(@):% E Vfi(©)

« For instance, MSE we've seen so far: * gradient of that MSE w.r.t. 6:

1 n n

SN (0T 2D gy — 42 2 (97 M) g _ (7:>) (i)
n;(0) n;: T’ +0)—yY T

Outline

o Recall (Ridge regression) => Why care about GD
o Optimization primer
= Gradient, optimality, convexity
 GD as an optimization algorithm for generic function

 GD as an optimization algorithm for ML applications

= Loss function typically a finite sum

« Stochastic gradient descent (SGD) for ML applications

» Pick one out of the finite sum

Stochastic gradient descent

Gradient-Descent (Oiit,n, f, Ve f,€)
Initialize ©© =@,
Initialize t = 0
repeat

t=t + 1

0l =t-b _pvgfr(et-1)
until [f(0Y) - f(O¢) <e
Return @®

Vi©) = > Vi(®)

Stochastic:

Gradient-Descent (Oui,n, f, Vo f, €)
Initialize 0 =@,
Initialize t = 0

repeat
t =t + 1
randomly select i from {1,..,n}
0 =0V — () Ve £i(0 ")
until [f(@®)-s(O¢)|<e

Return @)

for a randomly

~ Vfi(©) |
picked ¢

Stochastic gradient descent (SGD) properties

- - SGD: |

VA g v
Theorem: SGD performance

« Assumptions: (Choose any € > 0)
e fis "nice” & convex, has a unique global minimizer

© Yol =00, (0(®)* < o0

* e.g. n(t)=a(ro+t) "(xk € (0.5,1])
e Conclusion: If run long enough, stochastic gradient
descent will return a value within € of the global minimizer

More "random"

More
"demanding”

We'd love it for you to share some lecture feedback.

Thanks!

https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?usp=sf_link

