

<https://introml.mit.edu/>

6.390 Intro to Machine Learning

Lecture 3: Gradient Descent Methods

Shen Shen Feb 16, 2024

(many slides adapted from [Tamara Broderick](https://tamarabroderick.com/))

Outline

- Recall (Ridge regression) => Why care about GD
- Optimization primer
	- Gradient, optimality, convexity
- GD as an optimization algorithm for generic function
- GD as an optimization algorithm for ML applications
	- **Loss function typically a finite sum**
- Stochastic gradient descent (SGD) for ML applications
	- Pick one out of the finite sum

Recall

- A general ML approach
	- Collect data
	- Choose hypothesis class, hyperparameter, loss function
	- Train (optimize for) "good" hypothesis by minimizing loss. e.g. ridge regression
- Great when have analytical solutions
	- But don't always have them (recall, half-pipe)
	- Even when do have analytical solutions, can be expensive to compute (recall, lab2, Q2.8,)
- Want a more general, efficient way! => GD methods

$$
\frac{1}{n}\sum_{i=1}^{n}L(h(x^{(i)};\Theta), y^{(i)}) + \lambda R(\Theta)
$$

 $(\lambda > 0)$

Outline

- Recall (Ridge regression) => Why care about GD
- Optimization primer
	- Gradient, optimality, convexity
- GD as an optimization algorithm for generic function
- GD as an optimization algorithm for ML applications
	- **Loss function typically a finite sum**
- Stochastic gradient descent (SGD) for ML applications
	- Pick one out of the finite sum

Gradient

Def: For $f : \mathbb{R}^m \to \mathbb{R}$, its gradient $\nabla f : \mathbb{R}^m \to \mathbb{R}^m$ is defined at the point $p = (x_1, \ldots, x_m)$ in *m*-dimensional space as the vector

$$
\nabla f(p) = \left[\begin{array}{c} \frac{\partial f}{\partial x_1}(p) \\ \vdots \\ \frac{\partial f}{\partial x_m}(p) \end{array} \right]
$$

 $\nabla f(x,y,z) = 0$

e.g.

 $3y^2$

1

When gradient is zero:

5 cases:

When minimizing a function, we'd hope to get a global min

Convex Functions

- A function f on \mathbb{R}^m is **convex** if any line segment connecting two points of the graph of f lies above or on the graph.
- $(f$ is concave if $-f$ is convex.)
- For convex functions, local minima are all global minima.

Convex functions

Simple examples

Non-convex functions

Convex Functions (cont'd)

What do we need to know:

- Intuitive understanding of the definition
- If given a function, can determine if it's convex or not. (We'll only ever give at most 2D, so visually is enough)
- Understand how (stochastic) gradient descent algorithms would behave differently depending on if convexity is satisfied.
- For this class, OLS loss function is convex, ridge regression loss is (strictly) convex, and later cross-entropy loss function is convex too.

Outline

- Recall (Ridge regression) => Why care about GD
- Optimization primer
	- Gradient, optimality, convexity
- GD as an optimization algorithm for generic function
- GD as an optimization algorithm for ML applications
	- Loss function typically a finite sum (over data)
- Stochastic gradient descent (SGD) for ML applications
	- Pick one data out of the finite sum

Theorem: Gradient descent performance

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
	- f is sufficiently "smooth" and convex
	- f has at least one global optimum
	- η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

if violated: can't run gradient descent

Theorem: Gradient descent performance

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
	- f is sufficiently "smooth" and convex
	- f has at least one global optimum
	- η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

if violated: e.g. get stuck at a saddle point

Theorem: Gradient descent performance

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
	- f is sufficiently "smooth" and convex
	- f has at least one global optimum
	- η is sufficiently small
- Conclusion: If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

if violated:

e.g. may not terminate

Theorem: Gradient descent performance

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
	- f is sufficiently "smooth" and convex
	- f has at least one global optimum
	- η is sufficiently small
- **Conclusion** If run long enough, gradient descent will return a value within $\tilde{\epsilon}$ of a global optimum Θ

if violated:

see demo, and lab

Recall: need step-size sufficiently small run long enough

Outline

- Recall (Ridge regression) => Why care about GD
- Optimization primer
	- Gradient, optimality, convexity
- GD as an optimization algorithm for generic function
- GD as an optimization algorithm for ML applications
	- Loss function typically a finite sum
- Stochastic gradient descent (SGD) for ML applications
	- Pick one out of the finite sum

Outline

- Recall (Ridge regression) => Why care about GD
- Optimization primer
	- Gradient, optimality, convexity
- GD as an optimization algorithm for generic function
- GD as an optimization algorithm for ML applications
	- Loss function typically a finite sum
- Stochastic gradient descent (SGD) for ML applications
	- Pick one out of the finite sum

Gradient descent on ML objective

• ML objective functions has typical form: finite sum

$$
f(\Theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\Theta)
$$

• Because (gradient of sum) $=$ (sum of gradient), gradient of an ML objective :

$$
\nabla f(\Theta) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\Theta)
$$

- For instance, MSE we've seen so far:
- gradient of that MSE w.r.t. *θ*:

$$
\sum_{i=1}^n (\theta^\top x^{(i)} + \theta_0 - y^{(i)})^2
$$

 \overline{n}

$$
\frac{2}{n}\sum_{i=1}^n\left(\theta^{\top}x^{(i)}+\theta_0-y^{(i)}\right)x^{(i)}
$$

Outline

- Recall (Ridge regression) => Why care about GD
- Optimization primer
	- Gradient, optimality, convexity
- GD as an optimization algorithm for generic function
- GD as an optimization algorithm for ML applications
	- **Loss function typically a finite sum**
- Stochastic gradient descent (SGD) for ML applications
	- Pick one out of the finite sum

Stochastic gradient descent

```
Gradient-Descent (\Theta_{\text{init}}, \eta, f, \nabla_{\Theta} f, \epsilon)
Initialize \Theta^{(0)} = \Theta_{\text{init}}Initialize t = 0
```
repeat

 $t = t + 1$ $\Theta^{(t)} = \Theta^{(t-1)} - \eta \nabla_{\Theta} f(\Theta^{(t-1)})$ until $\left|f(\Theta^{(t)}) - f(\Theta^{(t-1)})\right| < \epsilon$ Return $\Theta^{(t)}$

Stochastic Gradient-Descent ($\Theta_{\text{init}}, \eta, f, \nabla_{\Theta} f, \epsilon$) Initialize $\Theta^{(0)} = \Theta_{\text{init}}$ Initialize $t = 0$ repeat $t = t + 1$ randomly select i from {1, ..., n} $\Theta^{(t)} = \Theta^{(t-1)} - \eta(t) \nabla_{\Theta} f_i(\Theta^{(t-1)})$ until $\left|f(\Theta^{(t)}) - f(\Theta^{(t-1)})\right| < \epsilon$ Return $\Theta^{(t)}$

$$
\nabla f(\Theta) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\Theta) \Bigg| \approx \nabla f_i(\Theta)
$$

for a randomly picked *i*

Stochastic gradient descent (SGD) properties

More "random"

Theorem: SGD performance

- **Assumptions**: (Choose any $\tilde{\epsilon} > 0$)
	- f is "nice" & convex, has a unique global minimizer

$$
\bullet\;\;\sum_{t=1}\eta(t)=\infty,\sum_{t=1}(\eta(t))^2<\infty
$$

• e.g.
$$
\eta(t) = \alpha(\tau_0 + t)^{-\kappa} (\kappa \in (0.5, 1])
$$

• Conclusion: If run long enough, stochastic gradient descent will return a value within $\tilde{\epsilon}$ of the global minimizer

More "demanding" We'd love it for you to share some lecture [feedback](https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?usp=sf_link).

Thanks!