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Outline
Recall (Ridge regression) => Why care about GD
Optimization primer

Gradient, optimality, convexity
GD as an optimization algorithm for generic function 
GD as an optimization algorithm for ML applications

 Loss function typically a finite sum
Stochastic gradient descent (SGD) for ML applications

Pick one out of the finite sum



Recall
A general ML approach

Collect data
Choose hypothesis class, hyperparameter, loss
function
Train (optimize for) "good" hypothesis by
minimizing loss. e.g. ridge regression

Great when have analytical solutions
But don't always have them (recall, half-pipe)
Even when do have analytical solutions, can be
expensive to compute (recall, lab2, Q2.8,)

Want a more general, efficient way! => GD methods
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Gradient
Def: For , its gradient 

 is defined at the point 
 in -dimensional

space as the vector
 

f : R →m R
∇f : R →m Rm

p = x ,… ,x( 1 m) m

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f
f(x, y, z) = x +2 y +3 z

e.g.

another
example

∇f(x, y, z) =
2x
3y2

1



When gradient is zero:
5 cases:

When minimizing a function, we'd hope to get a global min



Convex Functions
A function  on  is convex if any line segment connecting two points

of the graph of  lies above or on the graph.

(  is concave if  is convex.)

For convex functions, local minima are all global minima.

f Rm

f

f −f



https://shenshen.mit.edu/demos/convex.html

https://shenshen.mit.edu/demos/convex.html


Simple examples
Convex functions

Non-convex functions
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Convex Functions (cont'd)
What do we need to know:

Intuitive understanding of the definition
If given a function, can determine if it's convex or not. (We'll
only ever give at most 2D, so visually is enough)
Understand how (stochastic) gradient descent algorithms
would behave differently depending on if convexity is
satisfied.
For this class, OLS loss function is convex, ridge regression
loss is (strictly) convex, and later cross-entropy loss function
is convex too.
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hyperparameters



























Gradient descent properties

if violated:
can't run gradient

descent



Gradient descent properties

if violated:
e.g. get stuck at a

saddle point



Gradient descent properties

if violated:
e.g. may not terminate



Gradient descent properties

if violated:
see demo, and lab



https://shenshen.mit.edu/demos/gd.html

Recall: need step-size sufficiently small 
run long enough

https://shenshen.mit.edu/demos/gd.html
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Gradient descent on ML objective
ML objective functions has
typical form: finite sum

For instance, MSE we've seen so far:

Because (gradient of sum) =
(sum of gradient), gradient of an
ML objective :

∇f(Θ) = ∇f (Θ)
n

1

i=1

∑
n

i

gradient of that MSE w.r.t. :θ

θ x + θ − y x
n

2

i=1

∑
n

( ⊤ (i)
0

(i)) (i)
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Stochastic gradient descent

∇f(Θ) = ∇f (Θ)
n

1

i=1

∑
n

i ≈ ∇f (Θ)i
for a randomly

picked i



More "random"

More
"demanding"



Thanks!

We'd love it for you to share some lecture .feedback

https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?usp=sf_link

